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Gravitational waves from isolated neutron stars: Mass dependence of r-mode instability
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In this work, we study the r-mode instability windows and the gravitational wave signatures of neutron stars in
the slow rotation approximation using the equation of state obtained from the density-dependent M3Y effective
interaction. We consider the neutron star matter to be β-equilibrated neutron-proton-electron matter at the core
with a rigid crust. The fiducial gravitational and viscous timescales, the critical frequencies, the time evolutions
of the frequencies, and the rates of frequency change are calculated for a range of neutron star masses. We show
that the young and hot rotating neutron stars lie in the r-mode instability region. We also emphasize that if the
dominant dissipative mechanism of the r mode is the shear viscosity along the boundary layer of the crust-core
interface, then the neutron stars with low L value lie in the r-mode instability region and hence emit gravitational
radiation.
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I. INTRODUCTION

Quasinormal modes of rapidly rotating isolated and accret-
ing compact stars act as sensitive probes for general relativistic
effects such as gravitational waves and also of the properties of
ultradense matter. Temporal changes in the rotational period of
neutron stars (NSs) can reveal the internal changes of the stars
with time. Gravitational waves from rotational instabilities
of pulsars can provide insight about the nature of the high-
density equation of state (EoS). Detecting these waves by Laser
Interferometer Gravitational-Wave Observatory (LIGO) and
Virgo interferometer will provide new insights in the field of
asteroseismology.

Rotational instabilities in NSs come in different flavors,
but they have one general feature in common: They can be
directly associated with unstable modes of oscillation [1–6].
In the present work, the r-mode instability has been discussed
with reference to the EoS obtained using the density-dependent
M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction.
The discovery of r-mode oscillation in neutron star (NS) by
Anderson [1] and confirmed by Friedman and Morsink [3]
opened the way for the study of gravitational waves emitted
by NSs using an advance detecting system. Also, it provides a
possible explanation for the spin-down mechanism in the hot
young NSs as well as in spin-up cold old accreting NSs.

The r-mode oscillation is analogous to Rossby waves in the
ocean and results from perturbation in the velocity field of a star
with little disturbance in the star’s density. In a nonrotating star,
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the r modes are neutral rotational motions. In a rotating star,
Coriolis effects provide a weak restoring force that gives them
genuine dynamics. The r-mode frequency always has different
signs in the inertial and rotating frames. That is, although the
modes appear retrograde in the rotating system, an observer in
the inertial frame shall view them as prograde. To the leading
order, the pattern speed of the mode is [7,8]

σ = (l − 1)(l + 2)

l(l + 1)
�. (1)

Since 0 < σ < � for all l � 2, where � is the angular
velocity of the star in the inertial frame, the r modes are
destabilized by the standard Chandrasekhar-Friedman-Schutz
(CFS) mechanism and are unstable because of the emission
of gravitational waves. The gravitational radiation that the r
modes emit comes from their time-dependent mass currents.
This is the gravitational analog of magnetic monopole radia-
tion. The quadrupole l = 2 r mode is more strongly unstable
to gravitational radiation than any other mode in neutron stars.
Further, these modes exist with velocity perturbation if and
only if l = m mode [4,7]. This emission in gravitational waves
causes a growth in the mode energy Erot in the rotating frame,
despite decrease in the inertial-frame energy Einertial. This
puzzling effect can be understood from the relation between
the two energies,

Erot = Einertial − �J, (2)

where the angular momentum of the star is J . From this, it is
clear that Erot may increase if both Einertial and J decrease. The
frequencies of these r modes, in the lowest order terms in an
expansion in terms of angular velocity �, is [8,9]

ω = − (l − 1)(l + 2)

l + 1
�. (3)
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The instability in the mode grows because of gravitational
wave emission which is opposed by the viscosity [10]. For
the instability to be relevant, it must grow faster than it is
damped out by the viscosity. So, the timescale for gravita-
tionally driven instability needs to be sufficiently short to
the viscous damping timescale. The amplitude of r modes
evolves with time dependence eiωt−t/τ as a consequence of
ordinary hydrodynamics and the influence of the various
dissipative processes. The imaginary part of the frequency
1/τ is determined by the effects of gravitational radiation,
viscosity, etc. [9,11,12]. The timescale associated with the
different process involves the actual physical parameters of
the neutron star. In computing these physical parameters, the
role of nuclear physics comes into the picture, where one gets
a platform to constrain the uncertainties existing in the nuclear
EoS. The present knowledge on nuclear EoS in highly isospin
asymmetric dense situations is quite uncertain, so correlating
the predictions of the EoSs obtained under systematic variation
of the physical properties to the r-mode observables can be of
help in constraining the uncertainty associated with the EoS.

II. DISSIPATIVE TIMESCALES AND STABILITY
OF THE r MODES

The concern here is to study the evolution of the r modes
due to the competition of gravitational radiation and dissipative
influence of viscosity. For this purpose, it is necessary to
consider the effects of radiation on the evolution of mode
energy. This is expressed as the integral of the fluid perturbation
[9,13],

Ẽ = 1

2

∫ [
ρδ�v · δ�v∗ +

(
δp

ρ
− δ	

)
δρ∗

]
d3r, (4)

with ρ being the mass density profile of the star and δ�v,
δp, δ	, and δρ being perturbations in the velocity, pressure,
gravitational potential, and density due to oscillation of the
mode respectively. The dissipative timescale of an r mode is [9]

1

τi

= − 1

2Ẽ

(
dẼ

dt

)
i

, (5)

where the index i refers to the various dissipative mechanisms,
i.e., gravitational wave emissions and viscosity (bulk and
shear).

For the lowest order expressions for the r modes δ�v and δρ,
the expression for energy of the mode in Eq. (4) can be reduced
to a one-dimensional integral [9,14]

Ẽ = 1

2
α2

r R
−2l+2�2

∫ R

0
ρ(r)r2l+2dr, (6)

where R is the radius of the NS, αr is the dimensionless
amplitude of the mode, � is the angular velocity of the NS, and
ρ(r) is the radial dependance of the mass density of NS. Since
the expressions of ( dẼ

dt
) due to gravitational radiation [12,15]

and viscosity [11,12,16] are known, Eq. (5) can be used to
evaluate the imaginary part 1

τ
. It is convenient to decompose

1
τ

as

1

τ (�,T )
= 1

τGR(�,T )
+ 1

τBV (�,T )
+ 1

τSV (�,T )
, (7)

where 1/τGR , 1/τBV , and 1/τSV are the contributions from
gravitational radiation, bulk viscosity, and shear viscosity,
respectively, and are given by [11,12]

1

τGR

= −32πG�2l+2

c2l+3

(l − 1)2l

[(2l + 1)!!]2

(
l + 2

l + 1

)(2l+2)

×
∫ Rc

0
ρ(r)r2l+2dr, (8)

1

τSV

=
⎡⎣ 1

2�

2l+3/2(l + 1)!

l(2l + 1)!!Il

√
2�R2

c ρc

ηc

⎤⎦−1

×
[∫ Rc

0

ρ(r)

ρc

(
r

Rc

)2l+2
dr

Rc

]−1

, (9)

where G and c are the gravitational constant and velocity of
light respectively; Rc, ρc, and ηc in Eq. (9) are the radius,
density, and shear viscosity of the fluid at the outer edge of the
core respectively.

The shear viscosity timescale in Eq. (9) is obtained by
considering the shear dissipation in the viscous boundary layer
between solid crust and the liquid core with the assumption that
the crust is rigid and hence static in a rotating frame [11].

The motion of the crust due to mechanical coupling to
the core effectively increases τSV by ( v

v
)−2, where v

v
is the

difference in the velocities in the inner edge of the crust and
outer edge of the core divided by the velocity of the core [17].

Bildsten and Ushomirsky [18] have first estimated this effect
of solid crust on r-mode instability and shown that the shear
dissipation in this viscous boundary layer decreases the viscous
damping timescale by more than 105 in old accreting neutron
stars and more than 107 in hot, young neutron stars. Il in Eq. (9)
has the value I2 = 0.80411, for l = 2 [11].

Moreover, the bulk viscous dissipation is not significant for
temperature of the star below 1010K and in this range of tem-
perature the shear viscosity is the dominant dissipative mech-
anism. We have restricted our study in this work to the range
of the temperature T < 1010 K and included only the shear
dissipative mechanism. The studies is similar to the one done
by Moustakidis [19], where we have mainly examined the
influence of neutron star EoS and the gravitational mass on
the instability boundary and other relevant quantities, such as
critical frequency and temperature, for a neutron star using the
DDM3Y effective interaction [20].

As mentioned above, we have studied the instability within
T � 1010K, and the dominant dissipation mechanism is the
shear viscosity in the boundary layer for which the timescale
is given in Eq. (7), where ηc is the viscosity of the fluid. In
the temperature range T � 109K, the dominant contribution to
shear is from neutron-neutron (nn) scattering and below T �
109, it is the electron-electron (ee) scattering that contributes
to shear primarily [11]. Therefore,

1

τSV

= 1

τee

+ 1

τnn

, (10)

where τee and τnn can be obtained from Eq. (9) using
the corresponding value of ηee

SV and ηnn
SV . These are given
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by [10,21]

ηee
SV = 6 × 106ρ2T −2 (g cm−1 s−1), (11)

ηnn
SV = 347ρ9/4T −2 (g cm−1 s−1), (12)

where all the quantities are given in CGS units and T is
measured in K. In order to have transparent visualization of the
role of angular velocity and temperature on various timescales,
it is useful to factor them out by defining fiducial timescales.
Thus, we define fiducial shear viscous timescale τ̃SV such that
[9,11]

τSV = τ̃SV

(
�0

�

)1/2(
T

108K

)
, (13)

and fiducial gravitational radiation timescale τ̃GR is defined
through the relation [9,11]

τGR = τ̃GR

(
�0

�

)2l+2

, (14)

where �0 = √
πGρ̄ and ρ̄ = 3M/4πR3 is the mean density

of NS having mass M and radius R. Thus Eq. (7) (neglecting
bulk viscosity contributions) becomes

1

τ (�,T )
= 1

τ̃GR

(
�

�0

)2l+2

+ 1

τ̃SV

(
�

�0

)1/2(108K

T

)
. (15)

Dissipative effects cause the mode to decay exponentially
as e−t/τ , i.e., the mode is stable, as long as τ > 0. From Eqs. (8)
and (9), it can be seen that τ̃SV > 0, while τ̃GR < 0. Thus
gravitational radiation drives these modes toward instability,
while viscosity tries to stabilize them. For small �, the
gravitational radiation contribution to 1/τ is very small since
it is proportional to �2l+2. Thus, for sufficiently small angular
velocity, viscosity dominates and the mode is stable. But for
sufficiently large �, gravitational radiation will dominate and
drive the mode unstable. For a given temperature and mode l,
the equation for critical angular velocity �c is obtained from
the condition 1

τ (�c,T ) = 0. At a givenT and mode l, the equation

for the critical velocity is a polynomial of order l + 1 in �2
c

and thus each mode has its own characteristic �c. Since the
smallest of these, i.e., l = 2, is the dominant contributor, study
is being done for this mode only. The critical angular velocity
�c for this mode is obtained as(

�c

�0

)
=

(
− τ̃GR

τ̃SV

)2/11(108K

T

)2/11

. (16)

The angular velocity of a neutron star can never exceed
the Kepler velocity �K ≈ 2

3�0. Thus, there is a critical tem-
perature below which the gravitational radiation is completely
suppressed by viscosity. This critical temperature is given by
[11]

Tc

108K
=

(
�0

�c

)11/2(
− τ̃GR

τ̃SV

)
≈ (3/2)11/2

(
− τ̃GR

τ̃SV

)
. (17)

The critical angular velocity is now expressed in terms of
critical temperature from Eqs. (13) and (14) as(

�c

�0

)
= �K

�0

(
Tc

T

)2/11

≈ (2/3)

(
Tc

T

)2/11

. (18)

So, once the neutron star EoS is ascertained, then all physical
quantities necessary for the calculation of r-mode instability
can be performed.

Further, following the work of Owen et al. [12], the
evolution of the angular velocity, as the angular momentum
is radiated to infinity by the gravitational radiation, is given by

d�

dt
= 2�

τGR

α2
r Q

1 − α2
r Q

, (19)

where αr is the dimensionless r-mode amplitude and Q =
3J̃ /2Ĩ with

J̃ = 1

MR4

∫ R

0
ρ(r)r6dr (20)

and

Ĩ = 8π

3MR2

∫ R

0
ρ(r)r4dr. (21)

αr is treated as free parameter whose value varies within a
wide range: 1–10−8. Under the ideal consideration that the
heat generated by the shear viscosity is same as that taken out
by the emission of neutrinos [19,22], Eq. (19) can be solved
for the angular frequency �(t) as

�(t) = (
�−6

in − Ct
)−1/6

, (22)

where

C = 12α2
r Q

τ̃GR

(
1 − α2

r Q
) 1

�6
0

, (23)

and �in is considered as a free parameter whose value corre-
sponds to be the initial angular velocity. The spin-down rate
can be obtained from Eq. (19) to be

d�

dt
= C

6

(
�−6

in − Ct
)−7/6

. (24)

The neutron star spin shall decrease continually until it
approaches its critical angular velocity �c. The time tc taken by
neutron star to evolve from its initial value �in to its minimum
value �c is given by

tc = 1

C

(
�−6

in − �−6
c

)
. (25)

III. NUCLEAR EQUATION OF STATE

The EoS for nuclear matter is obtained by using the isoscalar
and the isovector [23] components of M3Y effective NN
interaction along with its density dependence. The nuclear
matter calculation is then performed which enables complete
determination of this density dependence. The minimization
of energy per nucleon determines the equilibrium density of
the symmetric nuclear matter (SNM). The variation of the
zero-range potential with energy, over the entire range of the
energy per nucleon ε, is treated properly by allowing it to vary
freely with the kinetic energy part εkin of ε. This treatment
is more plausible as well as provides excellent result for the
SNM incompressibility K∞. Moreover, the EoS for SNM is
not plagued with the superluminosity problem.
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The energy per nucleon ε for isospin asymmetric nuclear
matter (IANM) can be derived within a Fermi gas model of
interacting neutrons and protons as [20]

ε(ρ,X) =
[

3h̄2k2
F

10m

]
F (X) +

(
ρJvC

2

)
(1 − βρn), (26)

where isospin asymmetry X = ρn−ρp

ρn+ρp
, ρ = ρn + ρp, with ρn,

ρp, and ρ being the neutron, proton, and nucleonic densi-
ties respectively, m is the nucleonic mass, kF = (1.5π2ρ)

1
3 ,

which equals Fermi momentum in the case of SNM,

εkin = [ 3h̄2k2
F

10m
]F (X) with F (X) = [ (1+X)5/3+(1−X)5/3

2 ], and Jv =
Jv00 + X2Jv01, where Jv00 and Jv01 represent the volume
integrals of the isoscalar and the isovector parts of the
M3Y interaction. The isoscalar and isovector components
tM3Y
00 and tM3Y

01 of the M3Y effective NN interaction are
given by tM3Y

00 (s,ε) = 7999 exp(−4s)
4s

− 2134 exp(−2.5s)
2.5s

+ J00(1 −
αε)δ(s) and tM3Y

01 (s,ε) = −4886 exp(−4s)
4s

+ 1176 exp(−2.5s)
2.5s

+
J01(1 − αε)δ(s), respectively, with J00 = −276 MeV fm3,
J01 = 228 MeV fm3, and α = 0.005 MeV−1. The DDM3Y ef-
fective NN interaction is given by v0i(s,ρ,ε) = tM3Y

0i (s,ε)g(ρ),
where g(ρ) = C(1 − βρn) is the density dependence with C
and β being the constants of density dependence.

By differentiating Eq. (26) with respect to ρ, one obtains an
equation for X = 0:

∂ε

∂ρ
=

[
h̄2k2

F

5mρ

]
+ Jv00C

2
[1 − (n + 1)βρn]

−αJ00C[1 − βρn]

[
h̄2k2

F

10m

]
. (27)

The saturation condition ∂ε
∂ρ

= 0 at ρ = ρ0, ε = ε0, deter-
mines the equilibrium density of the cold SNM. Then for
fixed values of the saturation energy per nucleon ε0 and the
saturation density ρ0 of the cold SNM, Eqs. (26) and (27) with
the saturation condition can be solved simultaneously to obtain
the values of β and C which are given by

β =
[
(1 − p) + (

q − 3q
p

)]
ρ−n

0[
(3n + 1) − (n + 1)p + (

q − 3q
p

)] , (28)

where

p = [10mε0][
h̄2k2

F0

] , q = 2αε0J00

J 0
v00

, (29)

where J 0
v00 = Jv00(εkin

0 ), which means Jv00 is evaluated at
εkin = εkin

0 , the kinetic energy part of the saturation energy
per nucleon of SNM, kF0 = [1.5π2ρ0]1/3, and

C = −
[
2h̄2k2

F0

]
5mJ 0

v00ρ0
[
1 − (n + 1)βρn

0 − qh̄2k2
F0

(1−βρn
0 )

10mε0

] , (30)

respectively. Obviously, the constants C and β determined
by this methodology depend upon ε0, ρ0, the index n of the
density-dependent part, and through the volume integral J 0

v00
on the strengths of the M3Y interaction.

The calculations have been carried out by using the values
of saturation density ρ0 = 0.1533 fm−3 [24] and saturation

energy per nucleon ε0 = −15.26 MeV [25] for the SNM. ε0

is the coefficient av of the volume term of Bethe-Weizsäcker
mass formula, calculated by fitting the recent experimental and
estimated Audi-Wapstra-Thibault atomic mass excesses [26].
This term has been obtained by minimizing the mean square
deviation incorporating correction for the electronic binding
energy [27]. In a similar work, including surface symmetry
energy term, Wigner term, shell correction, and also the proton
form factor correction to Coulomb energy, av turns out to be
15.4496 MeV [28] (av = 14.8497 MeV when A0 and A1/3

terms are also included). Using the standard values of α =
0.005 MeV−1 for the parameter of energy dependence of the
zero range potential and n = 2/3, the values deduced for the
constants C and β and the SNM incompressibility K∞ are,
respectively, 2.2497, 1.5934 fm2, and 274.7 MeV. The term
ε0 is av and its value of −15.26 ± 0.52 MeV encompasses,
more or less, the entire range of values. For this value of av ,
now the values of the constants of density dependence are C =
2.2497 ± 0.0420 and β = 1.5934 ± 0.0085 fm2 and the SNM
incompressibility K∞ turns out to be 274.7 ± 7.4 MeV.

A. Symmetric and isospin asymmetric nuclear matter

The EoSs of the SNM and the IANM which describes
energy per nucleon ε as a function of nucleonic density ρ can
be obtained by setting isospin asymmetry X = 0 and X �= 0,
respectively, in Eq. (26). It is observed that the energy per
nucleon ε for SNM is negative (bound) up to nucleonic density
of ∼2ρ0 while for pure neutron matter (PNM) ε > 0 and is
always unbound by nuclear forces.

The compression modulus or incompressibility of the SNM,
which is a measure of the curvature of an EoS at saturation
density, is defined as k2

F
∂2ε
∂k2

F

|kF =kF0
. It measures the stiffness of

an EoS and can be theoretically obtained by using Eq. (26)
for X = 0. The IANM incompressibilities are evaluated at
saturation densities ρs with the condition of vanishing pressure,
which is ∂ε

∂ρ
|ρ=ρs

= 0. The incompressibility Ks for IANM is
therefore expressed as

Ks = −3h̄2k2
Fs

5m
F (X) − 9J s

v Cn(n + 1)βρn+1
s

2

− 9αJC
[
1 − (n + 1)βρn

s

][ρs h̄
2k2

Fs

5m

]
F (X)

+
[

3ρsαJC
(
1 − βρn

s

)
h̄2k2

Fs

10m

]
F (X), (31)

where kFs
implies that the kF is calculated at saturation density

ρs . The term J s
v = J s

v00 + X2J s
v01 is Jv evaluated at εkin = εkin

s

which is the kinetic energy part of the saturation energy per
nucleon εs and J = J00 + X2J01.

In Table I, IANM incompressibility Ks as a function of
X, for the standard value of n = 2/3 and energy dependence
parameter α = 0.005 MeV−1, is provided. The magnitude
of the IANM incompressibility Ks decreases with X due
to lowering of the saturation densities ρs with the isospin
asymmetry X as well as decrease in the EoS curvature. At
high values of X, the IANM does not have a minimum, which
signifies that it can never be bound by itself due to interaction

065804-4



GRAVITATIONAL WAVES FROM ISOLATED NEUTRON … PHYSICAL REVIEW C 97, 065804 (2018)

TABLE I. IANM incompressibility at different isospin asymme-
try X using the usual values of n = 2

3 and α = 0.005 MeV−1.

X ρs Ks

(fm−3) (MeV)

0.0 0.1533 274.69
0.1 0.1525 270.44
0.2 0.1500 257.68
0.3 0.1457 236.64
0.4 0.1392 207.62
0.5 0.1300 171.16
0.6 0.1170 127.84
0.7 0.0980 78.38

of nuclear force. However, the β equilibrated nuclear matter
which is a highly neutron-rich IANM exists in the core of the
neutron stars since its energy per nucleon is lower than that of
SNM at high densities. It is unbound by the nuclear interaction
but can be bound due to very high gravitational field that can
be realized inside neutron stars.

It is worthwhile to mention that the RMF-NL3 incompress-
ibility for SNM is 271.76 MeV [29,30], which is very close
to 274.7 ± 7.4 MeV obtained from the present calculation. In
spite of the fact that the parameters of the density dependence
of DDM3Y interaction have been tuned to reproduce the satu-
ration energy per nucleon ε0 and the saturation density ρ0 of the
cold SNM that are obtained from finite nuclei, the agreement
of the present EoS [31] with the experimental flow data [32],
where the high-density behavior looks phenomenologically
confirmed, justifies its extrapolation to high density.

The SNM incompressibility is experimentally determined
from the compression modes isoscalar giant monopole reso-
nance (ISGMR) and isoscalar giant dipole resonance (ISGDR)
of nuclei. The violations of self-consistency in Hartree-Fock
Random Phase Approximation (HF-RPA) calculations [33] of
the strength functions of ISGMR and ISGDR cause shifts in
the calculated values of the centroid energies. These shifts
may be larger in magnitude than the current experimental
uncertainties. In fact, due to the use of a not fully self-consistent
calculation with Skyrme interactions [33], low values of
K∞ in the range of 210–220 MeV were predicted. Skyrme
parmetrizations of the SLy4 type predict K∞ values in the
range of 230–240 MeV [33] when this drawback is corrected.
Besides that, bona fide Skyrme forces can be built so that
the K∞ for SNM is rather close to the relativistic value of
∼250 − 270 MeV. The conclusion may therefore be drawn
from the ISGMR experimental data that the magnitude of
K∞ ≈ 240 ± 20 MeV.

The lower values [34,35] for K∞ are usually predicted by
the ISGDR data. However, it is generally agreed upon that the
extraction of K∞ in this case is more problematic for various
reasons. Particularly, for excitation energies [33] above 30
and 26 MeV for 116Sn and 208Pb, respectively, the maximum
cross section for ISGDR at high excitation energy decreases
very strongly and can even fall below the range of current
experimental sensitivity. The upper limit of the recent values
[36] for the nuclear incompressibility K∞ for SNM extracted
from experiments is rather close to the present nonrelativistic
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FIG. 1. Plots of the nuclear symmetry energy NSE as a function
of ρ/ρ0 for the present calculation using DDM3Y interaction and its
comparison, with those for Akmal-Pandharipande-Ravenhall (APR)
[42] and the MDI interactions for the variable x = 0.0, 0.5 defined in
Ref. [43].

mean field model estimate employing DDM3Y interaction,
which is also in agreement with the theoretical estimates of
relativistic mean field (RMF) models. With Gogny effective
interactions [37], which include nuclei where pairing corre-
lations are important, the results of microscopic calculations
reproduce experimental data on heavy nuclei for K∞ in the
range about 220 MeV [38]. It may therefore be concluded that
the calculated value of 274.7 ± 7.4 MeV is a good theoretical
result and is only slightly too high compared to the recent
acceptable value [39,40] of K∞ for SNM in the range of
250–270 MeV.

B. Nuclear symmetry energy and its slope, incompressibility,
and isobaric incompressibility

The EoS of IANM, given by Eq. (26) can be expanded, in
general, as

ε(ρ,X) = ε(ρ,0) + Esym(ρ)X2 + O(X4), (32)

where Esym(ρ) = 1
2

∂2ε(ρ,X)
∂X2 |X=0 is termed as the nuclear sym-

metry energy (NSE). The exchange symmetry between protons
and neutrons in nuclear matter when one neglects the Coulomb
interaction and assumes the charge symmetry of nuclear forces
results in the absence of odd-order terms in X in Eq. (32). To a
good approximation, the density-dependent NSE Esym(ρ) can
be obtained using the following equation [41],

Esym(ρ) = ε(ρ,1) − ε(ρ,0) (33)

as the higher order terms in X are negligible. The above
equation can be obtained using Eq. (26). It represents a penalty
levied on the system as it departs from the symmetric limit of
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equal number of protons and neutrons. Thus, it can be defined
as the energy required per nucleon to change the SNM to PNM.
In Fig. 1, the plot of NSE as a function of ρ/ρ0 is shown for
the present calculation (DDM3Y) and compared with those for
Akmal-Pandharipande-Ravenhall [42] and Momentum depen-
dent interaction (MDI) [43].

A constraint on the NSE at nuclear saturation density
Esym(ρ0) is provided by the volume symmetry energy co-
efficient Sv , which can be extracted from measured atomic
mass excesses. The theoretical estimate for value of the NSE
at saturation density Esym(ρ0) = 30.71 ± 0.26 MeV obtained
from the present calculations (DDM3Y) is reasonably close
to the value of Sv = 30.048 ± 0.004 MeV extracted [44] from
the measured atomic mass excesses of 2228 nuclei. The value
of NSE at ρ0 remains mostly the same, which is 30.03 ±
0.26 MeV if one uses the mathematical definition of Esym(ρ) =
1
2

∂2ε(ρ,X)
∂X2 |X=0 alternatively. The value of Esym(ρ0) ≈ 30 MeV

[45–47] appears well established empirically. The different
parametrizations of RMF models, which fit observables of
isospin symmetric nuclei nicely, steers to a comparatively wide
range of predictions of 24–40 MeV for Esym(ρ0) theoreti-
cally. Our present result (DDM3Y) of 30.71 ± 0.26 MeV is

reasonably close to that obtained using Skyrme interaction
SkMP (29.9 MeV) [48] and Av18+δv + UIX∗ variational
calculation (30.1 MeV) [42].

The NSE Esym(ρ) can be expanded around the nuclear
matter saturation density ρ0 as

Esym(ρ) = Esym(ρ0) + L

3

(
ρ − ρ0

ρ0

)
+ Ksym

18

(
ρ − ρ0

ρ0

)2

(34)
up to second order in density, where L and Ksym represents
the slope and curvature parameters of NSE at ρ0 and hence

L = 3ρ0
∂Esym(ρ)

∂ρ
|ρ=ρ0 and Ksym = 9ρ2

0
∂2Esym(ρ)

∂ρ2 |ρ=ρ0 . The Ksym

and L highlight the density dependence of NSE around ρ0 and
carry important information at both high and low densities on
the properties of NSE. Particularly, it is found that the slope
parameter L correlates linearly with neutron-skin thickness
of heavy nuclei and it can be obtained from the measured
thickness of neutron skin of heavy nuclei [49–51]. Although
there are large uncertainties in the experimental measurements,
this has been possible [52] recently.

Differentiation of Eq. (33) twice with respect to the nucle-
onic density ρ using Eq. (26) provides [53]

∂Esym

∂ρ
= 2

5
(22/3 − 1)

E0
F

ρ

(
ρ

ρ0

)2/3

+ C

2
[1 − (n + 1)βρn]Jv01

(
εkin
X=1

) − αJ01C

5
E0

F

(
ρ

ρ0

)2/3

[1 − βρn]F (1)

− (22/3 − 1)
αJ00C

5
E0

F

(
ρ

ρ0

)2/3

[1 − βρn] − 3

10
(22/3 − 1)αJ00CE0

F

(
ρ

ρ0

)2/3

[1 − (n + 1)βρn], (35)

∂2Esym

∂ρ2
= − 2

15
(22/3 − 1)

E0
F

ρ2

(
ρ

ρ0

)2/3

− C

2
n(n + 1)βρn−1Jv01

(
εkin
X=1

) − 2αJ01C

5

E0
F

ρ

(
ρ

ρ0

)2/3

[1 − (n + 1)βρn]F (1)

+ αJ01C

15

E0
F

ρ

(
ρ

ρ0

)2/3

[1 − βρn]F (1) + (22/3 − 1)
αJ00C

15

E0
F

ρ

(
ρ

ρ0

)2/3

[1 − βρn]

− 2

5
(22/3 − 1)αJ00C

E0
F

ρ

(
ρ

ρ0

)2/3

[1 − (n + 1)βρn] + 3

10
(22/3 − 1)αJ00CE0

F

(
ρ

ρ0

)2/3

n(n + 1)βρn−1. (36)

Here, the Fermi energy is E0
F = h̄2k2

F0
2m

for the SNM at ground state. To evaluate the values of L and Ksym, the definitions of
which are provided after Eq. (34), along with Eqs. (35) and (36) at ρ = ρ0 have been used.

The isobaric incompressibility K∞(X) for infinite IANM can be expanded in the power series of isospin asymmetry parameter
X as K∞(X) = K∞ + KτX

2 + K4X
4 + O(X6). Compared to Kτ [54], the magnitude of the higher order K4 parameter is quite

small in general. The former essentially characterizes the isospin dependence of the incompressibility at ρ0 and is expressed as
Kτ = Ksym − 6L − Q0

K∞
L = Kasy − Q0

K∞
L, where the third-order derivative parameter of SNM at ρ0 is Q0, given by

Q0 = 27ρ3
0
∂3ε(ρ,0)

∂ρ3

∣∣∣∣
ρ=ρ0

. (37)

One obtains, using Eq. (26), the following:

∂3ε(ρ,X)

∂ρ3
= −CJv(εkin)n(n + 1)(n − 1)βρn−2

2
+ 8

45

E0
F

ρ3
F (X)

(
ρ

ρ0

) 2
3

+ 3αJC

5
n(n + 1)βρn−1 E0

F

ρ
F (X)

(
ρ

ρ0

) 2
3

+ αJC

5
[1 − (n + 1)βρn]

E0
F

ρ2
F (X)

(
ρ

ρ0

) 2
3

− 4αJC

45
[1 − βρn]

E0
F

ρ2
F (X)

(
ρ

ρ0

) 2
3

, (38)
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TABLE II. Comparison of the present results obtained using DDM3Y effective interaction with those of RMF models [56] for SNM
incompressibility K∞, NSE at saturation density Esym(ρ0), slope L, and the curvature Ksym parameters of NSE, Kasy, and isobaric
incompressibility Kτ of IANM (all in MeV).

Model K∞ Esym(ρ0) L Ksym Kasy Q0 Kτ

This work 274.7 ± 7.4 30.71 ± 0.26 45.11 ± 0.02 −183.7 ± 3.6 −454.4 ± 3.5 −276.5 ± 10.5 −408.97 ± 3.01
FSUGold 230.0 32.59 60.5 −51.3 −414.3 −523.4 −276.77
NL3 271.5 37.29 118.2 +100.9 −608.3 +204.2 −697.36
Hybrid 230.0 37.30 118.6 +110.9 −600.7 −71.5 −563.86

where the Fermi energy E0
F = h̄2k2

F0
2m

for the SNM at ground state, kF0 = (1.5π2ρ0)
1
3 , and J = J00 + X2J01. Thus,

∂3ε(ρ,0)

∂ρ3

∣∣∣∣
ρ=ρ0

= −CJv00
(
εkin

0

)
n(n + 1)(n − 1)βρn−2

0

2
+ 8

45

E0
F

ρ3
0

+ 3αJ00C

5
n(n + 1)βρn−1

0

E0
F

ρ0

+ αJ00C

5

[
1 − (n + 1)βρn

0

]E0
F

ρ2
0

− 4αJ00C

45

[
1 − βρn

0

]E0
F

ρ2
0

. (39)

For the calculations of K∞, Esym(ρ0), L, Ksym, and Kτ , the
values of ρ0 = 0.1533 fm−3, ε0 = −15.26 ± 0.52 MeV for the
SNM, and n = 2

3 [54] have been used. Using the improved
quantum molecular dynamics transport model, the collisions
involving 112Sn and 124Sn nuclei can be simulated to reproduce
isospin diffusion data from two different observables and
the ratios of proton and neutron spectra. The constraints
on the density dependence of the NSE at subnormal density
can be obtained [55] by comparing these data to calculations
performed over a range of NSEs at ρ0 and different represen-
tations of the density dependence of the NSE. The results for
K∞, L, Esym(ρ0) and density dependence of Esym(ρ) [54] of
the present calculations are consistent with these constraints
[55]. In Table II, the values of K∞, Esym(ρ0), L, Ksym, and Kτ

are tabulated and compared with the corresponding quantities
obtained from the RMF models [56].

What is a reasonable value of incompressibility [33] re-
mains controversial. In the following, we present our results
in the backdrop of others, without justifying any particular
value for K∞, but for an objective view of the current situation,
which, we stress, is still progressing. In Fig. 2, the plot of Kτ

versus K∞ for the present calculation (DDM3Y) has been com-
pared with the predictions of SkI3, SkI4, SLy4, SkM, SkM*,
FSUGold, NL3, Hybrid [56], NLSH, TM1, TM2, DDME1, and
DDME2 as given in Table I of Ref. [57]. The recent values of
K∞ = 250–270 MeV [40] and Kτ = −370 ± 120 MeV [54]
are enclosed by the dotted rectangular region. Though both
DDM3Y and SkI3 are within the above region, unlike DDM3Y
the L value for SkI3 is 100.49 MeV, which is much above the
acceptable limit of 58.9 ± 16 MeV [58–61]. Another recent
review [62] also finds that Esym(ρ0) = 31.7 ± 3.2 MeV and
L = 58.7 ± 28.1 MeV with an error for L that is considerably
larger than that for Esym(ρ0). However, DDME2 is reasonably
close to the rectangular region which has L = 51 MeV. It
is worthwhile to mention here that the DDM3Y interaction
with the same ranges, strengths, and density dependence
that provides L = 45.11 ± 0.02 allows good descriptions of
elastic and inelastic scattering, proton radioactivity [20], and
α radioactivity of superheavy elements [63,64]. The present

NSE increases initially with nucleonic density up to about
2ρ0, decreases monotonically (hence “soft”), and becomes
negative at higher densities (about 4.7ρ0) [20,54] (hence
“supersoft”). It is consistent with the recent evidence for a
soft NSE at suprasaturation densities [43] and with the fact
that the supersoft nuclear symmetry energy preferred by the
FOPI/GSI experimental data on the π+/π− ratio in relativistic
heavy-ion reactions can readily keep neutron stars stable if
the non-Newtonian gravity proposed in the grand unification
theories is considered [65].

Kinf (MeV)
200 220 240 260 280 300 320 340 360 380

K τ
 (M

eV
)

-800

-700
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-400

-300

-200
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NL3
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SkI4SLy4

SkM
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NLSH
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DDME1
DDME2

FIG. 2. The plots of Kτ vs K∞ (Kinf ). Present calculation
(DDM3Y) is compared with other predictions as tabulated in
Refs. [56,57] and the dotted rectangular region encompasses the
values of K∞ = 250–270 MeV [40] and Kτ = −370 ± 120 MeV
[54].
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TABLE III. Variations of the core-crust transition density, pressure, and proton fraction for β-equilibrated neutron star matter, symmetric
nuclear matter incompressibility K∞, isospin-dependent part Kτ of isobaric incompressibility, maximum neutron star mass, corresponding
radius, and crustal thickness with parameter n.

n ρt Pt xp(t) K∞ Kτ Maximum NS mass Radius Crustal thickness

1/6 0.0797 fm−3 0.4134 MeV fm−3 0.0288 182.13 MeV −293.42 MeV 1.4336 M
 8.5671 km 0.4009 km
1/3 0.0855 fm−3 0.4520 MeV fm−3 0.0296 212.98 MeV −332.16 MeV 1.6002 M
 8.9572 km 0.3743 km
1/2 0.0901 fm−3 0.4801 MeV fm−3 0.0303 243.84 MeV −370.65 MeV 1.7634 M
 9.3561 km 0.3515 km
2/3 0.0938 fm−3 0.5006 MeV fm−3 0.0308 274.69 MeV −408.97 MeV 1.9227 M
 9.7559 km 0.3318 km
1 0.0995 fm−3 0.5264 MeV fm−3 0.0316 336.40 MeV −485.28 MeV 2.2335 M
 10.6408 km 0.3088 km

IV. β-EQUILIBRATED NEUTRON STAR MATTER

The β-equilibrated nuclear matter EoS is obtained by
evaluating the asymmetric nuclear matter EoS at the isospin
asymmetry X determined from the β-equilibrium proton frac-
tion xp = ρp

ρ
, obtained approximately by solving

h̄c(3π2ρxp)1/3 = 4Esym(ρ)(1 − 2xp). (40)

The exact way of obtaining β-equilibrium proton fraction
is by solving

h̄c(3π2ρxp)1/3 = −∂ε(ρ,xp)

∂xp

= +2
∂ε

∂X
, (41)

where isospin asymmetry X = 1 − 2xp.
The stability of the β-equilibrated dense matter in neutron

stars is investigated and the location of the inner edge of
their crusts and core-crust transition density and pressure
are determined using the DDM3Y effective nucleon-nucleon
interaction [66]. The stability of any single phase, also called
intrinsic stability, is ensured by the convexity of ε(ρ,xp). The
thermodynamical inequalities allow us to express the require-

ment in terms of Vthermal = ρ2[2ρ ∂ε
∂ρ

+ ρ2 ∂2ε
∂ρ2 − ρ2 ( ∂2ε

∂ρ∂xp
)2

∂2ε

∂x2
p

].

The condition for core-crust transition is obtained by making
Vthermal = 0. The results for the transition density, pressure, and
proton fraction at the inner edge separating the liquid core from
the solid crust of neutron stars are calculated and presented
in Table III for various n. The symmetric nuclear matter
incompressibility K∞, nuclear symmetry energy at saturation
densityEsym(ρ0), the slopeL, and isospin-dependent partKτ of
the isobaric incompressibility are already tabulated in Table II
and these are all in excellent agreement with the constraints
recently extracted from measured isotopic dependence of
the giant monopole resonances in even-A Sn isotopes, from
the neutron skin thickness of nuclei, and from analyses of
experimental data on isospin diffusion and isotopic scaling in
intermediate energy heavy-ion collisions.

The r-mode instability occurs when the gravitational-
radiation driving timescale of the r mode is shorter than the
timescales of the various dissipation mechanisms that may
occur in the interior of a neutron star. The nuclear EoS affects
the timescales associated with the r mode in two different
ways; viz., EoS defines the radial dependence of the mass
density distribution, which is the basic ingredient of the
relevant integrals, and defines the core-crust transition density
and core radius, which is the upper limit of these integrals.
In Fig. 3, plot for mass versus radius of slowly rotating

neutron stars is shown using the DDM3Y EoS by solving
the Tolman-Oppenheimer-Volkoff equation. The mass-radius
relation can be obtained for fixed values of the crustal fraction
of moment of inertia I

I
, the core-crust transition density ρt ,

and transition pressure Pt . This is then plotted in the same
figure for I

I
equal to 0.014. For Vela pulsar, the constraint

I
I

> 1.4% implies that the allowed mass radius is to the right
of the line defined by I

I
= 0.014 (for ρt = 0.0938 fm−3 and

Pt = 0.5006 MeV fm−3) [31]. The newer observational data
[67] on Vela pulsar claims slightly higher estimate for I

I
>

1.6% based on glitch activity. This minute change neither
affects the conclusions nor warrants any new idea of the neutron
superfluidity extending partially into the core. However, if the
phenomenon of crustal entrainment due to the Bragg reflection
of unbound neutrons by the lattice ions is taken into account
then [68,69], a much higher fraction of the moment of inertia
(7% instead of 1.4–1.6%) has to be associated to the crust.
The only reasonable constraint on the mass of the Vela pulsar
is that it should exceed about one solar mass according to
core-collapse supernova simulations. Therefore, the present
calculations suggest that without entrainment, the crust is
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FIG. 3. Mass-equatorial radius plot of slowly rotating neutron
stars for the DDM3Y EoS.
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enough to explain the Vela glitch data, and with entrainment,
the crust is not enough since the mass of Vela pulsar would
be below one solar mass (Fig. 3), in accordance with other
studies [68–72].

It has been recently conjectured that there may be a good
correlation between the core-crust transition density and the
symmetry energy slope L and it is predicted that this behavior
should not depend on the relation between L and Kτ [73].
On the contrary, no correlation of the transition pressure with
L was obtained [73]. In Table III, variations of different
quantities with parameter n which controls the nuclear matter
incompressibility are listed. It is worthwhile to mention here
that the incompressibility increases with n. The standard value
of n = 2/3 used here has a unique importance because then
the constant of density dependence β has the dimension of
cross section and can be interpreted as the isospin-averaged
effective nucleon-nucleon interaction cross section in ground-
state symmetric nuclear medium. For a nucleon in ground-state
nuclear matter kF ≈ 1.3 fm−1 and q0 ∼ h̄kF c ≈ 260 MeV and
the present result for the “in medium” effective cross section is
reasonably close to the value obtained from a rigorous Dirac-
Brueckner-Hartree-Fock [74] calculations corresponding to
such kF and q0 values, which is ≈12 mb. Using the value of
β = 1.5934 fm2 along with the nucleonic density 0.1533 fm−3,
the value obtained for the nuclear mean free path λ is about
4 fm, which is in excellent agreement with that obtained using
another method [75]. Moreover, comparison of the theoretical
values of symmetric nuclear matter incompressibility and
isobaric incompressibility with the recent experimental values
for K∞ = 250–270 MeV [40,76] and Kτ = −370 ± 120 MeV
[77] further justifies importance for our choice of n = 2/3. It
is interesting to mention here that the present EoS for n = 2/3
provides the maximum mass for the static case is 1.9227 M

with radius ∼9.75 km and for the star rotating with Kepler’s
frequency it is 2.27 M
 with equatorial radius ∼13.1 km [78].
However, for stars rotating with maximum frequency limited
by the r-mode instability, the maximum mass turns out to be
1.95 (1.94) M
, corresponding to rotational period of 1.5 (2.0)
ms with radius about 9.9 (9.8) km [79], which reconciles with
the recent observations of the massive compact stars ∼2 M

[80,81].

V. THEORETICAL CALCULATIONS

The quantity which is of crucial importance in the evaluation
of various timescales, as can be seen from Eqs. (8) and (9), is the
integral

∫ Rc

0 ρ(r)r6dr . This integral can be rewritten in terms of
energy density ε(r) = ρ(r)c2 and expressed in dimensionless
form as

I (Rc) =
∫ Rc

0

[
ε(r)

MeV fm−3

](
r

km

)6

d

(
r

km

)
. (42)

The fiducial gravitational radiation timescale τ̃GR from
Eqs. (8) and (14) is given by

τ̃GR = −0.7429

[
R

km

]9[1M

M

]3

[I (Rc)]−1(s), (43)

where R and r are in km and M is in M
.
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FIG. 4. Plots of fiducial timescales with gravitational mass of
neutron stars with DDM3Y EoS.

The fiducial shear viscous timescale τ̃SV for electron-
electron scattering and neutron-neutron scattering can be
obtained from Eqs. (9), (11), and (13) as

τ̃ee = 0.1446 × 108

[
R

km

]3/4[1M

M

]1/4[km

Rc

]6

×
[

g cm−3

ρt

]1/2[MeV fm−3

εt

]
[I (Rc)](s), (44)

τ̃nn = 19 × 108

[
R

km

]3/4[1M

M

]1/4[km

Rc

]6

×
[

g cm−3

ρt

]5/8[MeV fm−3

εt

]
[I (Rc)](s), (45)

where the transition density ρt is expressed in g cm−3 and
εt is the energy density expressed in MeV fm−3 at transition
density.

VI. RESULTS AND DISCUSSION

In Fig. 4, plots of the fiducial timescales with the gravi-
tational masses of neutron stars are shown for the DDM3Y
EoS. It is seen that the gravitational radiation timescale falls
rapidly with increasing mass while the viscous damping
timescales increase approximately linearly. By knowing the
fiducial gravitational radiation and shear viscous timescales,
the temperature T dependence of the critical angular velocity
�c of the r mode (l = 2) can be studied from Eq. (16). In
Fig. 5, �c

�0
is shown as a function of temperature T for several

masses of neutron stars for the DDM3Y EoS. The plots act
as boundaries of the r-mode instability windows. Neutron
stars lying above the plots (whose angular frequency is greater
than the critical frequency) possess unstable r modes and
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FIG. 5. Plots of reduced critical angular frequency with temper-
ature for different masses of neutron stars.

hence emit gravitational waves, thus reducing their angular
frequencies. Once their angular velocities reach the critical
frequency, they enter the region below the plots, where the r
modes become stable and hence stop emitting gravitational
radiation. In computing the instability windows in Fig. 5,
the fiducial shear viscous timescale τ̃ee given in Eq. (44) is
substituted for τ̃SV in Eq. (16) for temperatures T � 109K and
τ̃nn from Eq. (45) is used for T > 109K.

Figure 6 depicts the plot of the critical temperature as
a function of mass. The electron-electron scattering shear
viscosity timescale is used for the calculation of Tc. We see
that the critical temperature rapidly decreases with mass. The
explanation is straightforward. From Fig. 5 we see that for fixed
T , �c

�0
rapidly decreases with increasing mass. Since T = Tc

when �c = �K and �K rapidly increases with mass and hence
Tc falls, see Eq. (18).

From Figs. 5 and 6, we see that the critical frequency and
critical temperature decrease with mass and hence the r-mode
instability window increases with the same. This means that
for the same EoS and temperature, the massive configurations
are more probable to r-mode instability and hence emission
of gravitational waves than the less massive ones. This can be
indirectly inferred from Fig. 4 where τ̃GR is much less than τ̃ee

and τ̃nn for massive neutron stars and vice versa for low-mass
neutron stars. Hence, isolated young massive neutron stars have
high probability for emission of gravitational waves through
r-mode instability.

In Table IV, the spin frequencies and core temperatures
(measurements and upper limits) of observed low-mass x-ray
binaries (LMXBs) and millisecond radio pulsars (MSRPs)
[82] are listed, and in Fig. 7, their positions in the critical
frequency versus temperature plot are shown to compare with
observational data. From Fig. 7, it is interesting to note that
according to our model of the EoS with a rigid crust and a
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FIG. 6. Plots of critical temperature versus mass.

relatively small r-mode amplitude, all of the observed neutron
stars lie in the stable r-mode region, which is consistent with
the lack of observation of gravitational radiation due to r-mode
instability.

It is worth noting that �c is dependent on the density
dependence of the symmetry energy and thus on L. Again,
R, Rc, I (Rc), and ρt depend on L. Hence, for a fixed mass and

TABLE IV. Spin frequencies and core temperatures (measure-
ments and upper limits) of observed low-mass x-ray binaries
(LMXBs) and millisecond radio pulsars (MSRPs) [82].

Source ν (Hz) Tcore (108K)

Aql X-1 550 1.08
4U 1608-52 620 4.55
KS 1731-260 526 0.42
MXB 1659-298 556 0.31
SAX J1748.9-2021 442 0.89
IGR 00291+5934 599 0.54
SAX J1808.4-3658 401 <0.11
XTE J1751-305 435 <0.54
XTE J0929-314 185 <0.26
XTE J1807-294 190 <0.27
XTE J1814-338 314 <0.51
EXO 0748-676 552 1.58
HETE J1900.1-2455 377 <0.33
IGR J17191-2821 294 <0.60
IGR J17511-3057 245 <1.10
SAX J1750.8-2900 601 3.38
NGC 6440 X-2 205 <0.12
Swift J1756-2508 182 <0.78
Swift J1749.4-2807 518 <1.61
J2124-3358 203 <0.17
J0030+0451 205 <0.70
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FIG. 7. Plots of critical frequency with temperature for different
masses of neutron stars. The square dots represent observational data
[82] of Table IV.

temperature, �c is dependent on the above parameters via the
relation

�c ∼ R
12/11
c

[I (Rc)]4/11
ρ

3/11
t . (46)

In our case, L, ρt , and Rc are constants for a fixed neutron
star mass and temperature. As a neutron star enters into the
instability region due to accretion of mass from its companion,
the amplitude of the r-mode αr increases until it reaches
a saturation value. At this point, the neutron star emits a
gravitational wave, releases its angular momentum and energy,
and spins down to the region of stability. Using the ideal
condition that the decrease in temperature due to emission
of gravitational wave is compensated by the heat produced

log10t (s)
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FIG. 8. Plots of time evolution of frequencies.
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FIG. 9. Plots of time evolution of spin-down rates.

due to viscous effects, the time evolution of spin angular
velocity and spin-down rate can be calculated for a neutron
star from Eqs. (22) and (24), respectively, provided M , T ,
�in, and αr of the star are known. For the schematic values
νin = �in

2π
= 700 Hz and αr = 2 × 10−7 used by Moustakidis

[19], the evolutions of spin are calculated for various neutron
star masses and shown in Fig. 8. In Fig. 9, the spin-down rates
has been shown for these masses. In Fig. 10, the spin-down
rates as functions of spin frequency are shown.

Some mention is to be made about the dependency of the
critical frequency �c on the symmetry energy slope parameter
L. Although the slope L depends on the strengths and ranges
of the Yukawas for the DDM3Y EoS, it does not depend on the
power of the density dependence n and has a constant value
of 45.1066 MeV. In a recent work, the critical frequency as a
function of L of the pulsar 4U 1608-52 was plotted using an
estimated core temperature ∼4.55 × 108K and with different
models of the EoS. In accordance with Fig. 4 of Ref. [14],
using the measured spin frequency and the estimated core
temperature, if the mass of 4U 1608-52 is 1.4M
 then it should
marginally be unstable (�c is smaller than its spin frequency),
since the radius obtained from our mass-radius relation (Fig. 3)
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Id
ν /

dt
I (
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)
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10
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FIG. 10. Plots of spin-down rates vs frequencies.
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is ∼11.55 kms and higher than 11.5 kms. In the case of the
highest mass configuration of 1.9227 M
 with a radius of
∼9.75 kms, it is also likely to be in the instability region as
L < 50 MeV for our EoS. Thus we stress the fact that the
r-mode instability window is enlarged for isolated neutron
stars with a rigid crust if we consider the dissipation to be
at the crust-core interface, in agreement with Ref. [83].

The calculations are performed for five different n val-
ues that correspond to SNM incompressibility ranging from
∼180 to 330 MeV. For each case, the constants C and β
obtained by reproducing the ground-state properties of SNM
become different, leading to five different sets of these three
parameters. We certainly cannot change strengths and ranges
of the M3Y interaction. In Table III, the variations of the
core-crust transition density, pressure, and proton fraction for
β-equilibrated neutron star matter, symmetric nuclear matter
incompressibility K∞, isospin-dependent part Kτ of isobaric
incompressibility, and neutron star’s maximum mass with cor-
responding radius and crustal thickness with parameter n are
listed. It is important to mention here that recent observations
of the binary millisecond pulsar J1614-2230 by Demorest
et al. [80] suggest that the masses lie within 1.97 ± 0.04 M
.
Recently, the radio timing measurements of the pulsar PSR
J0348 + 0432 and its white dwarf companion have confirmed
the mass of the pulsar to be in the range 1.97–2.05 M
 at
68.27% or 1.90–2.18 M
 at 99.73% confidence [81]. The
observed 1.97 ± 0.04 M
 neutron star rotates with 3.1 ms.
Rotating stars [53] present EoS predict masses higher than the
lower limit of 1.93 M
 for maximum mass of neutron stars. We
used the same value of ρ0 = 0.1533 fm−3 since we wanted to
keep consistency with all our previous works on nuclear matter.
We would like to mention that if instead we would have used
the value of 0.16 fm−3 for ρ0, the value of K∞ would have been
slightly higher by ∼2 MeV and correspondingly the maximum
mass of neutron stars would have increased by ∼0.01 M
.

VII. SUMMARY AND CONCLUSIONS

In the present work, we have studied the r-mode instability
of slowly rotating neutron stars with rigid crusts with their
EoS obtained from the DDM3Y effective nucleon-nucleon
interaction. This EoS provides good descriptions for proton,
α, and cluster radioactivities, elastic and inelastic scattering,
symmetric and isospin asymmetric nuclear matter, and neutron
star masses and radii [53]. We have calculated the fiducial
gravitational radiation and shear viscosity timescales within
the DDM3Y framework for a wide range of neutron star
masses. It is observed that the gravitational radiation timescale
decreases rapidly with increasing neutron star mass while
the viscous damping timescales exhibit an approximate linear
increase. Next, we have studied the temperature dependence of
the critical angular frequency for different neutron star masses.
It is observed that the majority of the neutron stars do not lie in
the r-mode instability region. This fact is highlighted in Fig. 7,
where the spin frequencies and core temperatures of observed
low-mass x-ray binaries and millisecond radio pulsars [82]
always lie below the region of r-mode instability. The implica-
tion is that neutron stars rotating with frequencies greater than
their corresponding critical frequencies have unstable r modes,
leading to the emission of gravitational waves. Further, our
study of the variation of the critical temperature as a function
of mass shows that both the critical frequency and temperature
decrease with increasing mass. The conclusion is that massive
hot neutron stars are more susceptible to r-mode instability
through gravitational radiation. Finally, we have calculated
the spin-down rates and angular frequency evolution of the
neutron stars through r-mode instability. We have also pointed
out the fact that the critical frequency depends on the EoS
through the radius and the symmetry energy slope parameter
L. If the dissipation of r modes from shear viscosity acts along
the boundary layer of the crust-core interface, then the r-mode
instability region is enlarged to lower values of L.
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