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Studies of fluctuations and correlations of soft hadrons and hard and electromagnetic probes of the dense
and strongly interacting medium require event-by-event hydrodynamic simulations of high-energy heavy-ion
collisions that are computing intensive. We develop a (3 + 1)-dimensional viscous hydrodynamic model—CLVisc
that is parallelized on a graphics processing unit (GPU) by using the open computing language (OpenCL) with 60
times performance increase for spacetime evolution and more than 120 times for the Cooper–Frye particlization
relative to that without GPU parallelization. The model is validated with comparisons with different analytic
solutions, other existing numerical solutions of hydrodynamics, and experimental data on hadron spectra in
high-energy heavy-ion collisions. The pseudorapidity dependence of anisotropic flow vn(η) are then computed in
CLVisc with initial conditions given by the a multiphase transport (AMPT) model, with energy density fluctuations
both in the transverse plane and along the longitudinal direction. Although the magnitude of vn(η) and the ratios
between v2(η) and v3(η) are sensitive to the effective shear viscosity over entropy density ratio ηv/s, the shape of
the vn(η) distributions in η do not depend on the value of ηv/s. The decorrelation of vn along the pseudorapidity
direction due to the twist and fluctuation of the event planes in the initial parton density distributions is also studied.
The decorrelation observable rn(ηa,ηb) between vn{−ηa} and vn{ηa} with the auxiliary reference window ηb is
found not to be sensitive to ηv/s when there is no initial fluid velocity. For small ηv/s, the initial fluid velocity from
mini-jet partons introduces sizable splitting of rn(ηa,ηb) between the two reference rapidity windows ηb ∈ [3,4]
and ηb ∈ [4.4,5.0], as has been observed in experiment. The implementation of CLVisc and guidelines on how
to efficiently parallelize scientific programs on GPUs are also provided.
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I. INTRODUCTION

Heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) and Large Hadron Collider (LHC) create strongly
coupled QCD matter that exhibits multiple extreme properties.
It is the hottest—temperatures reaching more than 100 000
times that at the core of the Sun, the most vortical—angular
momentum on the order of 103h̄–105h̄ [1], and an almost
perfect fluid—very low shear viscosity over entropy density
ratio [2–4], that is exposed to the strongest magnetic field
(|B| = 5m2

π ∼ 10m2
π ) [5] ever produced in the laboratory. This

strongly coupled QCD matter is believed to share some of
the properties of the quark-gluon-plasma epoch in the early
universe.

Numerical simulations of the dynamical evolution of this
strongly coupled QCD matter and comparisons with experi-
mental data are vital to extract the physical properties of the
strong interaction matter. Relativistic viscous hydrodynamics
is the most successful effective theory in describing the space-
time evolution of QCD matter created in high-energy heavy-ion
collisions [6,7]. Hybrid approaches that comprise hydrody-
namics and hadronic transport agree with experimental data

on various observables such as charged multiplicity, transverse
momentum spectra, and transverse momentum pT -differential
elliptic flow of identical particles [8] (and references therein).
Event-by-event simulations with energy density fluctuations
[9–18] in the initial states are indispensable to describe not
only the ensemble average of odd-order harmonic flows but
also their probability distributions [19]. New observables such
as the correlation between different event plane angles [20–23],
different harmonic flows [24], and pT -differential harmonic
flows [25] can provide more rigorous constraints on medium
properties, such as the shear viscosity to entropy density ratio,
but also require efficient algorithms to reach sufficient statistics
in a reasonable amount of CPU time. Furthermore, (3 + 1)-
dimensional [(3 + 1)D] event-by-event hydrodynamics is also
necessary to understand the longitudinal structure of the collec-
tive flow. The initial-state fluctuations along the longitudinal
direction have been built in many models [26–33]. Observables
[34–44] have been designed to either constrain the longitudinal
structure in the initial state or determine other QGP properties
by using the multiplicity or anisotropic flow correlations along
the longitudinal direction. Taking into account the asymme-
try between forward- and backward-going participants, the
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noncentral heavy-ion collisions not only produce strong an-
gular momentum, strong magnetic field, but also global and
local vorticity [5] and hyperon polarization [45].

The spacetime evolution of high-energy heavy-ion col-
lisions from event-by-event relativistic hydrodynamics also
provides critical background information for thermal photon,
dilepton emission, heavy flavor transport, and jet energy-loss
studies when they are produced in or traverse the fluctuating hot
and dense medium. For studies of thermal photon and dilepton
production [46–48], the emission rates are computed with the
local temperature and fluid velocity at each spacetime point
from event-by-event (3 + 1)D viscous hydrodynamics, which
is quite computing intensive. In the simultaneous simulations
of parton shower propagation and bulk medium evolution, the
bottle neck in the numerical simulations is also the relativistic
hydrodynamic evolution of the medium in each time step of
the parton shower propagation, as shown in CoLBT-Hydro
[49] and the forthcoming JetScape [50]. Big data analyses
in relativistic heavy-ion collisions using machine learning
[51–53] and deep learning techniques [54] demand a huge
amount of data from event-by-event hydrodynamic simulations
with up to O(107) events across a high-dimensional parameter
space. These studies will all benefit from a fast numerical solver
for the (3 + 1)D relativistic hydrodynamics.

To reduce the running time of one single simulation, Mes-
sage Passing Interface (MPI) library has been used in MUSIC
[12,55,56] to parallelize the (3 + 1)D viscous hydrodynamic
program by communicating between multiple CPUs. The com-
munication costs between CPUs on different nodes are usually
heavy comparing with the workload of the numerical computa-
tions. On the other hand, a graphics processing unit (GPU) has
a huge amount of processing elements (>2500) on one single
computing device, which makes it quite popular to acceler-
ate numerical computations via massive parallelization. The
SHASTA algorithm is first parallelized on heterogeneous de-
vices using OpenCL to simulate the QGP expansion by solving
the (3 + 1)D ideal hydrodynamic equations [57]. The (3 + 1)D
viscous hydrodynamics for simulations of heavy-ion collisions
has been parallelized on GPU using both OpenCL (CLVisc
[58]) and Cuda (GPU-VH [59]). In this paper and its appendix,
we provide a detailed description of the parallelization of
hydrodynamic evolution, hypersurface finding and spectra
calculation in CLVisc hydrodynamic model. OpenCL has the
benefit that the same code can run on heterogeneous computing
devices (CPUs, GPUs, FPGAs and Intel Phi). However, the
basic concepts and optimization principles are the same for
both OpenCL and Cuda. The acronym CLVisc refers to both the
Central China Normal University (CCNU) and the Lawrence
Berkeley National Laboratory (LBNL) viscous hydrodynamic
model and OpenCL GPU parallelization that is used.

After providing validations of CLVisc through comparisons
with several analytic solutions to the viscous hydrodynam-
ics and experimental data on bulk hadron spectra in high-
energy heavy-ion collisions, we apply the CLVisc to the study
of pseudorapidity distribution and fluctuation of anisotropic
flow with event-by-event initial conditions from a multiphase
transport (AMPT) model [60]. We compute the pseudorapidity
dependence of the anisotropic flows vn(η) and rn(ηa,ηb) which
represents the decorrelation between vn{−ηa} and vn{ηa} with

the auxiliary reference window ηb. Effects of shear viscosity
and initial fluid velocity on these longitudinal observables are
also investigated for the first time with CLVisc.

This paper is organized as follows: In Sec. II, we rewrite
the hydrodynamic equations in a specific way to simplify
the numerical implementation. In Sec. III, we describe in
detail how the relativistic hydrodynamic equations are solved
numerically in CLVisc with GPU parallelization. In Sec. IV, we
introduce the GPU parallelized smooth particle spectra calcula-
tion and the fast Monte Carlo sampler to sample four-momenta
of particles from the freeze-out hypersurface. In Sec. V,
we verify our numerical code with a variety of analytical
solutions and numerical results from other implementations.
Comparisons with experimental data on hadron spectra and
anisotropic flow are given in Sec. VI. In Secs. VII and VIII
we discuss the pseudorapidity distribution, correlation, and
fluctuation of anisotropic flow. In the Appendix, we provide
a detailed description of the structure and GPU parallelization
of the algorithm to solve the hydrodynamics equations, two
methods to sample Juttner, Fermi–Dirac, and Bose–Einstein
distributions efficiently, and assess the performance of GPU
parallelization.

II. HYDRODYNAMIC EQUATIONS

Let us start by recapitulating the exact form of the relativistic
hydrodynamic equations that are solved within CLVisc. The
second-order hydrodynamic equations are simply given by

∇μT μν = 0, (1)

∇μNμ = 0, (2)

with the energy-momentum tensor T μν = εuμuν − (p +
�)�μν + πμν , where ε is the energy density, p is the pres-
sure, uμ is the fluid four-velocity normalized as uμuμ = 1,
and �μν = gμν − uμuν is the projection operator which is
orthogonal to the fluid velocity, and the net charge current
Nμ = nuμ + dμ where dμ is the charge-diffusion current. The
shear stress tensor πμν and the bulk pressure � represent the
deviation from ideal hydrodynamics and local equilibrium. We
choose to work in the Landau frame, which yields the traceless
(πμ

μ = 0) and transverse the (uμπμν = 0) shear stress tensor.
By projecting along the fluid velocity uμ direction, we simply
get uμT μν = εuν .

The bulk pressure � and the shear stress tensor πμν satisfy
the equations [61],

� = −ζθ − τ�

[
uλ∇λ� + 4

3�θ
]
, (3)

πμν = ηvσ
μν − τπ

[
�μ

α�ν
βuλ∇λπ

αβ + 4
3πμνθ

]
− λ1π

〈μ
λ πν〉λ − λ2π

〈μ
λ �ν〉λ − λ3�

〈μ
λ �ν〉λ, (4)

with the expansion rate θ , symmetric shear tensor σμν , and the
antisymmetric vorticity tensor �μν defined as

θ ≡ ∇μuμ,

σμν ≡ 2∇〈μuν〉 ≡ 2�μναβ∇αuβ,
(5)

�μν ≡ 1
2�μα�νβ(∇αuβ − ∇βuα),

�μναβ ≡ 1
2 (�μα�νβ + �μβ�να) − 1

3�μν�αβ,
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where �μναβ is the double projection operator that makes the
resulting contracted tensor symmetric, traceless, and orthogo-
nal to the fluid velocity uμ. In Eqs. (3) and (4), the τ�,τπ , λ1,
λ2, λ3 are five independent second-order transport coefficients.
Nonzero relaxation times τ� and τπ in the second-order
Israel–Stewart (IS) equations solve the causality problem of the
first-order Navier–Stokes equations. In the current calculation
we set τπ = 5ηv/(T s) [62] and τ� = 5ζ/(T s), where T is the
temperature, s is the entropy density, ηv is the shear viscous
coefficient, and ζ is the bulk viscous coefficient.

The timelike fluid four-velocity in Cartesian coordinates
xμ = (t,x,y,z) is defined as

u,μ ≡ dxμ

dσ
≡ u0(1,v′

x,v
′
y,v

′
z), (6)

where σ = (t2 − x2 − y2 − z2)1/2 and spatial components of
the fluid velocity are defined as v′

i = u,i/u0. We work in Milne
coordinates Xμ = (τ,x,y,ηs), in which τ = (t2 − z2)1/2 is the
proper time and ηs = 1

2 ln t+z
t−z

is the spacetime rapidity. The
fluid four-velocity in these coordinates is,

uμ ≡ dXμ

dσ
= dXμ

dxν

dxν

dσ
= dXμ

dxν
u,ν

=

⎛
⎜⎝

u0 cosh ηs − u,z sinh ηs

	u′
⊥

1
τ

(−u0 sinh ηs + u,z cosh ηs)

⎞
⎟⎠ ≡ uτ

⎛
⎜⎝

1

	v⊥
vηs

τ

⎞
⎟⎠, (7)

where v⊥ and vηs
are defined as

	v⊥ = 	v′
⊥ cosh (yv)/ cosh (yv − ηs), (8)

vηs
= tanh (yv − ηs), (9)

and yv denotes the rapidity of the longitudinal fluid velocity
as given by v′

z = tanh yv , uτ = (1 − v2
⊥ − v2

ηs
)−1/2 and uηs =

uτvηs
/τ . In the Bjorken scaling scenario where the energy

density is uniform along the ηs direction, we simply get
vηs

= 0 and yv = ηs , which implies vz = z/t . In the full
three-dimensional (3D) expansion, vηs

denotes the relative
fluid velocity at coordinates (t,x,y,z), in a reference frame
which is moving at the speed of vz = z/t .

From the invariant line element ds2 = gμνdXμdXν =
dτ 2 − dx2 − dy2 − τ 2dη2

s we get the metric tensor in Milne
coordinates,

gμν = diag(1,−1,−1,−τ 2), (10)

gμν = diag(1,−1,−1,−1/τ 2). (11)

The Christoffel symbols are explicitly solved as a function
of the metric tensor, �i

kl = 1
2gim(∂lgmk + ∂kgml − ∂mgkl), and

contain three nonzero components,

�τ
ηsηs

= τ, �ηs
τηs

= �ηs
ηsτ

= 1/τ, (12)

which are used in the covariant derivative operation ∇μ for
all vectors and tensors in the hydrodynamics equations and IS
equations,

∇bλ
a ≡ ∂bλ

a + �a
bcλ

c, (13)

∇cλ
ab ≡ ∂cλ

ab + �a
cdλ

db + �b
cdλ

ad . (14)

For example, there are three terms in ∇μuν that differ from
their ordinary derivatives:

∇τ u
ηs = ∂τu

ηs + 1

τ
uηs , (15)

∇ηs
uτ = ∂ηs

uτ + τuηs , (16)

∇ηs
uηs = ∂ηs

uηs + 1

τ
uτ . (17)

The ∂τλ + λ/τ terms from covariant derivatives are com-
bined as 1

τ
∂τ (τλ), to reduce the numerical error when τ is small.

The new independent variables are thus defined as λ̃ = τλ. In
this way, we define T̃ μν , Ñμ, π̃μν , ũμ, ∂̃μ, and g̃μν as

T̃ μν =
⎧⎨
⎩

τT μν for μ �= ηs and ν �= ηs

τ 2T μηs for μ �= ηs

τ 3T ηsηs otherwise,
(18)

Ñμ =
{
τNμ for μ �= ηs

τ 2Nηs for μ = ηs,
(19)

π̃μν =
⎧⎨
⎩

πμν for μ �= ηs and ν �= ηs

τπμηs for μ �= ηs

τ 2πηsηs otherwise,
(20)

ũμ = (uτ ,ux,uy,τuηs ), (21)

∂̃μ = (∂τ ,∂x,∂y,∂ηs
/τ ), (22)

g̃μν = g̃μν = diag(1,−1,−1,−1). (23)

One benefit of these substitutions is that all the components in
the same vector or tensor have the same dimension. This tech-
nique is widely used in all well-known (2 + 1)-dimensional
[(2 + 1)D] or (3 + 1)D relativistic hydrodynamic codes for
heavy-ion collisions [12,63–66]. However, the Christoffel
symbols calculated from g̃μν satisfy �̃i

kl = 0. Neither �̃i
kl nor

�i
kl constitute the proper new covariant derivatives to leave the

hydrodynamic equations and IS equations unchanged. Those
three covariant derivatives in the new system become

∇̃τ ũ
ηs = ∂̃τ ũ

ηs , (24)

∇̃ηs
ũτ = ∂̃ηs

ũτ + 1

τ
ũηs , (25)

∇̃ηs
ũηs = ∂̃ηs

ũηs + 1

τ
ũτ . (26)

From now on, Christoffel symbols will not appear in the
equations to avoid possible typos. By using the new co-
variant derivatives ∇̃μũν , the hydrodynamic equations and
IS equations are expanded in the following way to simplify
the explanation of the numerical implementation in the next
section:

∂̃τ T̃
τν + ∂̃i T̃

iν = Sν
T , (27)

∂̃τ Ñ
τ + ∂̃i Ñ

i = SN, (28)

∂̃τ (ũτ π̃μν) + ∂̃i(ũ
i π̃μν) = Sμν

π , (29)

∂̃τ (ũτ�) + ∂̃i(ũ
i�) = S�, (30)

where the source terms are

Sν
T =

(
1

τ
T̃ ηsηs ,0,0,

1

τ
T̃ τηs

)T

, (31)

SN = 0, (32)
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Sμν
π = − π̃μν − ηvσ̃

μν

τπ

− 1

3
π̃μν θ̃

− g̃αβ(ũμπ̃νβ + ũν π̃μβ)D̃ũα + π̃μν ũτ

τ

− 1

τπ

[
λ1π̃

〈μ
λ π̃ν〉λ + λ2π̃

〈μ
λ �̃ν〉λ + λ3�̃

〈μ
λ �̃ν〉λ] + Iμν,

(33)

S� = −� − ζ θ̃

τ�

− 1

3
�θ̃, (34)

where θ̃ = ∂̃μũμ + ũτ /τ is the expansion rate, and D̃ = ũλ∇̃λ

is the comoving derivatives. The Iμν are source terms from
Christoffel symbols which are given in Ref. [66]:

I ττ = 2ũηs π̃ τηs /τ, I τx = ũηs π̃ ηsx/τ, (35)

I τy = ũηs π̃ ηsy/τ, I τηs = ũηs (π̃ ττ + π̃ ηsηs )/τ, (36)

I ηsx = ũηs π̃ τx/τ, I ηsy = ũηs π̃ τy/τ, (37)

I ηsηs = 2ũηs π̃ τηs /τ, I xy = I xy = I yy = 0. (38)

III. NUMERICAL IMPLEMENTATION

The task of the numerical algorithm is to obtain the time
evolution of the energy density ε and fluid four-velocity uμ

by solving the partial differential equations (27)–(30). These
equations have the common form

∂τQ + ∂xF
x + ∂yF

y + ∂ηs
F ηs = S, (39)

where Q is the conservative variable, Fx,y,ηs is the flux along
thex,y,ηs directions, andS is the source term. We use a second-
order central scheme Kurganov–Tadmor (KT) algorithm [67]
for the convective part in Eq. (39):

dQ̄i,j,k

dτ
= −Hx

i+1/2,j,k − Hx
i−1/2,j,k

dx

−H
y
i,j+1/2,k − H

y
i,j−1/2,k

dy
− H

ηs

i,j,k+1/2 − H
ηs

i,j,k−1/2

τdηs

≡ SKT , (40)

where Q̄i,j,k stands for the mean value of Q in one cell, and SKT

stands for the source terms from flux in KT algorithm. The KT
algorithm is a finite-volume algorithm which has a very clear
physical meaning—the change of conserved quantities in a
finite volume equals the flux entering minus the flux leaving
this volume. Take thex direction as an example; the flux leaving
this volume is

Hx
i+1/2 = Fx

(
Qr

i+1/2

) + Fx
(
Ql

i+1/2

)
2

(41)

− ci+1/2

Qr
i+1/2 − Ql

i+1/2

2
, (42)

where

Qr
i+1/2 = Q̄i+1 − (∂xQ)i+1

dx

2
, (43)

Ql
i+1/2 = Q̄i + (∂xQ)i

dx

2
, (44)

and ci+1/2 is the maximum propagating speed of the local
collective signal given in Ref. [55].

Notice that minmod flux limiter has been employed to com-
pute (∂xQ)i+1, where the partial differential is approximated
by the minmod of first- and second-order finite differences:

∂xQ ≈ minmod(C,minmod(F,B)), (45)

where C ≡ Qi+2−Qi

2�x
is the second-order central difference

scheme, F ≡ θ Qi+2−Qi+1

�x
and B ≡ θ Qi+1−Qi

�x
are the weighted

first-order forward and backward differences, respectively, and
θ is a control parameter varying from 1.0 to 2.0. In the present
study we have set θ = 1.1. The minmod function is defined as

minmod(x,y) = sgn(x) + sgn(y)

2
min(|x|,|y|). (46)

This specific form is employed to reduce the number of if-
branching to improve the performance of GPU parallelization.
As a comparison, the following form is equivalent and easier
to understand:

minmod(x,y) =
⎧⎨
⎩

min(x,y) for x > 0, y > 0
0 for x × y < 0
max(x,y) for x < 0, y < 0.

(47)

Notice that five nodes (i − 2, i − 1, i, i + 1, i + 2) are
needed to update the hydrodynamic cell at i for the one-
dimensional case. In (3 + 1)D hydrodynamics, another four
nodes (j − 2, j − 1, j + 1, j + 2) along the y and four nodes
(k − 2, k − 1, k + 1, k + 2) along the ηs direction are needed.
The KT algorithm is widely used in relativistic hydrodynamic
simulations of heavy-ion collisions [55,58,59], after being
introduced to the field of high-energy physics by the McGill
group [55]. Some higher-order KT algorithms use more nodes
in the off-diagonal direction to achieve a higher precision.
However, the simplicity of the second-order central scheme
makes it much easier to parallelize on GPU. The equations
are further simplified by moving the KT source terms to the
right-hand side,

∂̃τ T̃
τμ = S

μ
T,tot, (48)

∂̃τ Ñ
τ = S

μ
N,tot, (49)

∂̃τ (ũτ π̃μν) = S
μν
π,tot, (50)

∂̃τ (ũτ �̃) = S�,tot, (51)

where S∗,tot = S∗ + SKT. The upper index μ in the vector and
μ, ν in the tensor are neglected in the following notation for
simplicity:

u∗n+1π
′n+1 = unπn + hSπ,tot(ε

n,un,u∗n+1,πn), (52)

T
′n+1 = T n + hST,tot(ε

n,un,πn), (53)

T
′n+1

ideal = T
′n+1 − π

′n+1 → ε
′n+1, u

′n+1, (54)

u
′n+1πn+1 = unπn + h

2
[Sπ,tot(ε

n,un,u∗n+1,πn)

+ Sπ,tot(ε
′n+1,u

′n+1,un,π
′n+1)], (55)

T n+1 = T n + h

2
[ST,tot(ε

n,un,πn)

+ ST,tot(ε
′n+1,u

′n+1,πn+1)], (56)

T n+1
ideal = T n+1 − πn+1 → εn+1, un+1, (57)
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where h is the time spacing. From this flow chart the difficulty
in solving second-order viscous hydrodynamics becomes clear.
To update πμν to time step n + 1, one needs information on
the fluid velocity un+1. However, un+1 can only be determined
through T

μν
ideal = T

μν
visc − πμν , assuming that πμν at time step

n + 1 are already known. Implicitly solving T μν , πμν together
with root-finding is a possible, although very complex, solu-
tion. The two-step Runge–Kutta method is good at solving
this problem; since the first step is a prediction step, it does not
ask for exact solution. We first predict π

′n+1 by extrapolating
the fluid velocity to step n + 1 by using u∗n+1 = 2un − un−1,
and then get some predicted values for ε and uμ. Next, we
update πn+1, �n+1, Nn+1, and T n+1 by using the averaged
source terms in two steps. For the first time step where un−1 is
not known, ideal hydrodynamics is employed to estimate u∗1.
Notice that the bulk viscosity and net baryon density are set to
zero in the current version.

The global memory access latency is the bottleneck of GPU
parallelization. One widely used trick to boost the performance
of GPU parallel computing is to store fewer variables in global
memory and redo the calculation on each computing element.
This trick has been used in CLVisc where only a minimum
set of quantities such as energy density, fluid velocities, and
dissipative terms are stored and accessed from global memory;
the values of all other T τμ and T ij terms are derived from those
stored quantities on the fly.

The local energy density ε and fluid velocity uμ are com-
puted from the ideal part T τμ

0 by using the Newton root-finding
algorithm. From the following relations between T

τμ
0 , ε,

and uμ:

T ττ
0 = (ε + P )γ 2 − P,

M =
√(

T τx
0

)2 + (
T

τy
0

)2 + (
τT

τη
0

)2
,

= (ε + P )γ 2
√

v2
x + v2

y + v2
η,

= (ε + P )γ 2v.

We design one equation f (v) = (T ττ
0 + P )v − M = 0 as a

function of fluid velocity v where v = (v2
x + v2

y + v2
η)1/2. The

equation f (v) = 0 is solved numerically by using the standard
Newton root-finding algorithm to get v. As long as v is known,
the other components are easy to compute through

vx = vT τx
0 /M,

vy = vT
τy

0 /M,

vη = v
(
τT

τη
0

)
/M,

ε = T ττ
0 − Mv.

For each cell, the maximum component of |πμν | is con-
stantly compared with T ττ

0 = (ε + P )γ 2 − P during the evo-
lution. If max(|πμν |) > T ττ

0 for some cells in the dilute-density
region, we locally set πμν = 0 to prevent the propagation of nu-
merical instabilities to other cells. For the dilute-density region,
the fluid velocity and the Lorentz gamma factor γ are usually
quite big and the cells are close to numerical boundaries. Such
regularization does not seem to change the overall evolution
according to the comparisons with analytical solutions and
other’s code as shown in the following sections. Shown in
Fig. 1 are the freeze-out boundary and location of the bad cells
in one testing event. It is shown that numerical instabilities
only appear in event-by-event simulations at late time and the
spatial coordinates of these bad cells are far away from the
freeze-out boundary. The present local regularization method
is proved to be quite safe. Other regularization criterions, such
as max(|πμν |) > T ττ

0 + P and max(|πμν |) > (ε2 + 3P 2)1/2,
used to eliminate bad cells do not seem to change the final
pT spectra and vn. In several testing cases, CLVisc simulations
with smooth initial conditions do not encounter such instability.

CLVisc has been applied with a various set of initial energy-
momentum tensors for the initial stage of high-energy heavy-
ion collisions. The first model is the optical Glauber model
[68] which can reproduce the charged multiplicity, transverse
momentum spectra, and elliptic flow v2 of heavy-ion collisions.
The second model is Trento [53] developed by the Duke group,

FIG. 1. The spacetime coordinates of bad cells where max(|πμν |) > T ττ
0 from one testing event in

√
sNN = 200 GeV Au + Au collisions

at 0%–10% centrality. The bad cells in this event appear at τ ∼ 10.62 fm with spatial coordinates far away from the freeze-out boundary.
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FIG. 2. Pressure as a function of energy density for five different
equations of state. They are denoted as EOSI, lattice-wb2014, s95p-
pce, EOSQ and pure gauge from top to bottom.

which parametrizes MC-Glauber [68,69], MC-KLN [70–73],
IP-Glasma [14,17,74], and EKRT [75–77] initial conditions.
It can additionally describe higher-order anisotropic flow vn

due to the inclusion of entropy or energy density fluctuations
in the transverse plane. Since Trento is very flexible and
successful, this is used as the default for the public version of
CLVisc. To verify that bulk observables are well described, the
corresponding results are presented in Sec. VI. The third model
is a-multiphase-transport (AMPT) model [60] which includes
further fluctuations along the spacetime rapidity and of the
initial fluid velocity [64]. Due to the longitudinal fluctuations
and the asymmetric distribution of forward- and backward-
going participants in heavy-ion collisions, CLVisc with AMPT

initial conditions can describe the twisting of event planes
along the longitudinal direction [29,78], dihadron correlation
as a function of rapidity, and azimuthal angle differences [79].
It is also used to describe the rich vortical structure of the QGP
fluid during the expansion and the global and local polarization
of hyperons [80] in noncentral heavy-ion collisions. Due to
the longitudinal dynamics incorporated in the AMPT initial
conditions, they are going to be used for all the results of this
work shown in Secs. VII and VIII.

There are five options for the equation of state (EoS) in
CLVisc, as shown in Fig. 2:

EOSI The simplest EoS—ideal gas EoS where
pressure is 1/3 of energy density.

lattice-wb2014: The recent lattice QCD calculations from
the Wuppertal–Budapest group, whose
trace anomaly differ from s95p lattice re-
sults by a large margin for the temperature
range 180–320 MeV [81].

s95p-pce: The default s95p partial chemical equi-
librium EoS [82] used in this paper is
given by the lattice QCD EoS at high
energy density and the hadronic resonance
gas (HRG) EoS at low energy density
with a smooth crossover in between by
using interpolation. The chemical freeze-
out temperature is 165 MeV.

EOSQ: Employs a first-order phase transition be-
tween QGP and HRG [83].

pure gauge: Pure gauge EoS with a first-order phase
transition given by gluodynamics without
(anti)quarks [84–86].

IV. FREEZE-OUT AND PARTICLIZATION

We use the Cooper–Frye formula [87] to calculate the
momentum distribution of particle i on the freeze-out hyper-
surface:

dNi

dYpT dpT dφ
= gi

(2π )3

∫
pμd�μfeq(1 + δf ), (58)

where d�μ is a freeze-out hypersurface element determined
by the constant freeze-out temperature Tf or constant freeze-
out energy density εf . Particles passing through the freeze-
out hypersurface elements are assumed to obey Fermi-Dirac
or Bose-Einstein distributions at temperature Tf with the
nonequilibrium correction δf ,

feq = 1

exp [(p · u − μi)/Tfrz] ± 1
, (59)

δf = (1 ∓ feq)
pμpνπ

μν

2T 2
frz(ε + P )

, (60)

where + is for fermion and − is for bosons, and μi is the
effective chemical potential in the partial chemical equilibrium
EoS to fix the particle ratio when the temperature is below
the chemical freeze-out temperature. μi is set to zero for the
chemical equilibrium EoS.

Two methods are used to compute the particle spectra on the
freeze-out hypersurface. The first method (called “smooth”)
is to carry out the numerical integration over the freeze-out
hypersurface and obtain smooth particle spectra in NY ×
Npt × Nφ = 41 × 15 × 48 tabulated (Y,pT ,φ) bins. pT and
φ are chosen to be Gaussian quadrature nodes to simplify
the calculation of pT or φ integrated spectra. Hadron spectra
from resonance decays are also computed via integration. In
practice, there are millions of small freeze-out hypersurface
elements d�μ that make the spectra calculation quite CPU
time consuming. This module is parallelized on GPU and the
implementation details are described in the Appendix.

A numerical truncation is applied in this method when the
absolute value of shear viscous correction δf becomes too
large. If the sign of δf is negative and the absolute value |δf | is
larger than 1, the total probability distribution function might
reach negative values that are not physical. We have made the
constraints that the absolute value |δf | should not be larger
than 1 to fix the unphysical negative probability problem.

The second method for computing final hadron spectra
is Monte Carlo sampling based on Eq. (58) (dubbed “MC
sampling”). This method is similar to Monte Carlo event
generators and the sampled particles can be redirected to
hadron cascade models like UrQMD [88–90], JAM [91], and
SMASH [92] to simulate hadronic rescattering and resonance
decays. In the present work we do not employ a hadronic
afterburner, but force the sampled resonances to decay to stable
particles immediately after they are produced. This setup saves
CPU time and allows for an efficient calculation of correlation
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observables and provides a baseline calculation for future
more quantitative work including hadronic rescattering. By
comparing with this baseline one can distinguish the effect of
hadronic scattering from resonance decays only.

Since the particle number is Lorentz invariant, particles
and their energy-momentum are sampled in the comoving
frame of the fluid, and then boosted back to the collision
frame via a Lorentz transformation with the fluid velocity uμ.
This is possible, if the proper weights are taken into account.
The total number of hadrons produced from the freeze-out
hypersurface is N = n × u · d�, where u · d� is the invariant
volume and n = ∑

i ni is the thermal density of all hadrons
in the comoving frame. For systems without bulk viscosity
and net charge current (net baryon, net electric charge, or net
strangeness), the thermal density of hadron type i is fixed for a
given freeze-out temperature. In this case, the thermal densities
ni for all hadron species are computed a priori and tabulated
for efficiency. For systems with nonzero net charge current
and bulk viscosity, the thermal densities are different for
hypersurface elements that have different net charge and bulk
viscosity. In that case, the thermal density ni must be computed
locally for each hypersurface element, which is rather comput-
ing intensive and also demands parallelization on GPUs. The
present Monte Carlo particlization obeys global conservation
laws in one ensemble of sampled events. If the code is used
to compute the net baryon fluctuations or charge correlation,
one has to consider global conservation laws in each single
event [93].

The thermal density ni in the comoving frame is computed
numerically by one-dimensional integration,

ni = gs

(2π2)

∫ 100T

0

p2dp

exp
[(√

p2 + m2
i − μi

)
T

] ± 1
, (61)

where gs is the spin degeneracy, T is the temperature, p is the
momentum magnitude, mi is the mass of hadron type i, μi

is the chemical potential, and ±1 is for baryons and mesons,
respectively.

The total number of hadrons computed from one freeze-out
hypersurface element d�j is λj = nu · d�j , where n = ∑

i ni

is the summation of the thermal density over all hadrons. λj is a
very small float number that gives the mean number of hadrons
produced from d�j in multiple independent samplings. This
probability for the hadron multiplicity in the j th hypersurface
element is assumed to follow a Poisson distribution,

Pj (k) = e−λj
λk

j

k!
, (62)

where k is an integer that indicates the hadron multiplicity
in one sampling. We draw k from this Poisson distribution
and determine the particle type for each of these k hadrons
through a discrete distribution whose probabilities are given
by ni/

∑
i ni .

Once the total number of hadrons and their species are
determined for one hypersurface element, the magnitude of
their momenta in the local rest frame can be sampled. Since
the total number of hadrons from the hypersurface element is

Lorentz invariant, one can compute dN from,

dN = gi

(2π )3

∫
d3p∗

p∗0

∫
p∗μd�∗

μf0(1 + δf )

= gi

2π2

∫∫
|p∗|2d|p∗|d�∗

0f0

= gi

2π2

∫
uμd�μ

∫
d|p∗| × |p∗|2f0, (63)

where we have used the properties that the p∗i is integrated
over (−∞,∞) for i = (1,2,3) and the integration of δf (shear
viscosity only) also vanishes. It is straightforward to sample
the magnitude of the momentum |p∗| from |p∗|2f0(|p∗|,μ,T ,λ)
where μ is chemical potential, T is freeze-out temperature,
and λ = ±1 for Fermi–Dirac and Bose-Einstein distribution,
respectively. See Appendix A 4 for details.

Once |p∗| is determined, f0 and p∗0 = (|p∗|2 + m2)1/2 can
be treated as constants when sampling the direction of the
momentum in the comoving frame. The momentum directions
are determined by rejection sampling with acceptance rate rideal

and rvisc, where

rideal = p∗ · d�∗

p∗0(d�0∗ +
√

|d�∗|2)
� 1, (64)

with p∗ = (p∗0, |p∗| sin θ cos φ, |p∗| sin θ sin φ, |p∗| cos θ )
being the four-momentum determined by |p∗|, the hadron
mass, the polar angle θ , and the azimuthal angle φ. d�∗ is the
hypersurface element in the comoving frame.

For viscous hydrodynamics, there is an additional
acceptance rate that depends on the direction of the
momentum,

rvisc = A + (1 ∓ f0)p∗
μp∗

νπ
μν∗

A + |1 ∓ f0| × |p∗
μp∗

νπ
∗μν |max

, (65)

where A = 2T 2(ε + P ) is positive on the freeze-out hypersur-
face. Since p∗0 and f0 are constants for a given |p∗|, the easiest
way to get |p∗

μp∗
νπ

∗μν |max is as follows:

|p∗
μp∗

νπ
∗μν | �

∑
μν

|p∗
μp∗

νπ
∗μν | � (p∗0)2

∑
μν

|π∗μν |. (66)

One problem in the smooth resonance decay is that the
numerical integrations over the phase space of parent hadrons
are difficult to verify. The Monte Carlo sampling and decay
program, however, can be tested easily. Given the freeze-out
temperature, the thermal density of each hadron species before
resonance decay is easily computed from numerical integra-
tion, as shown in Eq. (61). Given the density of each hadron
and the tree structure in the decay table, one can compute
the ratio of π+ density before and after resonance decay. We
have verified that the results from Monte Carlo sampling and
decay agree with the analytical solution. It is straightforward
to check the accuracy of the GPU parallelized smooth spectra
and resonance decay via integration by comparing the particle
yield and transverse momentum distribution with the Monte
Carlo sampling and force decay method.

As shown in Figs. 3 and 4, the yields and the momentum
distribution of charged and identified particles from the Monte
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FIG. 3. Pseudorapidity distributions for charged hadrons and
identified particles π+, K+ and proton from smooth particle spectra
(black solid line) with integral resonance decay and Monte Carlo
sampling (red dashed line) with forced resonance decay. The hydro-
dynamic evolution is given by CLVisc with optical Glauber initial
condition at impact parameter b = 2.4 fm, with initial time τ0 =
0.4 fm, the maximum energy density in most-central collisions εmax =
55 GeV/fm3 and lattice QCD EoS from the Wuppertal–Budapest
2014 computation.

Carlo sampling agree with the smooth particle spectra via
integration from Cooper–Frye formula. These hydrodynamic
simulations use optical Glauber initial condition with the im-
pact parameter b = 2.4 fm, initial time τ0 = 0.4 fm, maximum
energy density at the center of the overlap region εmax =
55 GeV/fm3, ηv/s = 0, and lattice QCD EoS (lattice-wb2014)
based on the Wuppertal–Budapest 2014 results.

FIG. 4. The transverse momentum distribution for identified
particles π+, K+ and proton from smooth particle spectra (black
solid line) with integral resonance decay and Monte Carlo sampling
(red dashed line) with forced resonance decay. The hydrodynamic
evolution is the same as in Fig. 3.

V. COMPARISONS WITH ANALYTICAL SOLUTIONS
AND OTHER NUMERICAL SOLUTIONS

To ensure the numerical accuracy of the GPU parallelized
CLVisc code, we validate it by comparing the numerical results
with both analytical solutions of the hydrodynamic equations
and numerical solutions from other independently developed
codes.

For the first validation, analytical solutions are based
on simple assumptions. The Bjorken solution, for example,
assumes that the energy density distribution is uniform in
(x, y, ηs) coordinates. Under this assumption, pressure gradi-
ents along x, y, and ηs vanish, fluid velocity vx = vy = vηs

=
0, and all the nonvanishing terms that affect the time evolution
in hydrodynamic equations come from nonzero Christoffel
symbols. This solution therefore can be used to check whether
the Christoffel symbols are correctly implemented and to
quantify numerical errors accumulated during the many time
steps of evolution. On the other hand this solution cannot be
used to check the accuracy of spatial derivatives.

The cross-check between different codes, on the other
hand, works for arbitrary initial configurations. However,
comparisons of numerical results from different codes with the
same initial configurations cannot directly validate one model
over the other or judge which implementation results in smaller
numerical errors. Below we compare results from CLVisc with
the Riemann, Bjorken, and Gubser solution for second-order
viscous hydrodynamics and the viscous hydrodynamic code
VISH2 + 1 developed by the Ohio State University (OSU)
group.

A. Riemann solution

The Riemann solution considers fluid expansion with a step-
like initial energy density distribution. It tests the performance
of the numerical hydrodynamic simulations in regions with
sharp gradients (e.g., the shock wavefront) [94–96]. The initial
condition is specified as

ε(t = 0,z) =
{
ε0, z � 0

0, z � 0,
(67)

vz(t = 0,z) =
{

0, z � 0

1, z � 0,
(68)

where the initial fluid velocity at z > 0 is set to 1. In relativistic
hydrodynamics, the Riemann solution describes how the QGP
expands into vacuum. In the nonrelativistic case, the Riemann
solution is used to study dam breaking. The solution is a func-
tion of the similarity variable ζ ≡ z/t . Because of causality,
nothing changes in the |ζ | > 1 region. For −1 < ζ < 1, the
solution is a simple rarefaction wave which is given by [97]

ε(ζ )

ε0
=

{
1, −1 � ζ � −cs[ 1−cs

1+cs

1−ζ
1+ζ

](1+c2
s )/2cs

, −cs � ζ � 1,
(69)

vz(ζ ) = tanh

[
− cs

1 + c2
s

ln

(
ε

ε0

)]
. (70)

To compare with the Riemann solution, the ideal gas EoS
(EOSI) is used where the speed of sound c2

s = 1/3 in CLVisc
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FIG. 5. Comparison between CLVisc and Riemann solution for
energy density evolution as a function of time.

simulations. All the Christoffel symbols are set to zero to
return to (t, x, y, z) coordinates. The energy density is set
to a constant in the transverse direction. CLVisc solves the
Riemann problem precisely for the energy density evolution
as shown in Fig. 5. For the fluid velocity profile, there is a
quick drop-off in the light cone region (z = t) which is caused
by the numerical cutoff used in the simulations (see Fig. 6).
In high-energy heavy-ion collisions, an energy density cutoff
ε = 10−7 GeV/fm3 is reasonably safe comparing with the
typical freeze-out energy density ε ∼ 0.1 GeV/fm3, when the
hydrodynamic evolution stops. The physics processes at such
a low energy density region around and after the freeze-out
should be described by hadronic transport models instead of
hydrodynamics. By setting ε = 0, when the energy density
is smaller than the cutoff, an artificial shock wave is formed

FIG. 6. Comparison between CLVisc and Riemann solution for
fluid velocity evolution as a function of time.

FIG. 7. Comparison between CLVisc and Bjorken solution for
viscous hydrodynamics.

at the edge of the expanding fireball. The Riemann solution
test verifies that this artificial cutoff does not lead to a sizable
difference for the region where we apply hydrodynamics.

B. Bjorken solution

The Bjorken solution assumes a uniform distribution in
the transverse direction and in spatial rapidity ηs in Milne
coordinates, which gives rise to vx = vy = vηs

= 0. This
solution derived in Ref. [98] is used extensively to model
the longitudinal expansion dynamics in high-energy heavy-ion
collisions, where a plateau in the rapidity profile is observed in
final-state particle spectra. It is applied in otherwise (2 + 1)-
dimensional hydrodynamic models or in analytic calculations.
However, the energy density still decreases with time due to
nonzero longitudinal fluid velocity vz = z/t in (t, x, y, z) co-
ordinates. The nonzero components of shear stress tensors are
πxx = πyy = −τ 2πηsηs = 4ηv

3τ
. With all the spatial gradients

vanishing under this assumption, the hydrodynamic equations
are simplified to

∂ε

∂τ
+ ε + P + τ 2πηsηs

τ
= 0. (71)

For the ideal gas EoS where ε = 3P and T ∝ ε1/4, we have
the solution

T

T0
=

(τ0

τ

)1/3
{

1 + 2ηv

3sT τ0

[
1 −

(τ0

τ

)2/3
]}

, (72)

where T and T0 are temperature at proper time τ and τ0,
respectively. Shown in Fig. 7 is the numerical solution from
CLVisc (solid) compared with the above Bjorken analytic
solution with the same initial temperature, time, and shear-
viscosity-to-entropy ratio.

C. Gubser solution for second-order viscous hydrodynamics

The Bjorken solution assumes a homogeneous distribution
of energy density in (τ, x, y, ηs) coordinates at any given
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time τ which leads to uμ = (1,0,0,0). This solution, however,
gives rise to nonzero longitudinal fluid velocity vz = z/t
when transformed back to (t, x, y, z) coordinates. The same
philosophy is used in the Gubser solution for the second-order
viscous hydrodynamics [58], where we perform a conformal
or Weyl transformation to the coordinate system following
Gubser [99],

dŝ2 ≡ ds2

τ 2
= dρ2 − cosh2 ρ(dθ2 + sin2 θdφ2) − dη2

s , (73)

which indicates that the Minkowski space is conformal to
dS3 × R with

sinh ρ = −L2 − τ 2 + x2
⊥

2Lτ
, tan θ = 2Lx⊥

L2 + τ 2 − x2
⊥

, (74)

where L can be interpreted as the radius of the dS3 space or
the typical size of a relativistic heavy-ion collisions. Hereafter
in this section, dynamical variables in the new coordinate
system x̂μ = (ρ, θ, φ, ηs) will carry a hat to avoid confusion.
Assuming the energy density distribution is uniform in this x̂μ

coordinates, one simply gets ûμ = (1,0,0,0). When η̂vλ̂
2
1 =

3τ̂π , we find a very simple analytical solution,

ε̂ ∝
(

1

cosh ρ

) 8
3 − 2

λ̂1

, ûμ = (1,0,0,0), (75)

C = −2A = −2B = 2

λ̂1
ε̂, (76)

where C ≡ π̂ ηsηs , A ≡ π̂ θθ cosh2 ρ, and B ≡
π̂φφ cosh2 ρ sin2 θ . After Weyl rescaling, we can get back to
the (τ, x, y, ηs) space and obtain,

ε = ε̂

τ 4
, (77)

	v⊥ = −2τ 	x⊥
L2 + τ 2 + x2

⊥
, (78)

πμν = 1

τ 2

∂x̂α

∂xμ

∂x̂β

∂xν
π̂αβ . (79)

Notice that the dimensionless transport coefficients are de-
fined as η̂v = ηv/ε

3/4, τ̂π = τπε1/4, λ̂1 = λ1ε. The conditional
solution is nontrivial since there are three different transport
coefficients and many nonvanishing πμν components. Since
the energy density distribution is not uniform in the transverse
plane of (τ, x, y, ηs) coordinates, the spatial gradients along
x and y are nontrivial. This solution is very good at verifying
the numerical capability of any second-order viscous hydro-
dynamics code.

The parameters we used for the comparison in this section
are L = 2, ηv/s = 0.2, and λ̂1 = −10. The relaxation time τ̂π

is calculated from the constraint equation η̂vλ̂
2
1 = 3τ̂π . Notice

that we can still cover the whole parameter space for ηv/s
and λ̂1, to investigate the stability of the code in different
limits. In practice, λ̂1 = ε̂

π̂μν � 1 is required for consistency
and stability. When λ̂1 → ∞, the hydrodynamic equations
recover the ideal fluid solution. As shown in Figs. 8 and
9, with λ̂1 = −10, CLVisc reproduces very accurately the
energy density and transverse fluid velocity evolution given
by the Gubser solution. Another interesting property of this

FIG. 8. Time evolution of energy density distribution from
CLVisc numerical results (solid) and Gubser analytical solution
(dashed) for second-order viscous hydrodynamics.

second-order Gubser solution is that the fluid velocity is the
same as that for ideal hydrodynamics, since it is fixed by
conformal transformation.

In principle λ̂1 can be either positive or negative. In heavy-
ion collisions, one gets negative πηsηs in Bjorken scaling.
Therefore, we choose a negative λ̂1 for positive πxx, πyy and
negative πηsηs . As a result, −τ 2πηsηs is roughly two times πxx

FIG. 9. Time evolution of transverse fluid velocity from CLVisc
numerical results (solid) and Gubser analytical solution (dashed) for
second-order viscous hydrodynamics.
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FIG. 10. Time evolution of πxx from CLVisc numerical re-
sults and Gubser analytical solution for second-order viscous
hydrodynamics.

and πyy , which preserve the traceless property together with a
small but nonzero πττ in this solution.

As shown in Figs. 10 and 11, there are tiny deviations
between the analytical solution and the CLVisc relativistic
hydrodynamic simulations, on the shoulders (x = ±6) of πxx

and −τ 2πηsηs at a late time τ = 6 fm. It is expected that
the deviation could be larger at even later time due to the
accumulated numerical error. At present, this tiny deviation
is acceptable since the energy density drops much faster in the

FIG. 11. Time evolution of −τ 2πηsηs from CLVisc numerical
results and Gubser analytical solution for second-order viscous
hydrodynamics.

FIG. 12. Comparison between CLVisc (symbol points) and
VISH2 + 1 (lines) results for elliptic flow of direct π+ in Au + Au
collisions at

√
sNN = 200 GeV with the optical Glauber initial condi-

tion at impact parameter b = 7 fm and with different values of shear-
viscosity-to-entropy ratio. Results without the viscous correction δf

to the local phase-space distributions [Eq. (60)] are also shown.

Gubser expansion than in the Bjorken expansion or in realistic
time evolutions of QGP in heavy-ion collisions.

We have collected these analytical solutions and put them
in a python package gubser. The package is uploaded to the
Python Package Index website, and can be downloaded and
installed on a local machine using pip install—user gubser.
More analytical solutions [100–113] from the community are
welcomed to be added to the package.

D. Comparison with VISH2 + 1

We now compare the numerical solutions from CLVisc with
the VISH2 + 1 viscous hydrodynamic model developed by
the OSU group, which is a (2 + 1)D viscous hydrodynamic
model assuming Bjorken scaling in the longitudinal direction.
The configurations and hydrodynamic results from VISH2 + 1
can be found in the TechQM website [114]. We use the same
initial conditions and model parameters in the simulations
for comparison. Shown in Fig. 12 are results for the pT

differential elliptic flow v2, in Fig. 13 the mean transverse
fluid velocity 〈vr〉 and in Fig. 14 the momentum eccentricity
from CLVisc (symbol points) as compared with results from
VISH2 + 1 viscous hydro (lines), for Au + Au collisions at√

sNN = 200 GeV at impact parameter b = 7 fm with the
optical Glauber initial condition. They agree with each other
to a reasonable precision.

From this extensive comparison to available analytical
solutions and other numerical solutions of relativistic hydrody-
namics, we conclude that CLVisc is performing competitively
well.

VI. HADRON SPECTRA AND ANISOTROPIC FLOW

In this section, we compare CLVisc results for hadron
spectra and anisotropic flow in heavy-ion collisions with
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FIG. 13. Comparison between CLVisc (symbol points) and
VISH2 + 1 (lines) results for mean transverse fluid velocity 〈vr〉 in
Au + Au collisions at

√
sNN = 200 GeV with the optical Glauber

initial condition at impact parameter b = 7 fm and with different
values of shear-viscosity-to-entropy-density ratio.

experimental data at both RHIC and LHC energies. We use
the Trento Monte Carlo model with the default option of the
IP-Glasma approximator for fluctuating initial conditions in
event-by-event hydrodynamic simulations. Since the public
version of CLVisc uses Trento as the default initial-state
configuration, the results in this section provide a reference
baseline for future users as well as for further calculations
within CLVisc. The Trento Monte Carlo model assumes fluctu-
ations in the transverse plane with a spatial-rapidity-dependent
envelop in the longitudinal direction. Therefore, we switch to

FIG. 14. Comparison between CLVisc (symbols points) and
VISH2 + 1 (lines) results for momentum eccentricity in Au + Au
collisions at

√
sNN = 200 GeV with the optical Glauber initial

condition at impact parameter b = 7 fm and with different values
of shear-viscosity-to-entropy-density ratio.

TABLE I. Default parameters for event-by-event hydrodynamics
using Trento initial conditions. The normalization is fit to the hadron
multiplicity in the central rapidity region in the most central heavy-ion
collisions.

System τ0 fm Norm Tf MeV ηv/s ηw ση

Au+Au 200 GeV 0.6 57 100–137 0.15 1.3 1.5
Pb+Pb 2760 GeV 0.6 128 100–137 0.15 2.0 1.8

AMPT initial conditions for the later sections of this manuscript
that include also longitudinal initial dynamics. The centrality
range is determined by the event-by-event distributions of
the total entropy. Initial conditions with top 5% highest total
entropies are chosen as 0%–5% collisions and so on. The
partial chemical equilibrium EoS s95p-pce [82] is used in the
hydrodynamic simulations. The other model parameters for
Au + Au

√
sNN = 200 GeV, Pb + Pb

√
sNN = 2.76 TeV, and√

sNN = 5.02 TeV collisions are listed in Table I, where ηw

and ση are used to parametrize the initial state longitudinal
profile using the following function

H (ηs) = exp

[
− (ηs − ηw)2

2σ 2
η

θ (|ηs | − ηw)

]
. (80)

A. Au + Au at
√

sNN 200 GeV collisions

Shown in Figs. 15 and 16 are the pseudorapidity distri-
butions for charged hadrons and the transverse momentum
spectra for identified particles π+. We focus on pion trans-
verse momentum spectra in this section because, for pure
relativistic hydrodynamic results without considering hadronic

FIG. 15. Pseudorapidity distribution for charged hadrons in Au +
Au collisions at

√
sNN = 200 GeV with centrality range 0%–6%,

6%–15%, 15%–25%, and 25%–35%, from CLVisc with freeze-out
temperature 100 MeV (solid lines) and 137 MeV (dashed lines) as
compared with RHIC experimental data by the PHOBOS collabora-
tion [116].

064918-12



PSEUDORAPIDITY DISTRIBUTION AND DECORRELATION … PHYSICAL REVIEW C 97, 064918 (2018)

FIG. 16. Invariant yield of π+ in Au + Au collisions at
√

sNN =
200 GeV with centrality range 0%–5%, 10%–15%, 20%–30%, and
30%–40%, from CLVisc with freeze-out temperature 100 MeV
(solid lines) and 137 MeV (dashed lines) as compared with RHIC
experimental data by PHENIX collaboration.

afterburner, the transverse momentum spectra of kaon and
proton are not expected to agree with experimental data.

We use a constant ηv/s in the current CLVisc simulations.
It has been shown that the linear relationship between initial
entropy and final charged multiplicity breaks down in vis-
cous hydrodynamics with a temperature-dependent ηv/s [23].
In future studies using Bayesian analysis with temperature-
dependent ηv/s, the centrality classes should be defined by the
final-state multiplicities after hydrodynamic evolution.

Notice that the pseudorapidity distributions for charged
hadrons does not change much, if the freeze-out temperature
Tfrz changes from 137 to 100 MeV in CLVisc with partial chem-
ical equilibrium EoS, and the same group of τ0, normalization
factor, and ηv/s. However, the slope of the pion transverse
momentum spectra becomes slightly steeper and describes
low-pT experimental data better with Tfrz = 100 MeV than
with Tfrz = 137 MeV. At the same time, the pT differential
anisotropic flow increases approximately 10% when Tfrz is
decreased from 137 to 100 MeV, which agrees with the
observation in Ref. [115]. To get the best global fit to many
different observables, a Bayesian analysis [51–53] has to be
employed to explore the huge parameter space. Mini jets
and their thermalization also play a role in the transverse
momentum spectra at high pT > 2 GeV/c.

B. Pb + Pb at
√

sNN = 2760 GeV collisions

Shown in Fig. 17 are pseudorapidity distributions for
charged hadrons in Pb + Pb collisions at

√
sNN = 2.76 TeV for

four different centralities—0%–5%, 5%–10%, 10%–20%, and
20%–30%. The centrality dependence of the event-averaged
charged multiplicity is determined by event-by-event distribu-
tions of initial total entropy. A freeze-out temperature of Tfrz =
100 MeV is used in the CLVisc simulations. Nice agreement
with experimental data on the pseudorapidity distribution of
charged particles is found over a wide range of centralities.

FIG. 17. Pseudorapidity distribution for charged hadrons in Pb +
Pb collisions at

√
sNN = 2.76 TeV with centrality range 0%–5%,

5%–10%, 10%–20%, and 20%–30%, from CLVisc (solid lines) and
LHC experimental data by the ALICE collaboration [116].

Shown in Fig. 18 is the transverse momentum spectra
for charged pions, in six different centralities of collisions,
which agree with experimental data well. The hydrodynamic
simulations always underestimate low-pT pions as compared
with the experimental data at LHC. This problem is not
solved to date, but may be partially explained by the missing
finite widths of resonances [118] in the current hadronization
modules.

C. Higher-order harmonic flow in Pb + Pb
at

√
sNN = 2760 GeV collisions

CLVisc with Trento initial conditions and Tf = 137 MeV
can reproduce experimental data on v2, v3, v4, and v5

FIG. 18. pT spectra of charged pions for Pb + Pb
√

sNN =
2.76 TeV collisions at centrality range 0%–5%, 5%–10%, 10%–20%,
20%–40%, 40%–60%, and 60%–80%, from CLVisc (solid lines) and
LHC experimental data by the ALICE collaboration [117].
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(a)

(d) (e) (f)

(g) (h)

(j)

(i)

(k) (l)

(b) (c)

FIG. 19. The centrality dependence of the anisotropic flows v2, v3, v4, and v5 from scalar-product method in Pb + Pb collisions at
√

sNN =
2.76 TeV with centrality ranges 0%–5%, 5%–10%, 10%–20%, and 20%–30%, from CLVisc (solid lines) and LHC experimental data (markers)
by the ALICE collaboration [119].

for charged pions for all available centralities as shown in
Fig. 19. For pure relativistic hydrodynamic simulations with-
out hadronic afterburner, the vn from CLVisc overshoot the
experimental data by 5% for K+ and by a large margin for
protons. It has been shown that the pT differential elliptic
flow of kaon and protons are boosted to higher pT in hydro-
transport hybrid models by hadronic rescattering [115]. On
the other hand, the pion vn(pT ) is not very sensitive to
hadronic afterburner and serves as a good measure of the QGP
expansion. The consistency of freeze-out temperature best fit
to the transverse momentum spectra (100 MeV) and transverse
momentum differential anisotropic flow (137 MeV) can also
be resolved by matching hydrodynamic models with hadronic
transport evolution in the final stage which will contribute

to the further development of anisotropic flow. The range
of freeze-out temperatures could also be used as a prior for
Bayesian analysis.

VII. THE PSEUDORAPIDITY DEPENDENCE
OF ANISOTROPIC FLOW

To study the pseudorapidity dependence of anisotropic flow
v2{2} and v3{2} of charged hadrons in this section and the
longitudinal fluctuation and correlation in the next section,
we need realistic and fluctuating longitudinal distributions of
the initial entropy density. For this purpose, the AMPT model
is employed to generate event-by-event initial conditions that
fluctuate both in the transverse plane and along the longitudinal
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(a) (b) (c)

(f)(d) (e)

FIG. 20. The pseudorapidity dependence of elliptic flow and triangular flow, for Pb + Pb
√

sNN = 2.76 TeV collisions with centrality range
0%–5%, 10%–20%, 20%–30%, 30%–40%, 40%–50%, and 50%–60%, from (3 + 1)D viscous hydrodynamic simulations starting from AMPT

initial conditions without initial fluid velocity and evolve with ηv/s = 0.16 as compared with LHC measurements from the ALICE collaboration
[120].

direction. Notice that the vn{2} in this section are given by the
two-particle cumulants method using sampled hadrons while
the vn(pT ) in the previous section are given by scalar product
method using smooth particle spectra.

As shown in Fig. 20, v2{2} and v3{2} from CLVisc with
ηv/s = 0.16 in Pb + Pb collisions at

√
sNN = 2.76 TeV agree

well with experimental data from the ALICE collaboration
[120] for most of the centralities. The ratios between v2{2}
and v3{2} are correctly reproduced for most-central and semi-
central collisions. The mean value of the ratio v2{2}/v3{2}
increases as the system goes from most-central to peripheral
collisions. In most-central collisions, both v2{2} and v3{2}
from CLVisc + AMPT simulations are larger than experimental
data. For very peripheral collisions (e.g., 50%–60% centrality),
the hydrodynamic simulations still produce reasonable v2{2}
as a function of pseudorapidity while the v3{2}(η) is two
times larger than the experimental data. For all centralities, the
vn{2}(η) decreases faster at large rapidities in the experimental
data than that given by the relativistic hydrodynamics with
AMPT initial conditions. It was conjectured that temperature-
dependent ηv/s may resolve this small overshoot of vn{2} at
large rapidities [121]. In earlier works the rapidity dependence
was reproduced by including the hadronic rescattering in (3 +
1)D hydrodynamic calculations [69,122]. To investigate the
sensitivity of the shape along rapidity, we show a calculation
with ηv/s = 0 that is scaled to match the v2(η) and see the same
drop from middle to large rapidities. With the same scaling
factor for v2{2} and v3{2} in ideal hydrodynamics, we see that
the shape of vn{2}(η) from CLVisc is not sensitive to ηv/s at
all. The ratio v2{2}/v3{2} is quite sensitive to ηv/s since shear

viscosity suppresses higher-order harmonics stronger than
lower-order harmonics. As a result, the shape of the vn{2}(η) is
only sensitive to the longitudinal distribution of initial entropy
density but the ratios between different harmonic flows are
good observables to constrain ηv/s.

With constant ηv/s and energy-density fluctuations along
the spacetime rapidity in CLVisc, the vn{2}(η) overshoots the
experimental data at large rapidities. It is not yet clear whether
the temperature-dependent ηv/s(T ) can fix the disagreement,
as suggested in Ref. [121], or if hadronic rescattering is
necessary. Furthermore, the net baryon density should become
significant in the large-rapidity region, especially in low-beam-
energy collisions at RHIC. One in principle has to take into
account the baryon-chemical-potential dependence of the EoS
in the forward rapidity region [123] in order to describe the
pseudorapidity dependence of vn{2}.

VIII. LONGITUDINAL DECORRELATION
OF ANISOTROPIC FLOW

The decorrelation of anisotropic flow along the longitudinal
direction has been computed in CLVisc with AMPT initial
conditions and ηv/s = 0 for the hydrodynamic evolution [78].
In the current work, we focus on the effect of the shear viscosity
and the initial fluid velocity on the longitudinal decorrelation
observables.

The longitudinal decorrelation observable rn(ηa,ηb), which
not only captures the twist of event planes but also the
anisotropic flow fluctuations along the longitudinal direction,
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FIG. 21. (1a)–(1f) The decorrelation of elliptic flow and (2a)–(2f) triangular flow along the pseudorapidity direction, for Pb + Pb√
sNN = 2.76 TeV collisions with centrality range 0%–5%, 5%–10%, 10%–20%, 20%–30%, 30%–40%, and 40%–50%, from (3 + 1)D viscous

hydrodynamic simulations starting from AMPT initial conditions without the initial fluid velocity (ηv/s = 0 for red lines and ηv/s = 0.16 for
blue circles and stars) as compared with LHC measurements at CMS (black squares). The label “ref1” denotes 3.0 < ηb < 4.0, used in both
CMS data and CLVisc calculation.

is defined as [42]

rn(ηa,ηb) = 〈 	Qn(−ηa) 	Q∗
n(ηb)〉

〈 	Qn(ηa) 	Q∗
n(ηb)〉 , (81)

where ηa and −ηa are 16 pseudorapidity windows each with
size �η = 0.3 uniformly distributed in the range [−2.4,2.4],
and ηb are reference pseudorapidity windows to remove the
effect of short-range nonflow correlations, with the first ref-
erence window ηb ∈ (3,4) denoted as “ref1” and the second
ηb ∈ (4.4,5.0) denoted as “ref2.” The anisotropic flows and
their orientation angles in a given pseudorapidity window are
quantified by 	Qn:

	Qn ≡ Qne
in�n = 1

N

N∑
j=1

einφj =
∫

einφj dN
dηdpT dφ

dpT dφ∫
dN

dηdpT dφ
dpT dφ

,

(82)
where φj = arctan pyj/pxj is the azimuthal angle of the j th
particle in momentum space. The smooth particle spectra are
integrated over the azimuthal angle φ ∈ [0,2π ) and the cor-
responding transverse-momentum pT ranges. Following the
CMS experimental setup [42], the pT range is [0.3,3.0] GeV/c
for particles in ηa and is [0.0,∞) for particles in ηb. Since the
Pb + Pb collisions are symmetric along the beam direction,
by definition rn(ηa,ηb) should equal rn(−ηa,−ηb). Following
the suggestion through private communication with the CMS
collaboration, we use

√
rn(ηa,ηb)rn(−ηa,−ηb) to improve

statistics. Let us note here once again that the highly efficient
GPU parallelized algorithm is crucial to obtain reliable results
for correlation observables within reasonable computing time.

We study the effect of the shear viscosity and the initial
fluid velocity on rn(ηa,ηb) by comparing the results from
CLVisc with ηv/s = 0.0 and ηv/s = 0.16, starting from AMPT

initial conditions with the initial-state fluid velocity switched
on and off. Notice that, in the comparison, parameters for ideal
hydrodynamics are kept unchanged as given in the previous
paper except that the freeze-out temperature is changed from
137 to 100 MeV. In the viscous hydrodynamics simulation,

the initial scaling factor is changed from K = 1.5 used in a
previous ideal hydrodynamic simulation [78] to K = 1.2 to
take into account the extra entropy production due to finite
shear viscosity in order to fit the charged multiplicity for
0%–5% central Pb + Pb collisions at

√
sNN = 2.76 TeV.

Shown in Figs. 21(1a)–21(1f) and 22(1a)–22(1f) are the
decorrelation functions of elliptic flow and in Figs. 21(2a)–
21(2f) and 22(2a)–22(2f) are the decorrelation functions of
triangular flow from CLVisc with AMPT initial conditions and
initial fluid velocity switched off as compared with CMS
experimental data [42] at the LHC. Both the decorrelations
of elliptic flow and triangular flow agree with experimental
data to a reasonable level. Two different values of ηv/s used in
CLVisc produce very similar longitudinal decorrelations. This
indicates that the decorrelation observable is not sensitive to the
value of ηv/s used for the hydrodynamic evolution if there is
no initial flow. For r2(ηa,ηb), the hydrodynamic results do not
show differences for two different ηb reference windows. For
r3(ηa,ηb), there is a very small splitting between two different
ηb reference windows. It is suggested that the nonflow short-
range correlations in the denominator between particles in the
window [ηa − 0.15, ηa + 0.15] and the first reference window
3 < ηb < 4 depress the value of rn(ηa,ηb). This is consistent
with the negligible splitting from CLVisc with the zero-flow
initial condition, since no near-side short-range correlations
from jets are considered in the simulations.

The agreement between r2(ηa,ηb) and experimental data
for all centralities are as good as our previously published
results using ideal hydrodynamics with Tf = 137 MeV [78].
Moreover, the r3(ηa,ηb) with Tf = 100 MeV increases slightly
as compared with Tf = 137 MeV.

With a finite ratio of shear viscosity over entropy density,
ηv/s = 0.16, r2 from CLVisc simulations better fits the CMS
data if the second reference window ηb ∈ [4.4,5.0) is chosen.
For rn(ηa,ηb) computed with the first reference ηb window,
the shear viscosity decreases the decorrelation of elliptic flow
slightly for zero-flow initial conditions but strongly when
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FIG. 22. (1a)–(1f) The decorrelation of elliptic flow and (2a)–(2f) triangular flow along the pseudorapidity direction, for Pb + Pb√
sNN = 2.76 TeV collisions with centrality range 0%–5%, 5%–10%, 10%–20%, 20%–30%, 30%–40%, and 40%–50%, from (3 + 1)D viscous

hydrodynamic simulations starting from AMPT initial conditions without the initial fluid velocity (ηv/s = 0 for red lines and ηv/s = 0.16 for
blue circles and stars) as compared with LHC measurements at CMS (black squares). The label “ref2” denotes 4.4 < ηb < 5.0, used in both
CMS data and CLVisc calculation.

initial fluid velocity is included in the initial conditions. For
rn(ηa,ηb) computed with the second reference ηb window,
the effect of the shear viscosity is very small. When there
are longitudinal fluctuations, the non-Bjorken longitudinal
expansion due to pressure gradients along the spacetime
rapidity is strong. In ideal hydrodynamics, this longitudinal
expansion decreases elliptic flow [64]. However, in viscous
hydrodynamics, the shear viscosity speeds up the expansion
along the transverse direction and slows down the expansion
along the longitudinal (spacetime rapidity) direction. The
anisotropic flow in viscous hydrodynamics with both trans-
verse and longitudinal fluctuations is therefore affected by the
entanglement between the accelerated transverse expansion
and the decelerated longitudinal expansion.

When the initial fluid velocity computed from T τμ is
included in the initial condition, the short-range “nonflow”

correlations from mini-jets become stronger in ideal hydro-
dynamics. The short-range correlations in the denominator
between particles in the window [ηa − 0.15,ηa + 0.15] and
the first reference window 3 < ηb < 4 suppress the value of
rn(ηa,ηb). This is clearly seen in Fig. 23 because the red-dashed
line for rn(ηa,ηb = ref 2) is always above the red-solid line for
rn(ηa,ηb = ref1) from ideal hydrodynamic simulations. For
viscous hydrodynamics with initial fluid velocity, the splitting
between two ηb reference windows is much smaller than for
ideal hydrodynamics. The comparisons between Figs. 21–23
show that the decorrelation strength together with the splitting
between two reference windows are sensitive to both the
initial fluid velocity and shear viscosity. With shear viscosity
constrained by other physical observables, the splitting be-
tween two reference windows for 0%–5% and 5%–10% central

FIG. 23. The decorrelation of elliptic flow along the pseudorapidity direction, for Pb + Pb
√

sNN = 2.76 TeV collisions with centrality
range 0%–5%, 5%–10%, 10%–20%, 20%–30%, 30%–40%, and 40%–50%, from (3 + 1)D viscous hydrodynamic simulations starting from
AMPT initial conditions with the initial fluid velocity [ηv/s = 0 for panels (1a)–(1f) and ηv/s = 0.16 for panels (2a)–(2f)] as compared with
LHC measurements at CMS (black squares). The label “ref1” denotes 3.0 < ηb < 4.0, while “ref2” denotes 4.4 < ηb < 5.0.
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FIG. 24. (1a)–(1f) The decorrelation of elliptic flow and (2a)–(2f) triangular flow ) along the pseudorapidity direction, for Au + Au√
sNN = 200 GeV collisions with centrality range 0%–5%, 5%–10%, 10%–20%, 20%–30%, 30%–40%, and 40%–50%, from (3 + 1)D viscous

hydrodynamic simulations starting from AMPT initial conditions (ηv/s = 0.16 for red solid lines and ηv/s = 0 for blue dashed lines) as compared
with preliminary STAR measurements at RHIC (black squares). The reference rapidity window is 2.5 < ηb < 4.0 and ybeam = 5.36 for Au + Au√

sNN = 200 GeV collisions.

collisions might be a good observable to determine the initial
fluid velocity.

Shown in Figs. 24(1a)–24(1f) and in 24(21)–24(2f) is the
longitudinal decorrelation of elliptic flow and triangular flow,
respectively, from CLVisc with AMPT initial conditions and
initial fluid velocity switched off as compared with STAR
preliminary experimental data [124] on Au + Au

√
sNN =

200 GeV collisions at the RHIC. Notice that the blue dashed
lines were predicted in 2015 using CLVisc with ηv/s = 0
[78] where no data were available for this beam energy.
That prediction shows that the decorrelation at lower beam
energies should be much stronger than for Pb + Pb collisions
at 2.76 TeV because of the stronger string-length fluctuations.
The preliminary STAR data in general agrees with the ideal
hydrodynamic predictions, while CLVisc with ηv/s = 0.16
only provides a limited modification that makes the agreement
with r2 better at Au + Au

√
sNN = 200 GeV collisions.

The prediction data of the longitudinal decorrelation for
Pb + Pb 2760 GeV and Au + Au 200 GeV collisions is
publicly available from figshare [125].

IX. SUMMARY

We have developed a full (3 + 1)D viscous relativistic
hydrodynamic model CLVisc in which both the hydrodynamic
evolution with the KT algorithm and Cooper–Frye particliza-
tion with integration on the freeze-out surface are parallelized
on GPU by using OpenCL. We achieved a 60 and 120 times
performance increase for the spacetime evolution and Cooper–
Frye particlization, respectively, relative to the performance of
the code on a single-core CPU. Such increased performance
enables many event-by-event studies of high-energy heavy-ion
collisions, such as the coupled linear Boltzmann transport and
hydrodynamics (CoLBT-hydro) model [49] for jet propagation
and medium response. We validated the CLVisc code by
using comparisons with several analytic solutions of ideal and
viscous hydrodynamic equations such as Riemann, Bjorken,
and Gubser solutions as well as by comparing with numerical

solutions from VISH2 + 1. We also compared results from
CLVisc using the Trento Monte Carlo initial conditions with
experimental data on hadron spectra in heavy-ion collisions at
both RHIC and LHC. We carried out a study with CLVisc on the
pseudorapidity dependence and decorrelation of anisotropic
flows in the longitudinal direction with initial conditions given
by the AMPT model. We confirmed the observation that the
magnitude and the relative ratio of anisotropic flows are
sensitive to the shear-viscosity-to-entropy-density ratio ηv/s.
We also found that the decorrelation of anisotropic flow along
the pseudorapidity and the splitting between different reference
rapidity window are sensitive both to the initial flow velocity
and to the shear-viscosity-to-entropy-density ratio.

In the comparisons with the experimental data on flavor
dependence of the hadron spectra and anisotropic flows,
CLVisc fails to describe the experimental data, like all other
pure hydrodynamic models. As illustrated by previous studies
[115,126], it is imperative to include nonequilibrium dynamics
of hadronic scattering after the hadronization. CLVisc with the
option of Monte Carlo sampling for Cooper–Frye particlization
is well suited to work together with a hadronic transport model
to account for this dynamic process. This will be investigated
in the near future.
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APPENDIX

1. GPU architecture and the parallelization of the
Kurganov–Tadmor algorithm

Parallelization and optimization of relativistic hydrody-
namic program on GPUs require expertise. In this section
we provide many technical details that are critical to GPU
parallelization. Shown in Fig. 25 is one cartoon diagram of
the GPU architecture. The smallest component of the GPU is
the processing element (PE) which is comprised of a worker
(the ant) that owns a very small piece of private memory (the
dish). The accessing latency for the processing element to read
data from the private memory is very low. However, usually
the private memory is so small that it is impossible to store
a big amount of data in private memory for processing at the
same time. If more private memory is used than provided, the
processing element will store data in global memory and read
from there in each access. This is not good practice, since
there is a long distance between the global memory (food
source in the out environment) and the private memory (the
dish of the ant). As a result, reading data directly from global
memory to private memory has a large latency. The clever ants
decided to construct one granary (named as shared memory
in CUDA and local memory in OpenCL) to store food that
is fetched from the out environment and that will be shared
by multiple ants. The memory access from shared memory
(the granary) to private memory (the dish) is more than 100
times faster than directly reading data from global memory

FIG. 25. Cartoon diagram of the architecture of GPUs.

(out environment). Prefetching data from global memory to
shared memory for frequent accessing usually speeds up the
program by a large margin. Although the private memory
and the shared memory have lower accessing latency than
global memory, their capacities and horizons are much smaller.
The private memory (capacity = dozens of float numbers)
can only be accessed by each processing element, while the
shared memory (capacity = 32–64 KB) can be accessed by
all the processing elements in the same computing unit. As
a comparison, the global memory (capacity = several GB) is
large and can be accessed by all the processing elements. If
some data are shared by all the processing elements, a special
region of the global memory—“constant memory” can be used
to balance the horizon and accessing latency. Notice that all
memories are located on the GPUs and transferring data from
CPU memory to the global memory of GPUs also takes time.
The good practice is to transfer data from CPU memory to
the GPU global memory and to perform all calculations before
transferring back to CPUs for output.

In the 3D KT algorithm, the required data to update
the source terms Sπ , SN , ST , and S� at lattice (i,j,k) are
four components in (ε,vx,vy,vηs

), 10 components in πμν , 2
components in N and �, on 13 lattice grids. As a result, at
least 16 × 13 = 208 float numbers are necessary to update
one hydrodynamic cell. Without using shared memory, there
is too much redundant fetching from global memory to private
memory, which slows down the calculation. In the beginning,
a 3D stencil was used to fetch a 3D block of data to shared
memory, all the threads in the same work group read data from
shared memory. However, numerous halo cells are needed in
each direction in order to update the boundary cells in the local
block. To update one 7 × 7 × 7 block, one needs 7 × 7 × 4 × 3
halo cells. The total shared memory used for the effective block
and halo cells in this simple case is 16 × 7 × 7 × (7 + 12) ×
4/1024 = 56 KB, which already exceeds the maximum shared
memory provided by the most advanced GPUs on the market
(typical size of shared memory is 32 KB). A trade off is to read
halo cells directly from global memory instead of storing them
in shared memory, which reduces the shared memory usage
to 20 KB. On the other hand, concurrent reading from global
memory is only possible along one dimension, depending on
in which direction the data are stored continuously. The data in
one 3D array can only be stored continuously in one direction,
which makes concurrent reading impossible in the other two
directions. For the 3D stencil, it is possible to store each block
of data (7,7,7) continuously in global memory, other than the
common (x,y,z) order for the whole (nx,ny,nz) array. It is
also possible to construct the halo cells for each block and store
them continuously in global memory for concurrent accessing.
One should keep in mind that constructing halo cells for the 3D
block is error prone and asks for much more global memory.

In the current version of CLVisc, the source terms are
split into three directions. The one-dimensional (1D) data
along each direction is put in the shared memory, as shown
in Fig. 26. The total shared memory used for one strip is
N × 16 × 4/1024 = 32 KB for N = 512 lattices along the
x direction. Each hydrodynamic cell shares 5 × 16 single
precision floating numbers along the x direction and only four
halo cells at the boundary are needed.
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FIG. 26. One strip of data stored in the shared memory for five-
cell stencil in KT algorithm.

2. Parallelization of the smooth particle spectrum calculation

Since the integration kernel in Eq. (58) is independently
calculated for different freeze-out hypersurface elements be-
fore the summation, it is a perfect job to fit in GPU parallel
computing. If the Cooper–Frye integration is only needed once
for all the hypersurface, it can be done efficiently by using the
two-step parallel reduction algorithm as shown in Fig. 27 from
Nvidia and AMD SDK. In reality we need to do hypersurface
integration 308 × 41 × 15 × 48 times, and it is quite slow to
load each hypersurface element from global memory to private
memory so many times. To reduce the global memory access,
we share the hypersurface elements in one work group for
multiple (pid,Y,pT ,φ) combinations. The computing time for
300 resonances is reduced from 8 hours on a single-core CPU
to 3 minutes on the modern GPUs like Nvidia K20 and AMD
firepro S9150 for one typical hydrodynamic event.

Shown in Fig. 27 is one demonstration of parallel reduction.
For example, to sum all the numbers in one big array, one first
puts the numbers in many groups, in each working group the
working items iteratively add the second half of the subarray
to the first half in parallel. After several iterations, the final
result will be the value in the first working item. Notice that
the parallel reduction has not only been used in CLVisc to
compute the summation of particle spectra from the huge
amount of freeze-out hypersurface cells, but has also been
used to compute the maximum energy density εmax in the
fluid field at each output time step. The εmax is used to stop
the time evolution of hydrodynamics when its value is smaller

FIG. 27. Parallel reduction used on GPU to compute the sum-
mation of particle spectra from millions of freeze-out hypersurface
elements.

TABLE II. Computing time for one time step on various comput-
ing devices for several different block sizes.

Block size 8 16 32 64 128

Ideal(s)-GPU 0.37 0.218 0.178 0.155 0.157
Visc(s)-GPU 3.12 1.65 1.17 1.01 1.17
Visc(s)-CPU 6.64 6.45 6.63 7.0 7.58

than the freeze-out energy density determined by the freeze-out
temperature. To find εmax in the fluid field, one has to check
Nx × Ny × Nηs

fluid cells in the collision system with both
transverse and longitudinal fluctuations. This can be done
easily in python, if the energy density values of the whole
fluid field stay in the host memory (CPU memory). However,
transferring the values of a big 3D matrix from GPU to CPU
at each output time step is very time consuming. CLVisc uses
parallel reduction to compute the maximum energy density of
the fluid field on the GPU side and transfer a scalar εmax back
to the CPU side. To avoid the data transfer between CPU and
GPU memory, the freeze-out hypersurface finding algorithm
[64] is also implemented on GPU.

3. Profiling for the (3 + 1)D viscous fluid dynamic evolution

To solve 3D partial differential equations, we need to update
the values of Ncells = NX × NY × NZ cells at each time
step. Without parallel computing, there is only one computing
element that updates these cells one after another. The modern
GPUs have more than Nworkers = 2500 processing elements
such that more than 2500 cells can be updated simultaneously.
In practice, the performance boost cannot approach 2500 for
several reasons: (1) the computing power of each computing
element on GPU is not as strong as the CPU, (2) reading data
from global memory of GPU to the private memory of one
computing element has a big latency. The easiest optimization
on GPU is to put the data shared by a block of processing
elements on shared memory to reduce the global accessing
latency. In the five-stencil central scheme KT algorithm, the
site information on each cell is shared 5, 9, and 13 times by its
neighbors in 1D, 2D, and 3D, respectively.

The optimal block size—denotes the number of processing
elements assigned to process one workgroup of cells, vary
between different computing devices. As shown in Table II,
we run (3 + 1)D viscous hydrodynamics with a number of
cells Ncell = 385 × 385 × 115 for 1600 time steps. Shown
in the table are the mean time for one-step update on GPU
AMD S9150 (2496 processing elements) and server CPU Intel
Xeon 2650v2 (10 cores, 20 threads). The computing time for
one-step update changes for different block sizes. For GPU
AMD S9150, the optimal block size for this task is 64 while
for the CPU Intel Xeon 2650v2, the optimal block size is 16.
Running on GPU is about six times faster than running on
a 10-core CPU with the same program. The (3 + 1)D ideal
hydrodynamics with the same parallelization is about 6.5 times
faster than the viscous version.

The performance can be further improved by using deeper
optimizations. In the 1D KT algorithm together with dimension
splitting, each lattice point needs to be loaded three times. This
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is a tradeoff between implementation difficulty and efficiency.
However, it is already much better than independent fetching
from global memory where the data on each lattice point are
reloaded 13 times.

Concurrent reading from global memory

It is shown that the 1D KT algorithm is much faster along the
ηs direction than along the x and y directions for Nx = Ny =
Nηs

= 256 grids. The ratio of computing time along these
three axes is tx : ty : tηs

= 38 : 28 : 1. There is the concurrent
reading problem, since the data are only stored continuously
in one direction. Transposing the matrix in each time step is
suggested by Ref. [127] to increase the concurrent reading.
Another way is to use the native 3D image buffer, which
provides a different storing order and constant extrapolation
for boundary cells. We did not choose image buffer because it
is read only or write only in one kernel in OpenCL versions
earlier than 2.0, and it does not support double precision.

Warp divergence. Threads in the same workgroup are
executed in warps of 32 or 64, with all the threads in one warp
executing the same instruction at the same time. If there is
if-else branching for two threads in the same warp, all the
threads in the same warp will execute the instruction under both
of the two branches. This is called warp divergence. The root
finding algorithm on each lattice cell needs different numbers
of iterations to achieve the required precision, which will bring
serious warp divergence. This should be kept in mind, but
currently there is no way to tackle this problem.

Bank conflict. On each computing unit there is one piece
of shared memory whose size is around 32–48 KB. Each
workgroup occupies one piece of shared memory, the data in
this piece of shared memory are stored in 32 banks with each
bank holding as many as 32 bits of data. For example, if we
have one float (32 bits) array A whose length is 500, the first
bank will store A[0], A[32], . . . , A[32n] and the second bank
will bank will store A[1], A[33], . . . , A[32n + 1]. If multiple
threads in the same warp read the same 32 bits of data from
one bank, the data will be read only once and broadcast to all
the requested threads, so there is no bank conflict in this case.
However, if n threads in the same warp read n different 32 bits
of data from the same bank, the operation is serialized and the
program is slowed down. This is called the n-way bank conflict.
Bank conflict is also one way to slow down the program if the
data are poorly structured. For more details of GPU parallel
computing, one can refer to Refs. [127–129].

4. Momentum sampling from Fermi–Dirac
and Bose–Einstein distributions

On the freeze-out hypersurface, the baryons obey Fermi–
Dirac distribution and mesons obey Bose–Einstein distribu-
tion. One needs to sample the momentum magnitude from
these two distribution functions. The most straightforward
method is native rejection sampling, which is not encouraged
here due to too many rejections at large momentum when the
probability is small. We introduce Pratt’s method and adaptive
rejection sampling (ARS), which are much faster to tackle this
problem.

Pratt’s method. There is a math trick to sample
momenta from the Juttner distribution function f (p) =
p2 exp[−(p2 + m2)1/2/T ]. The Fermi–Dirac distribution
function can be approximated by the Juttner distribution since
exp(m/T ) � 1, even for the lightest baryon (e.g., proton
with mass mp = 0.938 GeV and freeze-out temperature T ∼
0.2 GeV gives exp(m/T ) ≈ 90 � 1).

The Bose–Einstein distribution can be approximated
by using geometric sequence expansion with high
precision,

f (p) = p2

eE/T − 1
= p2e−E/T 1

1 − e−E/T

= p2(e−E/T + e−2E/T + e−3E/T + e−4E/T + · · · ),

where E = (p2 + m2)1/2 is the energy of one particle in the
comoving frame of fluid. The problem is simplified to sam-
pling from several Juttner distribution functions with effective
freeze-out temperatures T , T/2, T/3, T/4, ....

For massless particles whose distribution functions read
f (p) = p2e−p/T , one uses the math trick: for probability
distribution xn−1e−x , one can draw x by taking the natural log
of n random numbers x = − ln(r1r2 · · · rn) with ri uniformly
distributed between zero and one. It is easy to draw the
momentum magnitude, polar and azimuthal angles in three
dimensions, from the Juttner distribution function,

p = −T ln (r1r2r3),

cos θ = ln (r1) − ln (r2)

ln (r1) + ln (r2)
,

φ = 2π [ln (r1r2)]2

[ln (r1r2r3)]2 .

By checking the Jacobian, indeed,

dpd cos θdφ = |J | dr1dr2dr3

= 8πT

r1r2r3[ln (r1r2r3)]2 dr1dr2dr3

= 8πT

e−p/T p2/T 2
dr1dr2dr3,

and

dr1dr2dr3 = 1

8πT 3
p2e−p/T dpd cos θdφ.

For massive hadrons,

p2e−(E−μ)/T = p2e−p/T e(p−E+μ)/T .

One first draws p from p2e−p/T , then accepts
or rejects with weight function ω(p) = e(p−E)/T =
exp [p − (p2 + m2)1/2]/T . For heavy hadrons ω(p) � 1,
too many rejections slows down the sampling. Pratt introduces
a numerical trick,

p =
√

E2 − m2, dp = E/pdE, (A1)

dpp2e−E/T = dE
E

p
p2e−E/T , (A2)

= dEpEe−E/T , (A3)
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= dk
p

E
(k + m)2e−k/T e−m/T , (A4)

= dk(k + m)2e−k/T ω(p), (A5)

= dk(k2 + 2mk + m2)e−k/T ω(p), (A6)

where k = E − m and ω(p) = p
E
e−m/T are weight functions

that satisfy E − m > 0 and p/E < 1. The e−m/T and e−μ/T

terms are not important and can be discarded. The upper dis-
tribution is split into three parts and their discrete probabilities
are determined by the k integration,∫

dkk2e−k/T = 2T 3, (A7)∫
dk2mke−k/T = 2mT 2, (A8)∫
dkm2e−k/T = m2T . (A9)

By using this method, the sampled k is accepted with very high
probability p/E.

Adaptive rejection sampling. Adaptive rejection sampling
(ARS) cannot only be used to sample the Juttner, Fermi–
Dirac and boson-Einstein distribution, but also Woods–Saxon
distribution and any distribution functions that are log-concave
[h′′(x) < 0 for any x where h(x) = log f (x)]. ARS is very use-
ful in nuclear physics and high-energy physics. The philosophy
of ARS is to generate a piecewise exponential upper bound
q(x) for f (x) and refine this bound with rejected points. Notice
that q(x) ∝ exp[g(x)] is constructed from g(x), which is the
piecewise linear upper bound of log f (x)—whose existence
requires the log-concave property. The ordered change points
are z0 < z1 < z2 · · · < zn and g(x) has slope mi in (zi−1,zi).
The area under each piece of exponential segment exp[g(xi)]
is

Ai =
∫ zi

zi−1
eg(x)dx = 1

mi

(eg(zi ) − eg(zi−1)).

The first sample j from the discrete_distribution({Ai}), then
sampling x ∈ (zj−1,zj ) from the distribution function q(x) =
exp(a + mix). By inversely sampling uniform distribution r ∈
[0,1] from the cumulative probability

Q(x) =
∫ x

zi−1

q(y)dy = q(x) − q(zi−1)

q(zi) − q(zi−1)
= r,

we get x from the exponential distribution,

x = 1

mi

ln(remizi + (1 − r)emizi−1 ).

With this x we can do a rejection test: ran() < f (x)
q(x) =

exp[h(x) − g(x)]. If a point is rejected, it will be used to refine

the upper bound which will make the upper bound closer to
f (x). In the squeezing test step, a lower bound is also needed,
which we call l(x). Squeezing test is true if ran() < l(x)

q(x) . The
ARS method can be extended to arbitrary distributions by
isolating the distribution function into concave and convex
parts with different upper bounds.

5. Code structure

This section describes the software aspect of the GPU
parallelization and the code structure of CLVisc. Programming
on GPUs usually uses two levels of language: one for the host
side to read configurations, query devices, dispatch jobs to
different computing devices, and transferring data between
host and devices, the other on the device side to do the real
calculation using CUDA or OpenCL. The CLVisc is comprised
of several modules with two modules that provide examples
for both Python–OpenCL and C++–OpenCL combinations.

1. The relativistic hydrodynamic module which solves the
partial differential equations and finds the freeze-out
hypersurface uses Python for the host side and OpenCL
for the device side.

2. The smooth particle spectra calculation and resonance
decay program use C++ for the host side and OpenCL
for the device side.

3. Sampling hadrons from freeze-out hypersurface and
forcing resonance decay uses C++.

In CLVisc, the computing kernels are written in OpenCL
and the host side for fluid dynamics is in Python. Employing
python as the host side language for the main CLVisc program
has several benefits. Comparing the host side language in C++
(used in smooth spectra calculation) and that is given in Python
by PyOpenCL, we found that the Python version is much
more compact and easier to program. The built-in modules
argparse, logging, unittest together with PyOpenCL
make the host side programming in Python a much better
experience than using C++. The kernels written in OpenCL
can be directly used in a program whose host side language is
C++ without any changes. It is also much easier to connect
to the later data analysis using numpy, scipy, pandas, and
matplotlib. All the popular modern machine learning and
deep learning libraries use Python as their user interface, which
can also be easily connected to the CLVisc output.

6. Code availability

The CLVisc code is publicly available from
https://gitlab.com/snowhitiger/PyVisc. In the package, there
are example codes to run event-by-event hydrodynamics
with optical Glauber, Trento initial condition or AMPT initial
conditions.

[1] L. Adamczyk et al., Global � hyperon polarization in nu-
clear collisions: Evidence for the most vortical fluid, Nature
(London) 548, 62 (2017).

[2] P. Romatschke and U. Romatschke, Viscosity Information
from Relativistic Nuclear Collisions: How Perfect is the Fluid
Observed at RHIC? Phys. Rev. Lett. 99, 172301 (2007).

064918-22

https://gitlab.com/snowhitiger/PyVisc
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301


PSEUDORAPIDITY DISTRIBUTION AND DECORRELATION … PHYSICAL REVIEW C 97, 064918 (2018)

[3] H. Song and U. W. Heinz, Suppression of elliptic flow in a
minimally viscous quark-gluon plasma, Phys. Lett. B 658, 279
(2008).

[4] H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, 200 A

GeV Au + Au Collisions Serve a Nearly Perfect Quark-Gluon
Liquid, Phys. Rev. Lett. 106, 192301 (2011); 109, 139904(E)
(2012).

[5] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, The effects
of topological charge change in heavy ion collisions: “Event by
event P and CP violation”, Nucl. Phys. A 803, 227 (2008).

[6] C. Gale, S. Jeon, and B. Schenke, Hydrodynamic modeling
of heavy-ion collisions, Int. J. Mod. Phys. A 28, 1340011
(2013).

[7] E. Molnár, H. Holopainen, P. Huovinen, and H. Niemi, Influ-
ence of temperature-dependent shear viscosity on elliptic flow
at backward and forward rapidities in ultrarelativistic heavy-ion
collisions, Phys. Rev. C 90, 044904 (2014).

[8] H. Petersen, Anisotropic flow in transport + hydrodynamics
hybrid approaches, J. Phys. G 41, 124005 (2014).

[9] B. Alver, B. B. Back, M. D. Baker, M. Ballintijn, D. S. Barton,
R. R. Betts, R. Bindel, W. Busza, V. Chetluru, E. Garcia, T.
Gburek, J. Hamblen, U. Heinz, D. J. Hofman, R. S. Hollis,
A. Iordanova, W. Li, C. Loizides, S. Manly, A. C. Mignerey,
R. Nouicer, A. Olszewski, C. Reed, C. Roland, G. Roland,
J. Sagerer, P. Steinberg, G. S. F. Stephans, M. B. Tonjes, A.
Trzupek, G. J. van Nieuwenhuizen, S. S. Vaurynovich, R.
Verdier, G. I. Veres, P. Walters, E. Wenger, B. Wosiek, K.
Wozniak, and B. Wyslouch, Importance of correlations and
fluctuations on the initial source eccentricity in high-energy
nucleus-nucleus collisions, Phys. Rev. C 77, 014906 (2008).

[10] B. Alver and G. Roland, Collision geometry fluctuations and
triangular flow in heavy-ion collisions, Phys. Rev. C 81, 054905
(2010); 82, 039903(E) (2010).

[11] D. Teaney and L. Yan, Triangularity and dipole asymmetry in
heavy ion collisions, Phys. Rev. C 83, 064904 (2011).

[12] B. Schenke, S. Jeon, and C. Gale, Elliptic and Triangular Flow
in Event-by-Event (3 + 1)D Viscous Hydrodynamics, Phys.
Rev. Lett. 106, 042301 (2011).

[13] Z. Qiu and U. W. Heinz, Event-by-event shape and flow
fluctuations of relativistic heavy-ion collision fireballs, Phys.
Rev. C 84, 024911 (2011).

[14] B. Schenke, P. Tribedy, and R. Venugopalan, Fluctuating
Glasma Initial Conditions and Flow in Heavy Ion Collisions,
Phys. Rev. Lett. 108, 252301 (2012).

[15] H. Holopainen, H. Niemi, and K. J. Eskola, Event-by-event
hydrodynamics and elliptic flow from fluctuating initial state,
Phys. Rev. C 83, 034901 (2011).

[16] G.-Y. Qin, H. Petersen, S. A. Bass, and B. Muller, Translation
of collision geometry fluctuations into momentum anisotropies
in relativistic heavy-ion collisions, Phys. Rev. C 82, 064903
(2010).

[17] B. Schenke, P. Tribedy, and R. Venugopalan, Event-by-event
gluon multiplicity, energy density, and eccentricities in ultrarel-
ativistic heavy-ion collisions, Phys. Rev. C 86, 034908 (2012).

[18] K. Werner, Iu. Karpenko, T. Pierog, M. Bleicher, and K.
Mikhailov, Event-by-event simulation of the three-dimensional
hydrodynamic evolution from flux tube initial conditions in
ultrarelativistic heavy ion collisions, Phys. Rev. C 82, 044904
(2010).

[19] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan,
Event-by-Event Anisotropic Flow in Heavy-Ion Collisions

from Combined Yang–Mills and Viscous Fluid Dynamics,
Phys. Rev. Lett. 110, 012302 (2013).

[20] Z. Qiu and U. Heinz, Hydrodynamic event-plane correlations
in Pb + Pb collisions at

√
s = 2.76A TeV, Phys. Lett. B 717,

261 (2012).
[21] D. Teaney and L. Yan, Event-plane correlations and hydrody-

namic simulations of heavy ion collisions, Phys. Rev. C 90,
024902 (2014).

[22] G. Aad et al. (ATLAS Collaboration), Measurement of event-
plane correlations in

√
sNN = 2.76 TeV lead-lead collisions

with the ATLAS detector, Phys. Rev. C 90, 024905 (2014).
[23] H. Niemi, K. J. Eskola, and R. Paatelainen, Event-by-event

fluctuations in a perturbative QCD + saturation + hydrody-
namics model: Determining QCD matter shear viscosity in
ultrarelativistic heavy-ion collisions, Phys. Rev. C 93, 024907
(2016).

[24] J. Adam et al. (ALICE Collaboration), Correlated event-by-
event fluctuations of flow harmonics in Pb-Pb collisions at√

s
NN

= 2.76 TeV, Phys. Rev. Lett. 117, 182301 (2016).
[25] J. Qian, U. Heinz, R. He, and Lei Huo, Differential flow

correlations in relativistic heavy-ion collisions, Phys. Rev. C
95, 054908 (2017).

[26] H. Petersen, V. Bhattacharya, S. A. Bass, and C. Greiner,
Longitudinal correlation of the triangular flow event plane
in a hybrid approach with hadron and parton cascade initial
conditions, Phys. Rev. C 84, 054908 (2011).

[27] Y. Cheng, Y.-L. Yan, D.-M. Zhou, X. Cai, B.-H. Sa, and L. P.
Csernai, Longitudinal fluctuations in partonic and hadronic
initial state, Phys. Rev. C 84, 034911 (2011).

[28] K. Xiao, F. Liu, and F. Wang, Event-plane decorrelation
over pseudorapidity and its effect on azimuthal anisotropy
measurements in relativistic heavy-ion collisions, Phys. Rev.
C 87, 011901(R) (2013).

[29] L.-G. Pang, G.-Y. Qin, V. Roy, X.-N. Wang, and G.-L. Ma,
Longitudinal decorrelation of anisotropic flows in heavy-ion
collisions at the CERN Large Hadron Collider, Phys. Rev. C
91, 044904 (2015).

[30] A. Adil, M. Gyulassy, and T. Hirano, 3D jet tomography of
the twisted color glass condensate, Phys. Rev. D 73, 074006
(2006).

[31] A. Adil and M. Gyulassy, 3D jet tomography of twisted strongly
coupled quark gluon plasmas, Phys. Rev. C 72, 034907 (2005).

[32] P. Bożek, W. Broniowski, and J. Moreira, Torqued fireballs
in relativistic heavy-ion collisions, Phys. Rev. C 83, 034911
(2011).

[33] A. Dumitru, J. Jalilian-Marian, T. Lappi, B. Schenke, and R.
Venugopalan, Renormalization group evolution of multi-gluon
correlators in high energy QCD, Phys. Lett. B 706, 219 (2011).

[34] N. Borghini, P. M. Dinh, and J. Y. Ollitrault, Analysis of
directed flow from three particle correlations, Nucl. Phys. A
715, 629c (2003).

[35] A. Bzdak and D. Teaney, Longitudinal fluctuations of the
fireball density in heavy-ion collisions, Phys. Rev. C 87, 024906
(2013).

[36] S. Radhakrishnan (ATLAS Collaboration), Measurement of
two-particle pseudorapidity correlations in Pb+Pb collisions
at

√
sNN = 2.76 TeV with the ATLAS detector, Nucl. Particle

Phys. Proc. 276-278, 121 (2016).
[37] A. Monnai and B. Schenke, Pseudorapidity correlations in

heavy ion collisions from viscous fluid dynamics, Phys. Lett.
B 752, 317 (2016).

064918-23

https://doi.org/10.1016/j.physletb.2007.11.019
https://doi.org/10.1016/j.physletb.2007.11.019
https://doi.org/10.1016/j.physletb.2007.11.019
https://doi.org/10.1016/j.physletb.2007.11.019
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.109.139904
https://doi.org/10.1103/PhysRevLett.109.139904
https://doi.org/10.1103/PhysRevLett.109.139904
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1103/PhysRevC.90.044904
https://doi.org/10.1103/PhysRevC.90.044904
https://doi.org/10.1103/PhysRevC.90.044904
https://doi.org/10.1103/PhysRevC.90.044904
https://doi.org/10.1088/0954-3899/41/12/124005
https://doi.org/10.1088/0954-3899/41/12/124005
https://doi.org/10.1088/0954-3899/41/12/124005
https://doi.org/10.1088/0954-3899/41/12/124005
https://doi.org/10.1103/PhysRevC.77.014906
https://doi.org/10.1103/PhysRevC.77.014906
https://doi.org/10.1103/PhysRevC.77.014906
https://doi.org/10.1103/PhysRevC.77.014906
https://doi.org/10.1103/PhysRevC.81.054905
https://doi.org/10.1103/PhysRevC.81.054905
https://doi.org/10.1103/PhysRevC.81.054905
https://doi.org/10.1103/PhysRevC.81.054905
https://doi.org/10.1103/PhysRevC.82.039903
https://doi.org/10.1103/PhysRevC.82.039903
https://doi.org/10.1103/PhysRevC.82.039903
https://doi.org/10.1103/PhysRevC.83.064904
https://doi.org/10.1103/PhysRevC.83.064904
https://doi.org/10.1103/PhysRevC.83.064904
https://doi.org/10.1103/PhysRevC.83.064904
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevC.84.024911
https://doi.org/10.1103/PhysRevC.84.024911
https://doi.org/10.1103/PhysRevC.84.024911
https://doi.org/10.1103/PhysRevC.84.024911
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevC.83.034901
https://doi.org/10.1103/PhysRevC.83.034901
https://doi.org/10.1103/PhysRevC.83.034901
https://doi.org/10.1103/PhysRevC.83.034901
https://doi.org/10.1103/PhysRevC.82.064903
https://doi.org/10.1103/PhysRevC.82.064903
https://doi.org/10.1103/PhysRevC.82.064903
https://doi.org/10.1103/PhysRevC.82.064903
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.82.044904
https://doi.org/10.1103/PhysRevC.82.044904
https://doi.org/10.1103/PhysRevC.82.044904
https://doi.org/10.1103/PhysRevC.82.044904
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1016/j.physletb.2012.09.030
https://doi.org/10.1016/j.physletb.2012.09.030
https://doi.org/10.1016/j.physletb.2012.09.030
https://doi.org/10.1016/j.physletb.2012.09.030
https://doi.org/10.1103/PhysRevC.90.024902
https://doi.org/10.1103/PhysRevC.90.024902
https://doi.org/10.1103/PhysRevC.90.024902
https://doi.org/10.1103/PhysRevC.90.024902
https://doi.org/10.1103/PhysRevC.90.024905
https://doi.org/10.1103/PhysRevC.90.024905
https://doi.org/10.1103/PhysRevC.90.024905
https://doi.org/10.1103/PhysRevC.90.024905
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevC.95.054908
https://doi.org/10.1103/PhysRevC.95.054908
https://doi.org/10.1103/PhysRevC.95.054908
https://doi.org/10.1103/PhysRevC.95.054908
https://doi.org/10.1103/PhysRevC.84.054908
https://doi.org/10.1103/PhysRevC.84.054908
https://doi.org/10.1103/PhysRevC.84.054908
https://doi.org/10.1103/PhysRevC.84.054908
https://doi.org/10.1103/PhysRevC.84.034911
https://doi.org/10.1103/PhysRevC.84.034911
https://doi.org/10.1103/PhysRevC.84.034911
https://doi.org/10.1103/PhysRevC.84.034911
https://doi.org/10.1103/PhysRevC.87.011901
https://doi.org/10.1103/PhysRevC.87.011901
https://doi.org/10.1103/PhysRevC.87.011901
https://doi.org/10.1103/PhysRevC.87.011901
https://doi.org/10.1103/PhysRevC.91.044904
https://doi.org/10.1103/PhysRevC.91.044904
https://doi.org/10.1103/PhysRevC.91.044904
https://doi.org/10.1103/PhysRevC.91.044904
https://doi.org/10.1103/PhysRevD.73.074006
https://doi.org/10.1103/PhysRevD.73.074006
https://doi.org/10.1103/PhysRevD.73.074006
https://doi.org/10.1103/PhysRevD.73.074006
https://doi.org/10.1103/PhysRevC.72.034907
https://doi.org/10.1103/PhysRevC.72.034907
https://doi.org/10.1103/PhysRevC.72.034907
https://doi.org/10.1103/PhysRevC.72.034907
https://doi.org/10.1103/PhysRevC.83.034911
https://doi.org/10.1103/PhysRevC.83.034911
https://doi.org/10.1103/PhysRevC.83.034911
https://doi.org/10.1103/PhysRevC.83.034911
https://doi.org/10.1016/j.physletb.2011.11.002
https://doi.org/10.1016/j.physletb.2011.11.002
https://doi.org/10.1016/j.physletb.2011.11.002
https://doi.org/10.1016/j.physletb.2011.11.002
https://doi.org/10.1016/S0375-9474(02)01548-8
https://doi.org/10.1016/S0375-9474(02)01548-8
https://doi.org/10.1016/S0375-9474(02)01548-8
https://doi.org/10.1016/S0375-9474(02)01548-8
https://doi.org/10.1103/PhysRevC.87.024906
https://doi.org/10.1103/PhysRevC.87.024906
https://doi.org/10.1103/PhysRevC.87.024906
https://doi.org/10.1103/PhysRevC.87.024906
https://doi.org/10.1016/j.nuclphysbps.2016.05.024
https://doi.org/10.1016/j.nuclphysbps.2016.05.024
https://doi.org/10.1016/j.nuclphysbps.2016.05.024
https://doi.org/10.1016/j.nuclphysbps.2016.05.024
https://doi.org/10.1016/j.physletb.2015.11.063
https://doi.org/10.1016/j.physletb.2015.11.063
https://doi.org/10.1016/j.physletb.2015.11.063
https://doi.org/10.1016/j.physletb.2015.11.063


LONG-GANG PANG, HANNAH PETERSEN, AND XIN-NIAN WANG PHYSICAL REVIEW C 97, 064918 (2018)

[38] P. Bożek, W. Broniowski, and A. Olszewski, Two-particle
correlations in pseudorapidity in a hydrodynamic model, Phys.
Rev. C 92, 054913 (2015).

[39] P. Huo, J. Jia, and S. Mohapatra, Elucidating the event-by-event
flow fluctuations in heavy-ion collisions via the event-shape
selection technique, Phys. Rev. C 90, 024910 (2014).

[40] J. Jia and P. Huo, Forward-backward eccentricity and
participant-plane angle fluctuations and their influences on
longitudinal dynamics of collective flow, Phys. Rev. C 90,
034915 (2014).

[41] L. P. Csernai and H. Stöcker, Global collective flow in heavy
ion reactions from the beginnings to the future, J. Phys. G 41,
124001 (2014).

[42] V. Khachatryan et al. (CMS Collaboration), Evidence for
transverse momentum and pseudorapidity dependent event
plane fluctuations in PbPb and pPb collisions, Phys. Rev. C
92, 034911 (2015).

[43] P. Bożek and W. Broniowski, Longitudinal decorrelation mea-
sures of flow magnitude and event-plane angles in ultra-
relativistic nuclear collisions, Phys. Rev. C 97, 034913
(2018).

[44] M. Aaboud et al. (ATLAS Collaboration), Measurement of lon-
gitudinal flow decorrelations in Pb + Pb collisions at

√
sNN =

2.76 and 5.02 TeV with the ATLAS detector, Eur. Phys. J. C
78, 142 (2018).

[45] Z.-T. Liang and X.-N. Wang, Globally Polarized Quark-Gluon
Plasma in Noncentral A + A Collisions, Phys. Rev. Lett. 94,
102301 (2005); 96, 039901(E) (2006).

[46] F.-M. Liu and K. Werner, Direct Photons at Low Transverse
Momentum: A Signal for Quark-Gluon Plasma inpp Collisions
at LHC, Phys. Rev. Lett. 106, 242301 (2011).

[47] H.-j. Xu, L. Pang, and Q. Wang, Elliptic flow of thermal
dileptons in event-by-event hydrodynamic simulation, Phys.
Rev. C 89, 064902 (2014).

[48] C. Shen, U. W. Heinz, J.-F. Paquet, and C. Gale, Thermal
photons as a quark-gluon plasma thermometer reexamined,
Phys. Rev. C 89, 044910 (2014).

[49] W. Chen, S. Cao, T. Luo, L.-G. Pang, and X.-N. Wang, Effects
of jet-induced medium excitation in γ -hadron correlation in
A + A collisions, Phys. Lett. B 777, 86 (2018).

[50] S. Cao et al. (The JETSCAPE Collaboration), Multistage
Monte-Carlo simulation of jet modification in a static medium,
Phys. Rev. C 96, 024909 (2017).

[51] S. Pratt, E. Sangaline, P. Sorensen, and H. Wang, Constraining
the Equation of State of Superhadronic Matter from Heavy-Ion
Collisions, Phys. Rev. Lett. 114, 202301 (2015).

[52] J. E. Bernhard, P. W. Marcy, C. E. Coleman-Smith, S.
Huzurbazar, R. L. Wolpert, and S. A. Bass, Quantifying
properties of hot and dense QCD matter through systematic
model-to-data comparison, Phys. Rev. C 91, 054910 (2015).

[53] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz,
Applying Bayesian parameter estimation to relativistic heavy-
ion collisions: Simultaneous characterization of the initial state
and quark-gluon plasma medium, Phys. Rev. C 94, 024907
(2016).

[54] L.-G. Pang, K. Zhou, N. Su, H. Petersen, H. Stöcker, and X.-N.
Wang, An equation-of-state-meter of quantum chromodynam-
ics transition from deep learning, Nat. Commun 9, 210 (2018).

[55] B. Schenke, S. Jeon, and C. Gale, (3+1)D hydrodynamic
simulation of relativistic heavy-ion collisions, Phys. Rev. C
82, 014903 (2010).

[56] J.-F. Paquet, C. Shen, G. S. Denicol, M. Luzum, B. Schenke, S.
Jeon, and C. Gale, Production of photons in relativistic heavy-
ion collisions, Phys. Rev. C 93, 044906 (2016).

[57] J. Gerhard, V. Lindenstruth, and M. Bleicher, Relativistic
hydrodynamics on graphic cards, Comput. Phys. Commun.
184, 311 (2013).

[58] L.-G. Pang, Y. Hatta, X.-N. Wang, and B.-W. Xiao, Analytical
and numerical Gubser solutions of the second-order hydrody-
namics, Phys. Rev. D 91, 074027 (2015).

[59] D. Bazow, U. W. Heinz, and M. Strickland, Massively parallel
simulations of relativistic fluid dynamics on graphics process-
ing units with CUDA, Comput. Phys. Commun. 225, 92 (2018).

[60] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, A
Multiphase transport model for relativistic heavy ion collisions,
Phys. Rev. C 72, 064901 (2005).

[61] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A.
Stephanov, Relativistic viscous hydrodynamics, conformal
invariance, and holography, J. High Energy Phys. 04 (2008)
100.

[62] H. Song and U. W. Heinz, Multiplicity scaling in ideal and
viscous hydrodynamics, Phys. Rev. C 78, 024902 (2008).

[63] T. Hirano, Is early thermalization achieved only near midrapid-
ity in Au + Au collisions at

√
sNN = 130 GeV? Phys. Rev. C

65, 011901(R) (2001).
[64] L. Pang, Q. Wang, and X.-N. Wang, Effects of initial flow ve-

locity fluctuation in event-by-event (3 + 1)D hydrodynamics,
Phys. Rev. C 86, 024911 (2012).

[65] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz,
The iEBE-VISHNU code package for relativistic heavy-ion
collisions, Comput. Phys. Commun. 199, 61 (2016).

[66] Iu. Karpenko, P. Huovinen, and M. Bleicher, A 3 + 1 dimen-
sional viscous hydrodynamic code for relativistic heavy ion
collisions, Comput. Phys. Commun. 185, 3016 (2014).

[67] A. Kurganov and E. Tadmor, New high-resolution central
schemes for nonlinear conservation laws and convection-
diffusion equations, J. Comput. Phys. 160, 241 (2000).

[68] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,
Glauber modeling in high energy nuclear collisions, Annu. Rev.
Nucl. Part. Sci. 57, 205 (2007).

[69] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey, and Y. Nara,
Hadronic dissipative effects on elliptic flow in ultrarelativistic
heavy-ion collisions, Phys. Lett. B 636, 299 (2006).

[70] D. Kharzeev and M. Nardi, Hadron production in nuclear
collisions at RHIC and high density QCD, Phys. Lett. B 507,
121 (2001).

[71] D. Kharzeev, E. Levin, and M. Nardi, QCD saturation and
deuteron nucleus collisions, Nucl. Phys. A 730, 448 (2004);
743, 329(E) (2004).

[72] T. Hirano and Y. Nara, Hydrodynamic afterburner for the color
glass condensate and the parton energy loss, Nucl. Phys. A 743,
305 (2004).

[73] H. J. Drescher and Y. Nara, Effects of fluctuations on the
initial eccentricity from the color glass condensate in heavy
ion collisions, Phys. Rev. C 75, 034905 (2007).

[74] T. Lappi and R. Venugopalan, Universality of the saturation
scale and the initial eccentricity in heavy ion collisions, Phys.
Rev. C 74, 054905 (2006).

[75] K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and K. Tuominen,
Scaling of transverse energies and multiplicities with atomic
number and energy in ultrarelativistic nuclear collisions, Nucl.
Phys. B 570, 379 (2000).

064918-24

https://doi.org/10.1103/PhysRevC.92.054913
https://doi.org/10.1103/PhysRevC.92.054913
https://doi.org/10.1103/PhysRevC.92.054913
https://doi.org/10.1103/PhysRevC.92.054913
https://doi.org/10.1103/PhysRevC.90.024910
https://doi.org/10.1103/PhysRevC.90.024910
https://doi.org/10.1103/PhysRevC.90.024910
https://doi.org/10.1103/PhysRevC.90.024910
https://doi.org/10.1103/PhysRevC.90.034915
https://doi.org/10.1103/PhysRevC.90.034915
https://doi.org/10.1103/PhysRevC.90.034915
https://doi.org/10.1103/PhysRevC.90.034915
https://doi.org/10.1088/0954-3899/41/12/124001
https://doi.org/10.1088/0954-3899/41/12/124001
https://doi.org/10.1088/0954-3899/41/12/124001
https://doi.org/10.1088/0954-3899/41/12/124001
https://doi.org/10.1103/PhysRevC.92.034911
https://doi.org/10.1103/PhysRevC.92.034911
https://doi.org/10.1103/PhysRevC.92.034911
https://doi.org/10.1103/PhysRevC.92.034911
https://doi.org/10.1103/PhysRevC.97.034913
https://doi.org/10.1103/PhysRevC.97.034913
https://doi.org/10.1103/PhysRevC.97.034913
https://doi.org/10.1103/PhysRevC.97.034913
https://doi.org/10.1140/epjc/s10052-018-5605-7
https://doi.org/10.1140/epjc/s10052-018-5605-7
https://doi.org/10.1140/epjc/s10052-018-5605-7
https://doi.org/10.1140/epjc/s10052-018-5605-7
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.96.039901
https://doi.org/10.1103/PhysRevLett.96.039901
https://doi.org/10.1103/PhysRevLett.96.039901
https://doi.org/10.1103/PhysRevLett.106.242301
https://doi.org/10.1103/PhysRevLett.106.242301
https://doi.org/10.1103/PhysRevLett.106.242301
https://doi.org/10.1103/PhysRevLett.106.242301
https://doi.org/10.1103/PhysRevC.89.064902
https://doi.org/10.1103/PhysRevC.89.064902
https://doi.org/10.1103/PhysRevC.89.064902
https://doi.org/10.1103/PhysRevC.89.064902
https://doi.org/10.1103/PhysRevC.89.044910
https://doi.org/10.1103/PhysRevC.89.044910
https://doi.org/10.1103/PhysRevC.89.044910
https://doi.org/10.1103/PhysRevC.89.044910
https://doi.org/10.1016/j.physletb.2017.12.015
https://doi.org/10.1016/j.physletb.2017.12.015
https://doi.org/10.1016/j.physletb.2017.12.015
https://doi.org/10.1016/j.physletb.2017.12.015
https://doi.org/10.1103/PhysRevC.96.024909
https://doi.org/10.1103/PhysRevC.96.024909
https://doi.org/10.1103/PhysRevC.96.024909
https://doi.org/10.1103/PhysRevC.96.024909
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevC.91.054910
https://doi.org/10.1103/PhysRevC.91.054910
https://doi.org/10.1103/PhysRevC.91.054910
https://doi.org/10.1103/PhysRevC.91.054910
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1038/s41467-017-02726-3
https://doi.org/10.1038/s41467-017-02726-3
https://doi.org/10.1038/s41467-017-02726-3
https://doi.org/10.1038/s41467-017-02726-3
https://doi.org/10.1103/PhysRevC.82.014903
https://doi.org/10.1103/PhysRevC.82.014903
https://doi.org/10.1103/PhysRevC.82.014903
https://doi.org/10.1103/PhysRevC.82.014903
https://doi.org/10.1103/PhysRevC.93.044906
https://doi.org/10.1103/PhysRevC.93.044906
https://doi.org/10.1103/PhysRevC.93.044906
https://doi.org/10.1103/PhysRevC.93.044906
https://doi.org/10.1016/j.cpc.2012.09.013
https://doi.org/10.1016/j.cpc.2012.09.013
https://doi.org/10.1016/j.cpc.2012.09.013
https://doi.org/10.1016/j.cpc.2012.09.013
https://doi.org/10.1103/PhysRevD.91.074027
https://doi.org/10.1103/PhysRevD.91.074027
https://doi.org/10.1103/PhysRevD.91.074027
https://doi.org/10.1103/PhysRevD.91.074027
https://doi.org/10.1016/j.cpc.2017.01.015
https://doi.org/10.1016/j.cpc.2017.01.015
https://doi.org/10.1016/j.cpc.2017.01.015
https://doi.org/10.1016/j.cpc.2017.01.015
https://doi.org/10.1103/PhysRevC.72.064901
https://doi.org/10.1103/PhysRevC.72.064901
https://doi.org/10.1103/PhysRevC.72.064901
https://doi.org/10.1103/PhysRevC.72.064901
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1103/PhysRevC.78.024902
https://doi.org/10.1103/PhysRevC.78.024902
https://doi.org/10.1103/PhysRevC.78.024902
https://doi.org/10.1103/PhysRevC.78.024902
https://doi.org/10.1103/PhysRevC.65.011901
https://doi.org/10.1103/PhysRevC.65.011901
https://doi.org/10.1103/PhysRevC.65.011901
https://doi.org/10.1103/PhysRevC.65.011901
https://doi.org/10.1103/PhysRevC.86.024911
https://doi.org/10.1103/PhysRevC.86.024911
https://doi.org/10.1103/PhysRevC.86.024911
https://doi.org/10.1103/PhysRevC.86.024911
https://doi.org/10.1016/j.cpc.2015.08.039
https://doi.org/10.1016/j.cpc.2015.08.039
https://doi.org/10.1016/j.cpc.2015.08.039
https://doi.org/10.1016/j.cpc.2015.08.039
https://doi.org/10.1016/j.cpc.2014.07.010
https://doi.org/10.1016/j.cpc.2014.07.010
https://doi.org/10.1016/j.cpc.2014.07.010
https://doi.org/10.1016/j.cpc.2014.07.010
https://doi.org/10.1006/jcph.2000.6459
https://doi.org/10.1006/jcph.2000.6459
https://doi.org/10.1006/jcph.2000.6459
https://doi.org/10.1006/jcph.2000.6459
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1016/j.physletb.2006.03.060
https://doi.org/10.1016/j.physletb.2006.03.060
https://doi.org/10.1016/j.physletb.2006.03.060
https://doi.org/10.1016/j.physletb.2006.03.060
https://doi.org/10.1016/S0370-2693(01)00457-9
https://doi.org/10.1016/S0370-2693(01)00457-9
https://doi.org/10.1016/S0370-2693(01)00457-9
https://doi.org/10.1016/S0370-2693(01)00457-9
https://doi.org/10.1016/j.nuclphysa.2003.08.031
https://doi.org/10.1016/j.nuclphysa.2003.08.031
https://doi.org/10.1016/j.nuclphysa.2003.08.031
https://doi.org/10.1016/j.nuclphysa.2003.08.031
https://doi.org/10.1016/j.nuclphysa.2004.06.022
https://doi.org/10.1016/j.nuclphysa.2004.06.022
https://doi.org/10.1016/j.nuclphysa.2004.06.022
https://doi.org/10.1016/j.nuclphysa.2004.08.003
https://doi.org/10.1016/j.nuclphysa.2004.08.003
https://doi.org/10.1016/j.nuclphysa.2004.08.003
https://doi.org/10.1016/j.nuclphysa.2004.08.003
https://doi.org/10.1103/PhysRevC.75.034905
https://doi.org/10.1103/PhysRevC.75.034905
https://doi.org/10.1103/PhysRevC.75.034905
https://doi.org/10.1103/PhysRevC.75.034905
https://doi.org/10.1103/PhysRevC.74.054905
https://doi.org/10.1103/PhysRevC.74.054905
https://doi.org/10.1103/PhysRevC.74.054905
https://doi.org/10.1103/PhysRevC.74.054905
https://doi.org/10.1016/S0550-3213(99)00720-8
https://doi.org/10.1016/S0550-3213(99)00720-8
https://doi.org/10.1016/S0550-3213(99)00720-8
https://doi.org/10.1016/S0550-3213(99)00720-8


PSEUDORAPIDITY DISTRIBUTION AND DECORRELATION … PHYSICAL REVIEW C 97, 064918 (2018)

[76] R. Paatelainen, K. J. Eskola, H. Holopainen, and K. Tuominen,
Multiplicities and pT spectra in ultrarelativistic heavy ion
collisions from a next-to-leading order improved perturbative
QCD + saturation + hydrodynamics model, Phys. Rev. C 87,
044904 (2013).

[77] K. J. Eskola, H. Niemi, R. Paatelainen, and K. Tuominen, Latest
results from the EbyE NLO EKRT model, Nucl. Phys. A 967,
313 (2017).

[78] L.-G. Pang, H. Petersen, G.-Y. Qin, V. Roy, and X.-N. Wang,
Decorrelation of anisotropic flow along the longitudinal direc-
tion, Eur. Phys. J. A 52, 971 (2016).

[79] L. Pang, Q. Wang, and X.-N. Wang, Relics of minijets amid
anisotropic flows in high-energy heavy-ion collisions, Phys.
Rev. C 89, 064910 (2014).

[80] L.-G. Pang, H. Petersen, Q. Wang, and X.-N. Wang, Vortical
Fluid and � Spin Correlations in High-Energy Heavy-Ion
Collisions, Phys. Rev. Lett. 117, 192301 (2016).

[81] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and
K. K. Szabó, Full result for the QCD equation of state with
2 + 1 flavors, Phys. Lett. B 730, 99 (2014).

[82] P. Huovinen and P. Petreczky, QCD equation of state and hadron
resonance gas, Nucl. Phys. A 837, 26 (2010).

[83] J. Sollfrank, P. Huovinen, M. Kataja, P. V. Ruuskanen, M.
Prakash, and R. Venugopalan, Hydrodynamical description of
200A GeV/c S+Au collisions: Hadron and electromagnetic
spectra, Phys. Rev. C 55, 392 (1997).

[84] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M.
Lutgemeier, and B. Petersson, Equation of State for the SU(3)
Gauge Theory, Phys. Rev. Lett. 75, 4169 (1995).

[85] Sz. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabó,
Precision SU(3) lattice thermodynamics for a large temperature
range, J. High Energy Phys. 07 (2012) 056.

[86] V. Vovchenko, L.-G. Pang, H. Niemi, Iu. A. Karpenko, M. I.
Gorenstein, L. M. Satarov, I. N. Mishustin, B. Kämpfer, and
H. Stoecker, Hydrodynamic modeling of a pure-glue initial
scenario in high-energy hadron and heavy-ion collisions, PoS
BORMIO 2016, 039 (2016).

[87] F. Cooper and G. Frye, Comment on the single particle
distribution in the hydrodynamic and statistical thermodynamic
models of multiparticle production, Phys. Rev. D 10, 186
(1974).

[88] S. A. Bass et al., Microscopic models for ultrarelativistic heavy
ion collisions, Prog. Part. Nucl. Phys. 41, 255 (1998).

[89] M. Bleicher et al., Relativistic hadron hadron collisions in the
ultrarelativistic quantum molecular dynamics model, J. Phys.
G 25, 1859 (1999).

[90] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H.
Stocker, A fully integrated transport approach to heavy ion
reactions with an intermediate hydrodynamic stage, Phys. Rev.
C 78, 044901 (2008).

[91] Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Rela-
tivistic nuclear collisions at 10A GeV energies from p + Be to
Au + Au with the hadronic cascade model, Phys. Rev. C 61,
024901 (1999).

[92] J. Weil et al., Particle production and equilibrium properties
within a new hadron transport approach for heavy-ion colli-
sions, Phys. Rev. C 94, 054905 (2016).

[93] C. Schwarz, D. Oliinychenko, L. G. Pang, S. Ryu, and H.
Petersen, Different realizations of Cooper-Frye sampling with
conservation laws, J. Phys. G 45, 015001 (2018).

[94] Y. Akamatsu, Shu-ichiro Inutsuka, C. Nonaka, and M.
Takamoto, A new scheme of causal viscous hydrodynamics
for relativistic heavy-ion collisions: A Riemann solver for
quark-gluon plasma, J. Comput. Phys. 256, 34 (2014).

[95] I. Bouras, E. Molnár, H. Niemi, Z. Xu, A. El, O. Fochler,
C. Greiner, and D. H. Rischke, Relativistic Shock Waves
in Viscous Gluon Matter, Phys. Rev. Lett. 103, 032301
(2009).

[96] I. Bouras, E. Molnár, H. Niemi, Z. Xu, A. El, O. Fochler, C.
Greiner, and D. H. Rischke, Investigation of shock waves in the
relativistic Riemann problem: A Comparison of viscous fluid
dynamics to kinetic theory, Phys. Rev. C 82, 024910 (2010).

[97] D. H. Rischke, S. Bernard, and J. A. Maruhn, Relativistic
hydrodynamics for heavy ion collisions. I. General aspects and
expansion into vacuum, Nucl. Phys. A 595, 346 (1995).

[98] J. D. Bjorken, Highly relativistic nucleus-nucleus collisions:
The central rapidity region, Phys. Rev. D 27, 140 (1983).

[99] S. S. Gubser, Symmetry constraints on generalizations of
Bjorken flow, Phys. Rev. D 82, 085027 (2010).

[100] T. S. Biro, Generating new solutions for relativistic transverse
flow at the softest point, Phys. Lett. B 487, 133 (2000).

[101] T. Csörgõ, L. P. Csernai, Y. Hama, and T. Kodama, Simple solu-
tions of relativistic hydrodynamics for systems with ellipsoidal
symmetry, Acta Phys. Hung. New Ser.: Heavy Ion Phys. 21, 73
(2004).

[102] M. I. Nagy, T. Csörgõ, and M. Csanád, Detailed description
of accelerating, simple solutions of relativistic perfect fluid
hydrodynamics, Phys. Rev. C 77, 024908 (2008).

[103] M. S. Borshch and V. I. Zhdanov, Exact solutions of the
equations of relativistic hydrodynamics representing potential
flows, SIGMA 3, 116 (2007).

[104] G. Beuf, R. Peschanski, and E. N. Saridakis, Entropy flow of
a perfect fluid in (1 + 1) hydrodynamics, Phys. Rev. C 78,
064909 (2008).

[105] S. Lin and J. Liao, On analytic solutions of (1+3)D relativis-
tic ideal hydrodynamic equations, Nucl. Phys. A 837, 195
(2010).

[106] R. Peschanski and E. N. Saridakis, On an exact hydrody-
namic solution for the elliptic flow, Phys. Rev. C 80, 024907
(2009).

[107] T. Csörgõ and M. I. Nagy, New family of exact and rotating
solutions of fireball hydrodynamics, Phys. Rev. C 89, 044901
(2014).

[108] C.-Y. Wong, A. Sen, J. Gerhard, G. Torrieri, and K. Read,
Analytical solutions of Landau (1 + 1)-dimensional hydrody-
namics, Phys. Rev. C 90, 064907 (2014).

[109] Y. Hatta and B.-W. Xiao, Building up the elliptic flow: analyt-
ical insights, Phys. Lett. B 736, 180 (2014).

[110] Y. Hatta, J. Noronha, and B.-W. Xiao, A systematic study
of exact solutions in second-order conformal hydrodynamics,
Phys. Rev. D 89, 114011 (2014).

[111] M. Csanád and A. Szabó, Multipole solution of hydrodynam-
ics and higher order harmonics, Phys. Rev. C 90, 054911
(2014).

[112] Y. Hatta, B.-W. Xiao, and D.-L. Yang, Non-boost-invariant
solution of relativistic hydrodynamics in 1 + 3 dimensions,
Phys. Rev. D 93, 016012 (2016).

[113] P. Shi and D.-L. Yang, Analytic solutions of transverse
magneto-hydrodynamics under Bjorken expansion, EPJ Web
Conf. 137, 13021 (2017).

064918-25

https://doi.org/10.1103/PhysRevC.87.044904
https://doi.org/10.1103/PhysRevC.87.044904
https://doi.org/10.1103/PhysRevC.87.044904
https://doi.org/10.1103/PhysRevC.87.044904
https://doi.org/10.1016/j.nuclphysa.2017.04.038
https://doi.org/10.1016/j.nuclphysa.2017.04.038
https://doi.org/10.1016/j.nuclphysa.2017.04.038
https://doi.org/10.1016/j.nuclphysa.2017.04.038
https://doi.org/10.1140/epja/i2016-16097-x
https://doi.org/10.1140/epja/i2016-16097-x
https://doi.org/10.1140/epja/i2016-16097-x
https://doi.org/10.1140/epja/i2016-16097-x
https://doi.org/10.1103/PhysRevC.89.064910
https://doi.org/10.1103/PhysRevC.89.064910
https://doi.org/10.1103/PhysRevC.89.064910
https://doi.org/10.1103/PhysRevC.89.064910
https://doi.org/10.1103/PhysRevLett.117.192301
https://doi.org/10.1103/PhysRevLett.117.192301
https://doi.org/10.1103/PhysRevLett.117.192301
https://doi.org/10.1103/PhysRevLett.117.192301
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1103/PhysRevC.55.392
https://doi.org/10.1103/PhysRevC.55.392
https://doi.org/10.1103/PhysRevC.55.392
https://doi.org/10.1103/PhysRevC.55.392
https://doi.org/10.1103/PhysRevLett.75.4169
https://doi.org/10.1103/PhysRevLett.75.4169
https://doi.org/10.1103/PhysRevLett.75.4169
https://doi.org/10.1103/PhysRevLett.75.4169
https://doi.org/10.1007/JHEP07(2012)056
https://doi.org/10.1007/JHEP07(2012)056
https://doi.org/10.1007/JHEP07(2012)056
https://doi.org/10.1007/JHEP07(2012)056
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1088/1361-6471/aa90eb
https://doi.org/10.1088/1361-6471/aa90eb
https://doi.org/10.1088/1361-6471/aa90eb
https://doi.org/10.1088/1361-6471/aa90eb
https://doi.org/10.1016/j.jcp.2013.08.047
https://doi.org/10.1016/j.jcp.2013.08.047
https://doi.org/10.1016/j.jcp.2013.08.047
https://doi.org/10.1016/j.jcp.2013.08.047
https://doi.org/10.1103/PhysRevLett.103.032301
https://doi.org/10.1103/PhysRevLett.103.032301
https://doi.org/10.1103/PhysRevLett.103.032301
https://doi.org/10.1103/PhysRevLett.103.032301
https://doi.org/10.1103/PhysRevC.82.024910
https://doi.org/10.1103/PhysRevC.82.024910
https://doi.org/10.1103/PhysRevC.82.024910
https://doi.org/10.1103/PhysRevC.82.024910
https://doi.org/10.1016/0375-9474(95)00355-1
https://doi.org/10.1016/0375-9474(95)00355-1
https://doi.org/10.1016/0375-9474(95)00355-1
https://doi.org/10.1016/0375-9474(95)00355-1
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1016/S0370-2693(00)00791-7
https://doi.org/10.1016/S0370-2693(00)00791-7
https://doi.org/10.1016/S0370-2693(00)00791-7
https://doi.org/10.1016/S0370-2693(00)00791-7
https://doi.org/10.1556/APH.21.2004.1.8
https://doi.org/10.1556/APH.21.2004.1.8
https://doi.org/10.1556/APH.21.2004.1.8
https://doi.org/10.1556/APH.21.2004.1.8
https://doi.org/10.1103/PhysRevC.77.024908
https://doi.org/10.1103/PhysRevC.77.024908
https://doi.org/10.1103/PhysRevC.77.024908
https://doi.org/10.1103/PhysRevC.77.024908
https://doi.org/10.3842/SIGMA.2007.116
https://doi.org/10.3842/SIGMA.2007.116
https://doi.org/10.3842/SIGMA.2007.116
https://doi.org/10.3842/SIGMA.2007.116
https://doi.org/10.1103/PhysRevC.78.064909
https://doi.org/10.1103/PhysRevC.78.064909
https://doi.org/10.1103/PhysRevC.78.064909
https://doi.org/10.1103/PhysRevC.78.064909
https://doi.org/10.1016/j.nuclphysa.2010.02.011
https://doi.org/10.1016/j.nuclphysa.2010.02.011
https://doi.org/10.1016/j.nuclphysa.2010.02.011
https://doi.org/10.1016/j.nuclphysa.2010.02.011
https://doi.org/10.1103/PhysRevC.80.024907
https://doi.org/10.1103/PhysRevC.80.024907
https://doi.org/10.1103/PhysRevC.80.024907
https://doi.org/10.1103/PhysRevC.80.024907
https://doi.org/10.1103/PhysRevC.89.044901
https://doi.org/10.1103/PhysRevC.89.044901
https://doi.org/10.1103/PhysRevC.89.044901
https://doi.org/10.1103/PhysRevC.89.044901
https://doi.org/10.1103/PhysRevC.90.064907
https://doi.org/10.1103/PhysRevC.90.064907
https://doi.org/10.1103/PhysRevC.90.064907
https://doi.org/10.1103/PhysRevC.90.064907
https://doi.org/10.1016/j.physletb.2014.07.017
https://doi.org/10.1016/j.physletb.2014.07.017
https://doi.org/10.1016/j.physletb.2014.07.017
https://doi.org/10.1016/j.physletb.2014.07.017
https://doi.org/10.1103/PhysRevD.89.114011
https://doi.org/10.1103/PhysRevD.89.114011
https://doi.org/10.1103/PhysRevD.89.114011
https://doi.org/10.1103/PhysRevD.89.114011
https://doi.org/10.1103/PhysRevC.90.054911
https://doi.org/10.1103/PhysRevC.90.054911
https://doi.org/10.1103/PhysRevC.90.054911
https://doi.org/10.1103/PhysRevC.90.054911
https://doi.org/10.1103/PhysRevD.93.016012
https://doi.org/10.1103/PhysRevD.93.016012
https://doi.org/10.1103/PhysRevD.93.016012
https://doi.org/10.1103/PhysRevD.93.016012
https://doi.org/10.1051/epjconf/201713713021
https://doi.org/10.1051/epjconf/201713713021
https://doi.org/10.1051/epjconf/201713713021
https://doi.org/10.1051/epjconf/201713713021


LONG-GANG PANG, HANNAH PETERSEN, AND XIN-NIAN WANG PHYSICAL REVIEW C 97, 064918 (2018)

[114] https://wiki.bnl.gov/TECHQM/index.php/Momentum
_anisotropies

[115] H. Song, S. A. Bass, and U. Heinz, Viscous QCD matter in a
hybrid hydrodynamic+Boltzmann approach, Phys. Rev. C 83,
024912 (2011).

[116] E. Abbas et al., Centrality dependence of the pseudorapidity
density distribution for charged particles in Pb-Pb collisions at√

sNN = 2.76 TeV, Phys. Lett. B 726, 610 (2013).
[117] J. Adam et al. (ALICE Collaboration), Centrality dependence

of the nuclear modification factor of charged pions, kaons, and
protons in Pb-Pb collisions at

√
sNN = 2.76 TeV, Phys. Rev.

C 93, 034913 (2016).
[118] P. Huovinen, P. M. Lo, M. Marczenko, K. Morita, K. Redlich,

and C. Sasaki, Effects of rho-meson width on pion dis-
tributions in heavy-ion collisions, Phys. Lett. B 769, 509
(2017).

[119] J. Adam et al., Higher harmonic flow coefficients of identified
hadrons in Pb-Pb collisions at

√
sNN = 2.76 TeV, J. High

Energy Phys. 09 (2016) 164.
[120] J. Adam et al., Pseudorapidity dependence of the anisotropic

flow of charged particles in Pb-Pb collisions at
√

sNN =
2.76 TeV, Phys. Lett. B 762, 376 (2016).

[121] G. Denicol, A. Monnai, and B. Schenke, Moving Forward to
Constrain the Shear Viscosity of QCD Matter, Phys. Rev. Lett.
116, 212301 (2016).

[122] C. Nonaka and S. A. Bass, Space-time evolution of bulk QCD
matter, Phys. Rev. C 75, 014902 (2007).

[123] J. Kapusta and M. Li, High baryon densities achievable in the
fragmentation regions at RHIC and LHC, J. Phys.: Conf. Ser.
779, 012077 (2017).

[124] The preliminary STAR experimental data on longitudinal
decorrelation at Au + Au 200 GeV collisions is from private
communications with Maowu Nie, Jiangyong Jia, and Guoliang
Ma (2018).

[125] L.-G. Pang, H. Petersen, and X.-N. Wang, Longitudi-
nal decorrelation from CLVisc for Pb-Pb 2760 GeV and
Au-Au 200 GeV relativistic heavy-ion collisions (2018),
doi:10.6084/m9.figshare.6207584.v1.

[126] S. Ryu, S. Jeon, C. Gale, B. Schenke, and C. Young, MUSIC
with the UrQMD afterburner, Nucl. Phys. A 904-905, 389c
(2013).

[127] A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, and D.
Ginsburg, OpenCL Programming Guide (Addison-Wesley Pro-
fessional, Boston, Massachusetts, USA, 2011).

[128] M. Scarpino, OpenCL in Action: How to Accelerate Graphics
and Computations (Manning Publications, Shelter Island, New
York, USA, 2011).

[129] J. E. Stone, D. Gohara, and G. Shi, OpenCL: A parallel
programming standard for heterogeneous computing systems,
Comput. Sci. Eng. 12, 66 (2010).

064918-26

https://wiki.bnl.gov/TECHQM/index.php/Momentum_anisotropies
https://doi.org/10.1103/PhysRevC.83.024912
https://doi.org/10.1103/PhysRevC.83.024912
https://doi.org/10.1103/PhysRevC.83.024912
https://doi.org/10.1103/PhysRevC.83.024912
https://doi.org/10.1016/j.physletb.2013.09.022
https://doi.org/10.1016/j.physletb.2013.09.022
https://doi.org/10.1016/j.physletb.2013.09.022
https://doi.org/10.1016/j.physletb.2013.09.022
https://doi.org/10.1103/PhysRevC.93.034913
https://doi.org/10.1103/PhysRevC.93.034913
https://doi.org/10.1103/PhysRevC.93.034913
https://doi.org/10.1103/PhysRevC.93.034913
https://doi.org/10.1016/j.physletb.2017.03.060
https://doi.org/10.1016/j.physletb.2017.03.060
https://doi.org/10.1016/j.physletb.2017.03.060
https://doi.org/10.1016/j.physletb.2017.03.060
https://doi.org/10.1007/JHEP09(2016)164
https://doi.org/10.1007/JHEP09(2016)164
https://doi.org/10.1007/JHEP09(2016)164
https://doi.org/10.1007/JHEP09(2016)164
https://doi.org/10.1016/j.physletb.2016.07.017
https://doi.org/10.1016/j.physletb.2016.07.017
https://doi.org/10.1016/j.physletb.2016.07.017
https://doi.org/10.1016/j.physletb.2016.07.017
https://doi.org/10.1103/PhysRevLett.116.212301
https://doi.org/10.1103/PhysRevLett.116.212301
https://doi.org/10.1103/PhysRevLett.116.212301
https://doi.org/10.1103/PhysRevLett.116.212301
https://doi.org/10.1103/PhysRevC.75.014902
https://doi.org/10.1103/PhysRevC.75.014902
https://doi.org/10.1103/PhysRevC.75.014902
https://doi.org/10.1103/PhysRevC.75.014902
https://doi.org/10.1088/1742-6596/779/1/012077
https://doi.org/10.1088/1742-6596/779/1/012077
https://doi.org/10.1088/1742-6596/779/1/012077
https://doi.org/10.1088/1742-6596/779/1/012077
https://doi.org/10.6084/m9.figshare.6207584.v1
https://doi.org/10.1016/j.nuclphysa.2013.02.031
https://doi.org/10.1016/j.nuclphysa.2013.02.031
https://doi.org/10.1016/j.nuclphysa.2013.02.031
https://doi.org/10.1016/j.nuclphysa.2013.02.031
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69



