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Radiative heavy quark energy loss in an expanding viscous QCD plasma
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We study viscous effects on heavy quark radiative energy loss in a dynamically screened medium with boost-
invariant longitudinal expansion. We calculate, to first order in opacity, the energy loss by incorporating viscous
corrections in the single-particle phase-space distribution function within relativistic dissipative hydrodynamics.
We consider Grad’s 14-moment and the Chapman-Enskog-like methods for the nonequilibrium distribution
functions. Our numerical results for the charm quark radiative energy loss show that, as compared to an expanding
ideal (nonviscous) fluid, viscosity in the evolution leads to somewhat enhanced energy loss which is rather
insensitive to the underlying viscous hydrodynamic models used. Further inclusion of a viscous correction induces
larger energy loss, and the magnitude and pattern of this enhancement crucially depend on the form of viscous
corrections used.
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I. INTRODUCTION

High-energy heavy-ion collision experiments at the Rela-
tivistic Heavy-Ion Collider (RHIC) [1,2] and the Large Hadron
Collider (LHC) [3–5] have firmly established the formation of
strongly interacting matter composed of a color deconfined
system of quarks and gluons. Such a conclusion was partly
based on relativistic viscous hydrodynamic analysis of the
large anisotropic flow that requires a remarkably small shear
viscosity to entropy density ratio of η/s = 0.08–0.20 [6–9].
This not only suggests that the matter formed is close to
local thermal equilibrium, but also provides a window to the
initial state of the fireball immediately after the collision.
Hydrodynamic and transport models have been widely used to
study the properties of the hot and dense medium by exploring
the collective flow of the soft (bulk) hadrons.

On the other hand, the suppression of high transverse mo-
mentum of light and heavy quarks produced in hard processes
provides an excellent tool that allows tomographic studies of
the QCD plasma [10–15]. The suppression is caused by the
attenuation (energy loss) of the energetic partons via inelastic
and elastic collisions during their propagation in the medium.
Heavy quarks, in particular, provide a promising probe as these
are formed in the early stages via hard scatterings, and their
production in the plasma at later stages is largely suppressed
owing to their large mass [15]. These primordial heavy quarks
could thus explore various stages of the space-time evolution.

The energy loss of energetic partons was originally ex-
pected to be dominated by medium-induced gluon radiation
[16,17]. More recent and consistent collisional energy loss
calculations suggest that the radiative and collisional energy
losses of heavy quarks are comparable at low and mod-
erate transverse momenta pT [18] and at pT � 15 GeV/c
the collisional energy loss (although becomes progressively
smaller than radiative) can have important contributions to jet
quenching [19]. Moreover, at low pT , the phase space for the

medium-induced gluon radiation becomes restricted due to
large quark mass (the “dead cone effect”) in contrast to
light partons [20]. Consequently, RHIC measurements of the
heavy flavor suppression data for pT � 8 GeV/c [21] can be
reasonably well reproduced by various models that include
distinct parton energy loss formalisms as well as radial flow and
charm quark hadronization via recombination; see Ref. [22]
and references therein. On the other hand, heavy-ion collisions
at the LHC enable D-meson measurements from low to a much
higher pT up to 100 GeV/c [22,23] and thus provide the ideal
ground to study heavy flavor suppression.

A surprisingly large suppression pattern of high-pT D
mesons, similar to that for charged hadrons, was observed
at the LHC and quantified by the nuclear modification factor
of RAA = (dN/dpT )AA/Nbin(dN/dpT )pp, defined as the ratio
of the yield in AA and pp collisions scaled by the number
of binary nucleon-nucleon collisions. The solution of this
heavy flavor puzzle is traced to the interplay between the
bare partons’ suppression and the fragmentation function with
identical suppression of the bare charm (equal to D-meson
suppression) and light quarks (unexpectedly coinciding with
charged hadrons suppression) as predicted by perturbative
QCD [24]. However, the crucial ingredient for a reliable sup-
pression prediction relies on a precise energy loss calculation
taking due consideration of the expansion and viscosity of the
QCD medium.

Early calculations of the medium-induced radiative energy
loss were based on a “static QCD medium” consisting of
randomly distributed static scattering centers. In such a static
medium, the collisional energy loss exactly vanishes. Subse-
quently, the radiative energy loss in a dynamically screened
QCD medium was developed for an optically thin infinite [25]
and finite-size [26,27] plasma, more relevant for rapidly ex-
panding a medium formed in relativistic heavy-ion collisions.
Radiative energy loss in a plasma was also shown to receive
corrections because of modified dielectric effect of the medium
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known as the Ter-Mikayelian effect [28]. Furthermore, the
calculation of radiative energy loss suffers a complication due
to the Landau-Pomeranchuck-Migdal (LPM) effect [29–31]
which introduces a controlled reduction of emitted gluon
formation time.

The existing calculations on energy loss have been per-
formed purely for an ideal fluid using the equilibrium phase-
space distribution function and ignoring viscous effects. Since
the quark-gluon plasma (QGP) formed in relativistic heavy-ion
collisions behaves like a near-perfect fluid with a small η/s, it
is imperative to account for the viscous effects in computing
the radiative energy loss. In fact, the importance of viscosity
of the medium has already been realized in several quantities
or observables relevant for the RHIC and the LHC, such as
the heavy quark damping rate [32], anisotropic flow [6–9],
event-plane correlations [33,34], dilepton spectra [35,36], etc.
Although few calculations have incorporated radiative energy
loss only for viscous medium evolution [13,37], a realistic and
consistent calculation where viscosity is explicitly included in
the computation of energy loss as well as in the expanding
viscous medium is crucial.

In this paper, we present the first calculation of radiative
energy loss with viscosity, in first order in opacity, of a
heavy (charm) quark in a dynamically screened viscous QCD
medium that undergoes boost-invariant longitudinal expan-
sion. The energy-loss computation has been performed for
an infinite-size QCD viscous medium and the complications
of finite-size (LPM) effects are ignored. We employ causal
second-order viscous hydrodynamics for the underlying evo-
lution of the medium based on the Müller-Israel-Stewart (MIS)
framework [38–40] and the recently derived dissipative equa-
tions from the Chapman-Enskog- (CE-) like approach of iter-
atively solving the Boltzmann equation in the relaxation-time
approximation [41–43]. Viscous effects are incorporated in
the single-particle distribution f (x,p) = f0(x,p) + δfvis(x,p)
via the nonequilibrium distribution function δfvis. The single-
particle distribution would modify the scattering cross section
of the energetic parton with the medium and thereby the radia-
tive energy loss. For the nonequilibrium distribution, we use the
commonly used form based on Grad’s 14-moment approxima-
tion [44] and that obtained from the Chapman-Enskog method.
We will show that viscosity, in general, enhances the energy
loss and the enhancement is significant in Grad’s method.
Furthermore, we find nonlinearity in the time dependence of
the radiative energy loss for a viscous plasma, which mimics
the energy-loss behavior due to coherent gluon radiation.

The paper is organized as follows. In Sec. II we introduce the
dissipative hydrodynamic formalisms used and then compute
in these models, to first order in opacity, the radiative energy
loss in a dynamical viscous QCD medium with boost-invariant
longitudinal expansion. In Sec. III we compare the results
for the radiative energy loss in ideal and viscous fluids and
with further inclusion of viscous corrections due to the Grad
and Chapman-Enskog methods by using initial conditions
relevant to that produced in heavy-ion collisions at the LHC.
A summary and conclusions are presented in Sec. IV. The
technical details of the calculation of gluon self-energies is
given in Appendix A, and the computations of energy loss are
presented in Appendices B–D.

II. RADIATIVE ENERGY LOSS IN AN EXPANDING
VISCOUS MEDIUM

In this section we compute the medium-induced heavy
flavor radiative energy loss in the boost-invariant longitudinal
expansion of matter within second-order viscous hydrody-
namics. The hydrodynamic evolution is governed by the
conservation of energy-momentum tensor ∂μT μν = 0, where

T μν = εuμuν − P�μν + πμν. (1)

We will work in the Landau-Lifshitz frame and disregard
particle flow Nμ = nBuμ + V μ due to very small values
of net-baryon number nB and net-charge flow V μ at the
RHIC and the LHC [40,45]. In the above equation, ε and
P , respectively, are the energy density and pressure in the
fluid’s local rest frame (LRF), and πμν is the shear pressure
tensor. �μν = gμν − uμuν is the projection operator on the
three-space orthogonal to the hydrodynamic four-velocity uμ

defined by the Landau-matching condition T μνuν = εuμ.
For Bjorken longitudinal expansion, we work with the

Milne coordinates (τ,x,y,ηs) where the proper time is τ =√
t2 − z2, the space-time rapidity is ηs = ln[(t + z)/(t −

z)]/2, and the four-velocity is uμ = (1,0,0,0). The conser-
vation equation for the energy-momentum tensor gives the
evolution of ε,

dε

dτ
= − 1

τ
(ε + P − 
), (2)

where 
 ≡ −τ 2πηsηs is taken as the independent component of
the shear pressure tensor. For the three independent variables,
we need two more equations, namely, the viscous evolution
equation and the equation of state (EoS). In this paper, we
have used a conformal QGP fluid EoS with thermodynamic
pressure P = ε/3. The simplest choice for the dissipative
equation would be the relativistic Navier-Stokes theory where
the instantaneous constituent equation for the shear pressure
in the Bjorken case gives


 = 4η

3
θ. (3)

Here η � 0 is the shear viscosity coefficient, and the local
expansion rate is θ = 1/τ . However, this first-order theory
suffers from acausality and instability.

The most commonly used second-order dissipative hydro-
dynamic equation, derived from positivity of the divergence of
the entropy four-current, is based on the works of MIS [38–40].
In the boost-invariant scaling expansion, the MIS dissipative
equation,

d


dτ
+ 


τπ

= 4η

3τπ

θ − λπθ
 (4)

restores causality by enforcing the shear pressure to relax to its
first-order value via the relaxation-time τπ = 2ηβ2, where β2 is
the second-order transport coefficient. In the present paper we
consider τπ = 2ηβ2 = 5η/(sT ) corresponding to that obtained
in a weakly coupled QCD [46–49]. Furthermore, the coefficient
of the second-order term (in the expansion of the velocity
gradients) for the EoS of an ultrarelativistic gas is λπ = 4/3.

In the derivation of Eq. (4) pertaining to a system that is
out of equilibrium, the nonequilibrium effects have been
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quantified via the phase-space distribution f (x,p) =
f0(x,p) + δfvis(x,p) where the nonequilibrium part of
the distribution function δfvis(x,p) is usually obtained
by expanding f (x,p) about the equilibrium distribution
function f0(x,p) ≈ [exp(u · p/T ) − 1]−1. Grad’s 14-moment
approximation [44] is the common choice for the viscous
correction in hydrodynamics where the expansion in powers
of momenta is truncated at quadratic order. For a system of
massless particles in the absence of bulk viscosity and charge
diffusion current, Grad’s method for the viscous correction
gives

δfvis = f0(1 ± f0)
πμνp

μpν

2(ε + P )T 2
,

≡ f0(1 ± f0)
3


4(ε + P )T 2

(
�p2

3
− p2

z

)
, (5)

where the second line is the equivalent representation for boost-
invariant longitudinal expansion (assumed to be along the z
direction) of the fluid in the LRF [50]. This equation has been
exclusively used in deriving the second-order MIS dissipative
equation.

Alternatively, dissipative evolution equations can be ob-
tained from the CE method by perturbative expansion of
the Boltzmann transport equation using the Knudsen number
as a small expansion parameter [41–43]. By expanding the
nonequilibrium distribution function δfvis about the local equi-
librium value and iteratively solving the Boltzmann equation
in the relaxation-time approximation, the second-order dissi-
pative equation for the shear tensor in the boost-invariant case
has the same form as that of Eq. (4) for the MIS case. However,
in the Chapman-Enskog-like approach, the relaxation time
naturally comes out to be τπ = 2ηβ2 = 5η/(sT ) and λπ =
38/21 [41]. The corresponding nonequilibrium distribution
function has the form

δfvis = f0(1 ± f0)
5πμνp

μpν

8PT (u · p)
,

≡ f0(1 ± f0)
15


16PT (u · p)

( �p2

3
− p2

z

)
. (6)

We will present the calculational details of heavy quark radia-
tive energy loss for the Müller-Israel-Stewart dissipative hydro-
dynamics with Grad’s form of δfvis(x,p). The results within
the Chapman-Enskog approach can be obtained in a similar
fashion, which will be presented at the end of this section.

We will compute the energy loss in a dynamical QCD
medium for a thin expanding plasma in the opacity expansion.
In a nonexpanding plasma the energy loss is calculated by
expansion over the number of parton scatterers in the medium
times the transport cross section, integrated over the path-
length L traversed by the heavy quark. In an expanding
medium, the total energy loss is obtained by summing the
instantaneous energy loss over the time spent by the quark
in the plasma before reaching vacuum or the survival time in
the plasma.

In principle, boost-invariant expansion induces anisotropy
in the medium, hence the energy lost by a quark depends on
its direction of propagation relative to the fluid flow [51]. In

this paper, we consider the propagation of the heavy quark to
be along the fluid direction and relegate to future work the
calculation of complicated directional dependence of energy
loss. As in Ref. [25], we restrict ourselves to first order in
opacity where an on-shell heavy quark of mass M and spatial
momentum �p � M produced in the remote past traverses
along fluid flow, i.e., the z direction. On scattering with a parton
in the medium, it exchanges a virtual gluon of momentum q =
(q0,�q) = (q0,qz,q) and radiates a gluon with momentum k =
(ω,�k) = (ω,kz,k). The heavy quark then emerges along the z
direction with a momentum p′ = (E′,�p′) = (E′,p′

z,p
′). As the

gluon momentum is spacelike (q0 � |�q|) and the radiated gluon
momentum is timelike (ω � |�k|), these contribute accordingly
in the gluon propagators Dμν(q) and Dμν(k), respectively.
The validity of a soft gluon (ω � E) and soft rescattering
(|q| ∼ |k| � kz), approximations at high-temperature T at
the LHC together with the energy-momentum conservation
p = p′ + k + q enable us to write

k =
(

ω ≈ kz+
k2 + m2

g

2kz

,kz,k
)

,

p′ =
(

E′ ≈ p′
z+

p′2 + M2

2p′
z

,p′
z, − (k + q)

)
, (7)

p =
(

E ≈ p′
z+kz+qz+ M2

2(p′
z + kz + qz)

, p′
z+kz+qz,0

)
.

Here mg ≈ μ/
√

2 ∼ gT /
√

2 is the effective gluon mass in
a thermalized QGP at temperature T with Debye screening
mass μ.

The heavy quark energy loss per unit proper time τ , to
first order in opacity, can be obtained by folding the heavy
quark interaction rate �(E) with the energy-loss ω + q0 and
averaging over the initial color of the quarks [52,53],

dEdyn

dτ
= 1

DR

∫
dω ω

d�(E)

dω
≈ E

DR

∫
dx x

d�(E)

dx
. (8)

The soft rescattering approximation ω + q0 ≈ ω has been
used, and x is the longitudinal momentum fraction of the quark
carried by the emitted gluon. DR is defined as [ta,tc][tc,ta] =
C2(G)CRDR with C2(G) = 3, DR = 3, and [ta,tc] is a color
commutator. The interaction rate is given by

�(E) = 1

2E
2 Im Mtot,

= 1

2E
(2 Im M1,0 + 2 Im M1,1 + 2 Im M1,2), (9)

which can be obtained by computing all the Feynman diagrams
(see Appendices B–D) that contribute at first order in opacity
for the radiative energy loss. M1,0, M1,1, and M1,2 are the
corresponding loop diagrams of the scattering amplitudes
where, zero, one, and two ends of the radiated gluon k
are attached to the exchanged gluon q (see Figs. 7–9 for
illustration).

In the high-temperature plasma, the exchanged gluon re-
ceives a correction from medium partons. This many-body
effect gets encoded in the hard thermal loop (HTL) gluon
propagators [54]. The effective 1-HTL gluon propagator has
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the form [55,56]

iDμν(l) = Pμν(l)

l2 − �T (l)
+ Qμν(l)

l2 − �L(l)
, (10)

where the gluon-momentum l = (l0,�l) and the transverse
P μν(l) and longitudinal Qμν(l) projectors in the Coulomb
gauge have the nonzero components P ij (l) = −δij + li lj /�l2

and Q00(l) = −l2/�l2. In an expanding viscous QCD plasma,
the longitudinal �L and transverse �T gluon self-energies
in Grad’s approximation are given by [see Eq. (A5) in Ap-
pendix A],

�L(l) = �0
L(l) − 3


4sT 3

2g2

(2π )2

∫
p3dp dy G(p)

× 1 − 3y2

3(1 − y)2

|�l|y
l0 − |�l|y , (11)

�T (l) = �0
T (l) − 3


4sT 3

g2

(2π )2

∫
p3dp dy G(p)

× 1 − 3y2

3(1 − y)2

|�l|(1 − y)

l0 − |�l|y . (12)

The ideal part of polarizations �0
L,T is given in Eq. (A6).

The phase-space factor G(p) = Nf {exp[g(p)] + 1}−1 +
Nc{exp[g(p)] − 1}−1 with g(p) ≡ p/(T

√
1 − y2) can be

expressed in terms of the dimensionless variable of Eq. (A3),
viz. y = |�p| cos θp(τ0/τ )[�p2 cos2 θp(τ0/τ )2 + �p2]−1/2. For
typical values of η/s � 3/(4π ) (required to explain flow data
at the RHIC and the LHC), inclusion of viscous corrections in
�L,T is found to increase the radiative energy loss by at most
∼3%.

The imaginary part of the exchanged gluon propagator is

D>
μν(q) = [1 + f (q)]2 Im

[
Pμν(q)

q2−�T (q)
+ Qμν(q)

q2−�L(q)

]

× θ

(
1 − q2

0

�q2

)
. (13)

The distribution function f (q) = f0(q) + δfvis(q) receives a
strong viscous correction of δfvis(q) due to Grad’s 14-moment
approximation of Eq. (5); the equilibrium gluon momen-
tum distribution function is f0(q) = [exp(q0/T ) − 1]−1. For
the radiated gluon, �L(k) ≈ 0 and �T (k) ≈ mg . Using the
soft scattering limit (ω � |q| ∼ |k| ∼ gT ), and noting that
f (k) � 1 for energetic partons [25], the cut propagator for the
imaginary part of the radiated gluon becomes

D>
μν(k) ≈ −2π

Pμν(k)

2ω
δ(k0 − ω), (14)

where ω ≈
√

�k2 + m2
g . The cut propagator for the heavy quark

is

D>(p′) ≈ 2π
1

2E′ δ(p′
0 − E′). (15)

With the help of these propagators one can calculate the
matrix amplitude squared for the diagrams (see Appendices B–
D). The phase-space factor for the cut diagrams receives in-
medium viscous corrections. On computing the diagrams and
in conjunction with Eqs. (8) and (9), one can obtain the heavy

quark radiative energy loss. The contribution to the energy loss
from the first set of diagrams 2 Im M0,1 [see Eq. (B9)] is given
by

1

E

dE

dτ

∣∣∣∣
1,0

= 3α2
s CRT

π3

∫
dx d2k d2q

k2

(k2 + χ )2
�(τ,q), (16)

where χ = M2x2 + m2
g and the strong-coupling constant αs =

g2/(4π ). The medium information is encoded within the
quantity,

�(τ,q) =
∫

dy

(
1 + 


4sT 3

q2(1 − 3y2)

1 − y2

)
FLT (q,y),

≡ �0(τ,q) + δ�vis(τ,q), (17)

where �0(τ,q) and δ�vis(τ,q) stem from an ideal and viscous
correction due to Grad’s 14-moment approximation (5) for
the P = ε/3 equation of state. We have used the short-
hand notation FLT ≡ FL − FT for the difference in the
polarization tensors FZ = 2 Im �Z(y){[q2 + Re �Z(y)]2 +
[Im �Z(y)]2}−1 with Z ≡ (L,T ). It is evident from the energy-
loss expression, that the nature of divergence gets modified
from the ideal to the viscous Bjorken case due to an extra q2

factor stemming from δ�vis.
The diagram M1,2 where emission of a gluon occurs from

the exchanged gluon has been computed in Appendix C. The
corresponding radiative energy loss is given by [see Eq. (C4)]

1

E

dE

dτ

∣∣∣∣
1,2

= 3α2
s CRT

π3

∫
dx d2k d2q

(k + q)2

[(k + q)2 + χ ]2
�(τ,q).

(18)

Finally, the diagrams for M1,1 can be computed as the
product of the previous two diagrams M1,0 and M1,2. The
resulting radiative energy loss gives [Eq. (D6) in Appendix D]

1

E

dE

dτ

∣∣∣∣
1,1

= 3α2
s CRT

π3

∫
dx d2k d2q

× −2k · (k + q)

[(k + q)2 + χ ][k2 + χ ]
�(τ,q). (19)

The total energy loss is obtained by summing Eqs. (16), (18),
and (19) as

1

E

dE

dτ
= αsCR

π3λdyn

∫
dx d2k d2q

×
[

k
k2 + χ

− k + q
[(k + q)2 + χ ]

]2

�(τ,q),

≡ αsCR

π3λdyn

∫
dx d2k d2qPg(x,k,q)�(τ,q). (20)

In the above equation, a dynamical mean free path has been
defined as λ−1

dyn = C2(G)αsT = 3αsT . In contrast to a time-
independent QCD medium [25–27] where λdyn is constant, in
the present expanding medium λdyn and thereby the density
of scatterers has a time dependence via the temperature which
modifies the energy loss.

Using the Chapman-Enskog results for the viscous
evolution equation and the corresponding nonequilibrium
distribution function (6), the total radiative energy loss can
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0
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0
 = 0.4 fm/c

FIG. 1. Fractional differential radiative energy loss as a function
of momentum for charm quarks in a boost-invariant expanding plasma
at time τ = 1.2 fm/c. The results are for an ideal fluid (black dotted
line) in the dissipative hydrodynamics without a viscous correction
in the MIS (red dashed line) and CE (green dashed line) theories and
with further inclusion of the viscous correction due to Grad in the MIS
(red solid line) and Chapman-Enskog (green solid line) methods. The
results are for an ideal gas equation of state (P = ε/3) with an initial
temperature of T0 = 400 MeV, a proper time of τ0 = 0.4 fm/c, and
a constant shear viscosity to entropy density ratio of η/s = 1/4π .

be shown to have the same form as Eq. (20) in Grad’s
approximation. However, in the CE method, the quantity �
of (17) is replaced by

�(τ,q) =
∫

dy

(
1 + 5


4sT 2

q(1 − 3y2)

1 − y2

)
FLT (q,y), (21)

which involves the nonequilibrium form of the distribution
function in the CE method.

III. RESULTS AND DISCUSSIONS

In this section we estimate numerical effects of expanding
viscous medium on the radiative energy loss in first order in
opacity for a dynamically screened QCD medium. We consider
a plasma with an initial temperature of T0 = 400 MeV and a
proper time of τ0 = 0.4 fm/c that corresponds to (averaged)
values obtained in Pb + Pb collisions at the LHC center-of-
mass energy

√
sNN = 2.76 TeV. The charm quark of mass

M = 1.2 GeV is assumed to traverse in the plasma that has an
effective number of degrees of freedom Nf = 3 with a fixed
strong-coupling constant αs = g2/4π = 0.3.

In boost-invariant longitudinal expansion of an ideal fluid,
the temperature decreases with time as T = T0(τ0/τ )1/3. The
momentum dependence of the fractional differential energy-
loss E−1dE/dτ of the charm quark is shown at time τ =
1.2 fm in Fig. 1 (black dotted line) in this ideal hydrodynamics.
With the inclusion of dissipation in the dynamical evolution,
the temperature decreases at a slower rate, and the entropy
increases as compared to an inviscid fluid. In Fig. 1 we present
the fractional differential radiative energy loss of a charm
quark in an expanding viscous medium with η/s = 1/4π at
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τ

0
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FIG. 2. Time dependence of fractional differential radiative en-
ergy loss for charm quarks of initial momentum p = 20 and
40 GeV/c. The initial conditions and the various curves are the same
as in Fig. 1.

τ = 1.2 fm/c in the MIS (red dashed lined) and the CE (green
dashed line) methods in the absence of the nonequilibrium
part of the distribution function obtained by setting δfvis ∼
δ�vis = 0 in Eq. (20). Dissipative effects are seen to cause
an ∼5% larger energy loss for charm quarks with momentum
p � 10 GeV as compared to that with ideal flows. Such an
enhanced energy loss may be attributed to a relatively higher
instantaneous temperature of the viscous plasma. Although the
temperature in the CE method falls slightly faster with time
as compared to that in the MIS theory, the energy losses in
these viscous evolution frameworks are found to be practically
insensitive.

Figure 1 also shows the fractional differential energy loss
obtained by inclusion of viscous corrections in the single-
particle distribution function using the Grad (red solid line) and
Chapman-Enskog (green solid line) methods at τ = 1.2 fm/c.
We find that a nonequilibrium correction induces a significant
increase in the energy loss, the enhancement being particularly
large for Grad’s 14-moment approximation as compared to
the Chapman-Enskog correction for heavy quark momentum
p � 10 GeV/c. This can be understood by comparing the
(positive) contribution from viscous correction δfvis to the
energy loss in the Grad and Chapman-Enskog approaches,
namely, Eqs. (17) and (21). An extra factor of q/5T in
the integrand of δ�vis(τ,q) in Grad’s method gives a larger
energy loss and results in a slower rate of saturation of
fractional differential energy loss with the momentum p of
the charm quark. On the other hand, the energy loss obtained
in the Chapman-Enskog viscous correction shows a similar
saturation pattern as that seen in an ideal fluid and in a viscous
medium with δfvis = 0. At p < 10 GeV/c the energy loss has
an identical behavior for the two viscous corrections used
here. Large viscous corrections due to Grad’s 14-moment
approximation have been also found in the spectra and elliptic
flow of hadrons at kinetic freezeout [6,45,57] as well as in the
longitudinal Hanbury-Brown-Twiss radii of pions [42].

Figure 2(a) displays the proper time dependence of frac-
tional differential radiative energy loss E−1dE/dτ for a charm
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FIG. 3. Dissipative part of the differential fractional energy loss
δdE/(E dτ dq) as a function of exchanged gluon momentum q at
various proper times for charm quarks of initial momentum p =
20 GeV/c at η/s = 1/4π in the MIS and CE methods. The inset
shows the variation of viscous correction δ�vis(τ,q) with momentum
q at various times. The initial conditions are the same as in Fig. 1.

quark of momentum p = 20 GeV/c. With increasing time,
the decrease in the energy loss is essentially due to falling
temperatures. As compared to viscous hydrodynamics, in ideal
hydrodynamic evolution the temperature decreases faster with
time resulting in smaller energy loss at all times. At early times
τ � 3 fm/c, larger viscous drag in MIS hydrodynamics results
in higher temperatures as compared to CE and hence gives the
largest energy loss. At later times (lower temperature) all the
viscous fluids give nearly identical energy losses mainly due to
negligibly small shear pressure tensor 
 in the dilute medium.
Of course, for charm quarks with momentum p > 20 GeV/c,
the differences in E−1dE/dτ will sustain at long times as
evident from Fig. 2(b) for p = 40 GeV/c.

To gauge the kinematic contribution from the viscous
correction δ�vis(τ,q) on the radiative energy loss in the MIS
and CE approaches, we show in Fig. 3 the viscous part
of the fractional differential energy loss δ dE/(E dτ d2q)
as a function of exchange gluon momentum q at various
proper times. In both of these approaches, the effects of the
dissipative correction first increase and then decrease with
time (following the variation in shear stress) until the fluid
attains local thermodynamic equilibrium. At a given time, the
fractional differential energy loss with an increase in the gluon
momentum q exhibits a gradual rise followed by a slow fall in
the MIS theory. In contrast, the CE approach leads to a faster
buildup of δ dE/(E dτ d2q) and rapid decrease with increasing
q. The differences in the energy-loss pattern and magnitude
are essentially due to the extra factor of q/5T in the viscous
correction in the MIS method as compared to the CE method
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FIG. 4. Time-integrated fractional radiative energy loss as a func-
tion of momentum for charm quarks propagating in a boost-invariant
expanding fluid over a total time of τf = 5 fm/c with various values
of η/s in the MIS (top panel) and CE (bottom panel) frameworks.
In a nonexpanding plasma at a temperature of T0 = 0.228 GeV, the
fractional energy loss integrated over a path length of L = 5 fm is also
shown (black thin solid line). The initial conditions and the various
curves for the expanding medium are the same as in Fig. 1. In addition,
results with η/s = 3/4π are shown without viscous corrections in
MIS (purple dotted line) and CE (cyan dotted line) theories and with
further inclusion of viscous corrections in MIS (purple dashed-dotted
line) and CE (cyan dashed-dotted line) methods.

[see Eqs. (17) and (21)]. In fact, these features can be traced to
the variation in the viscous correction δ�vis(τ,q) (see the inset
of Fig. 3), which decreases smoothly with increasing q in the
MIS, as compared to the sharper fall from very large values
in the CE method. Consequently, the (q-integrated) fractional
energy-loss dE/(E dτ ) receives a larger contribution in the
MIS theory as seen in Figs. 1 and 2.

We show, in Fig. 4, the charm quark momentum dependence
of the fractional radiative energy loss �E/E at various values
of η/s in the MIS and CE theories with initial values of
τ0 = 0.4 fm/c and T0 = 0.400 GeV. The total �E is obtained
by summing the energy loss during the entire time traversed
by the quark. In the present calculation we set this time as
τf = 5 fm/c as the typical lifetime of the QGP phase at the
RHIC and the LHC. On the other hand, in a nonexpanding
fluid, the �E shown here refers to energy loss integrated
over a path length of L = 5 fm. This result was obtained
at a temperature of T0 = 0.228 GeV corresponding to the
average value obtained in the ideal hydrodynamic evolution
from the initial τ0 = 0.4 fm/c to the final τf = 5 fm/c and
approximates a nonexpanding medium calculation [25]. At
this (lower) averaged temperature, the integrated energy loss
for the nonexpanding medium is found to be somewhat larger
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than that found in ideal hydrodynamics initialized at a higher
temperature. As compared to a nonexpanding fluid, in an
expanding medium the scattering rates decrease with time
resulting in smaller �E/E. However, large viscous corrections
give a positive contribution to the energy loss that grows with
η/s, especially when the nonequilibrium part of the distribution
function in Grad’s approximation is considered.

It may be mentioned that the fractional energy loss so
obtained [by τ integration of Eq. (20)] has explicit temperature
dependence via the dynamical mean free path λ−1

dyn(T ) and
viscous correction δ�vis(τ,q). The above computed energy
loss with and without δ�vis(τ,q) compares solely to the
temperature-dependent contribution from the viscous correc-
tion. The effects of temperature-dependent λ−1

dyn have been as-
sessed by computing �E/E with a fixed λdyn corresponding to
a time-averaged temperature ofT ≈ 0.235 GeV in the MIS and
CE approaches (figure not shown). Here the other quantities,
including δ�vis(τ,q) [corresponding to Eq. (20)], follow the
underlying temperature evolution of the system. This result
should be then compared with that for T -varying λdyn(T ) and
δ�vis(τ,q) (i.e., red and green solid lines in Fig. 4). We have
found that in this fixed λdyn case �E/E is comparatively
smaller by a maximum (at p = 40 GeV/c) of 4.4% and 3.8%
in the MIS and CE methods, respectively. This can be easily
understood from Fig. 2 where the energy loss forλdyn computed
at T = 0.235 GeV (corresponding to τ ≈ 2.16 fm/c) has a
lower value, and accordingly the time-integrated E−1dE/dτ
receives a smaller contribution at small τ as compared to
temperature-dependent λdyn(T ). Furthermore, we find from
Fig. 4 that the inclusion of δ�vis(τ,q) causes �E/E to increase
by a maximum of 14.9% and 7.9% in the MIS and CE
methods, respectively, as compared to the δ�vis = 0 case.
Hence, δ�vis(τ,q) affects more the fractional radiative energy
loss relative to the temperature-dependent λdyn(T ).

It is important to note that, in a nonexpanding
medium, the total energy loss can be expressed as �E ∼
S(E)

∫
dL/(3αsT ), where S(E) is a function of the energy of

the charm quark. Hence the total energy loss increases linearly
with the path-length L traversed by the quark which is a QCD
analog of the QED Bethe-Heitler limit [11]. On the other hand,
the corresponding energy loss for a time-dependent viscous
medium may be written as �E ∼ ∫

dτ C(E,τ,η)/[3αsT (τ )],
where C(E,τ,η) is a complicated function encompassing
medium effects. Figure 5 illustrates the time dependence of
the fractional energy loss in the ideal and dissipative hydro-
dynamics with T0 = 0.400 GeV. The corresponding energy
loss for a nonexpanding medium at an average temperature
of T0 = 0.228 GeV (the same as used in Fig. 4) is shown
as a function of the effective thickness of the medium. We
find that the expanding medium shows a nonlinear behavior
in the fractional energy loss which has been also observed
in a complementary approach pertaining to coherent gluon
radiation from the finite-size nonexpanding QCD medium
consisting of static scatterers [58].

IV. SUMMARY

In this paper we have presented a theoretical formulation of
the radiative energy loss of a heavy quark traversing in a viscous
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FIG. 5. Time dependence of fractional radiative energy loss for
charm quarks of initial momentum p = 20 GeV/c with viscous cor-
rections included in the distribution function in models of dissipative
hydrodynamics. The initial conditions and the various curves are the
same as in Fig. 4.

medium that undergoes boost-invariant longitudinal expan-
sion. The calculation was performed in first order in opacity
for a dynamically screened QCD plasma at finite temperatures.
We have derived the radiative energy loss by including two
forms of viscous correction in the nonequilibrium phase-space
distribution, namely, Grad’s 14-moment approximation and
the Chapman-Enskog-like iterative solution. The evolution
of the medium was treated within relativistic second-order
viscous hydrodynamics based on the MIS framework, that uses
Grad’s approximation for the distribution function, and the CE
method.

Viscous contributions from dynamics only, in the absence of
viscous corrections in the single-particle phase-space distribu-
tion, resulted in the enhancements of the fractional differential
energy-loss energy by about ∼5% depending on the shear
viscosity to entropy density ratio of η/s = 0.08–0.24 used.
This energy loss was found to be similar in the MIS and
CE dissipative hydrodynamic models. At the early stages of
evolution, we found that inclusion of Grad’s approximation
of the viscous correction in the distribution function resulted
in an appreciably large increase in fractional energy loss that
increased monotonically with momentum p of the charm
quark. On the other hand, in the Chapman-Enskog viscous
correction, the enhancement was found to be comparatively
smaller, and the energy loss was seen to saturate for p �
10 GeV/c. At later proper times, the energy losses in all the
scenarios were found comparable due to low temperatures and
the nearly vanishing shear stress tensor. The time-integrated
fractional energy loss in Grad’s approximation was found
higher than in the Chapman-Enskog method. The heavy quark
radiative energy-loss results presented in this paper are crucial
for the interpretation of the D-meson nuclear modification
factor.
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FIG. 6. (a)–(d) Feynman diagrams M1,0 contributing to heavy quark radiative energy loss to first order in opacity.
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APPENDIX A: POLARIZATION TENSOR IN A VISCOUS
QCD PLASMA

We calculate the gluon polarization tensor in the presence
of a nonequilibrium single-particle distribution function due to
Grad’s method [44]. The viscous correction of the polarization
tensor is calculated in the 1-HTL approach within viscous
hydrodynamics. For this one-loop order, the polarization tensor
of the gluons of momentum l = (l0,�l) has contributions from
four diagrams, which for an equilibrated plasma is given
by [55,56]

�μν(l) = −2g2
∫

d3p

|�p|(2π )3
[Nf f+(p) + Ncf−(p)]

×
(

−δ0
μδ0

ν + l0
p̂μp̂ν

l0 − p̂ · �l + iη

)
. (A1)

To mimic a plasma of quarks and gluons, we have considered
a gas of fermions and bosons with distribution functions
f+(p) and f−(p), respectively. The nonzero components of
the polarization tensor are the longitudinal �L = −�00 and
transverse �T = (δij − li lj /�l2)�ij/2 ones.

In the presence of a viscous correction due to Grad (5)
and in-medium modifications [50], the fermionic and bosonic
distribution functions become

f (p) = f0(p) + 3


4sT 3

[
p2 + p2

z (τ0/τ )2

3

−p2
z

τ 2
0

τ 2
f0(p)[1 ± f0(p)]

]
, (A2)

where the plus and minus signs refer to fermions and bosons
and pz = |�p| cos θp. We have introduced a dimensionless
variable y = pz/|�p|, which can be also written as

y ≡ y(p) = |�p| cos θp(τ0/τ )√�p2 cos2 θp(τ0/τ )2 + �p2
. (A3)

Limits on y are decided by cos θp viz. y ∈ [ymin,ymax]. On
substituting the distribution function we obtain

�L(l) = �0
L(l) − 3


4sT 3

2g2

(2π )2

∫ ∞

0
p3dp

∫ ymax

ymin

dy

×
(

Nf

eg(p) + 1
+ Nc

eg(p) − 1

)
1 − 3y2

3(1 − y)2

|�l|y
l0 − |�l|y ,

�T (l) = �0
T (l) − 3


4sT 3

g2

(2π )2

∫ ∞

0
p3dp

∫ ymax

ymin

dy

×
(

Nf

eg(p) + 1
+ Nc

eg(p) − 1

)
1 − 3y2

3(1 − y)2

|�l|(1 − y)

l0 − |�l|y .

(A4)

Here g(p) =: p/(T
√

1 − y2), and the usual ideal parts for
the longitudinal and transverse self-energies [55,56] are as
follows:

�0
T (l) = μ2

[
y ′2

2
+ y ′(1 − y ′2)

4
ln

(
y ′ + 1

y ′ − 1

)]
,

�0
L(l) = μ2

[
1 − y ′2 − y ′(1 − y ′2)

4
ln

(
y ′ + 1

y ′ − 1

)]
, (A5)

with y ′ = l0/|�l|. In the limit of η/s → 0, the results for the
nonexpanding plasma are recovered. It may be noted from
Eq. (A5) that, in the limit of l0 → 0, the longitudinal (electric)
polarization gives time-dependent screening and the transverse
(magnetic) polarization is Landau damped.

APPENDIX B: COMPUTATION OF DIAGRAMS M1,0 AND
ASSOCIATED RADIATIVE ENERGY LOSS IN MIS

THEORY

We present a detailed calculation of the first set of diagrams
corresponding to M1,0. In general, we denote all the loop
diagrams as M1,i,j , where i refers to the number of the
exchanged gluon q’s that are attached to the radiated gluon
k and j = a,b, . . . denotes the particular diagram in that class,
computed in first order in opacity denoted by 1. The Feynman
diagrams for the first set, namely, M1,0,a, M1,0,b, M1,0,c, and
M1,0,d are shown in Fig. 6. These scattering diagrams are
associated with two-cut HTL diagrams. We first compute the
cut diagram M>

1,0,a = 2 Im M1,0,a (see Fig. 7),

M>
1,0,a = g4tatctcta

∫
d4p′

(2π )4

d4q

(2π )4

d4k

(2π )4

× (2p−q)μD>
μν(q)(2p−q)ν[D(p′ + k)]2

× (2p′+k)ρD>
ρσ (k)(2p′+k)σD>(p′)

× (2π )4δ4(p − p′ − k − q). (B1)

The above equation consists of two parts: the medium in-
teraction and the phase-space factor. The interaction history
is encoded in the exchanged and radiated gluon propagators
Dμν(q) and Dρσ (k), respectively; D(p′), D(p′ + k) are the
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FIG. 7. Left: Scattering amplitude of the M1,0,a diagram where
a heavy quark of momentum p suffers collisional interaction with
medium partons of momentum l via a screened gluon of momentum
q, resulting in the emission of a gluon of momentum k from the
outgoing quark. The corresponding momenta of the scattered states
are denoted by p′ and l′. The blob represents the medium modified
gluon propagator. Right: HTL loop diagram of first order in opacity
corresponding to M1,0,a . Heavy quark scatterers from medium par-
tons via the cut gluon propagator of momentum q (with q0 � |�q|)
resulting in the emission of a cut gluon propagator with momentum
k (with ω > |�k|). The imaginary part of the diagram corresponds to
the squared amplitude of the left diagram and is integrated over phase
space.

fermionic propagators. To proceed further we write the vector
contraction as

(2p′ + k)ρPρσ (k)(2p′ + k)σ

≈ 2p′ρPρσ (k)2p′σ ≈ −4

(
�p′2 − ( �p′ · �k)2

|�k|2

)
, (B2)

where we have used kρPρσ (k) = 0. By choosing the coor-
dinate axis �q = |�q|(sin θq cos φq, sin θq sin φq, cos θq), �k =
|�k|(sin θk cos φk, sin θk sin φk, cos θk) and �p′ along the z di-
rection, one can evaluate the terms within the braces of Eq. (B2)
as

�p′2 − ( �p′ · �k)2

|�k|2 ≈ p′2
z k2

k2 + p′2
z x2

≈ k2

x2
, (B3)

where x =: kz/p
′
z. Similarly, for the vector contraction with

the exchanged gluon term one can write

pμIm Pμνp
ν ≈ − E2q2

q2 + q2
z

≈ −pμ Im Qμνp
ν. (B4)

Other approximations which we use are qz ∼ |q|, |k| �
kz, qz � kz. The longitudinal component of the emitted and
radiated gluons obeys the following approximations: kz +
qz ≈ kz, p′

z + kz + qz ≈ p′
z + kz ≈ p′

z and p′
z + qz ≈ p′

z. For
the energy δ function we thus obtain

δ(E − E′ − ω − q0) ≈ δ(qz − q0). (B5)
While writing the above equation it has been assumed that

M2/2p′2
z � 1, (k2+m2

g)/2kz � 1, [(k + q)2 +
M2]/2p′

z � 1. Similarly, for the propagator one can write

(p′ + k)2 − M2 = 2

(
p′

z + (k + q)2 + M2

2p′
z

)

×
(

kz + k2 + m2
g

2kz

)

− 2[kzp
′
z + k · (−k − q)],

≈ k2 + M2x2 + m2
g

x
. (B6)

By using Eqs. (B2)–(B6) along with Eqs. (14) and (15),
Eq. (B1) reduces to

M>
1,0,a =16g4tatctcta

∫
dp′

0

2π

d4q

(2π )4

d4k

(2π )4

× k2(
k2 + M2x2 + m2

g

)2 (1 + fq)
E2q2

q2 + qz(τ )2

×
{

2 Im

(
1

q2−�L(q)

)
− 2 Im

(
1

q2−�T (q)

)}

× 2π
δ(p′

0 − E′)
2E′ 2π

δ(k0 − ω)

2ω

× 2πδ(p0−p′
0−k0−q0)θ

(
1 − q2

0

�q2

)
. (B7)

In the high-temperature plasma and small q0, the equilibrium
part f0(q) of the distribution function f (q) of Eq. (A2), can be
approximated as f0(q)[1 + f0(q)] 
 f0(q) 
 1/(1 + q0/T −
1) 
 T/q0 = T/qz. Since q2 = q2

0 − q2
z − q2 and using the δ

function, we can write q0 ∼ qz, q2 ≈ −q2. On performing the
p0, k0, and q0 integrations and in terms of the dimensionless
variable y ≡ y(q) of Eq. (A3), we finally get

M>
1,0,a = 8g4tatctctaET

∫
d3k

(2π )32ω

k2(
k2
⊥ + M2x2 + m2

g

)2

×
∫

q dq dy dφ

(2π )2

(
1 + 3


4sT 3

q2(1 − 3y2)

3(1 − y2)

)

×
{

2 Im �L(y)

[q2 + Re �L(y)]2 + [Im �L(y)]2

− 2 Im �T (y)

[q2 + Re �T (y)]2 + [Im �T (y)]2

}
. (B8)

It can be shown that the contribution from the other three
diagrams M>

1,0,b, M>
1,0,c, M>

1,0,d has the same result but for
the color factor. On summing all four diagrams and using
Eqs. (8) and (9), the heavy quark radiative energy loss with
Grad’s viscous correction for this set,

1

E

dE

dτ

∣∣∣∣
1,0

= 2g4T [ta,tc][tc,ta]

(2π )5DR

∫ 1

0
dx

∫ kmax

0
k dk

∫ 2π

0
dφk

×
∫ qmax

0
q dq

∫ 2π

0
dφq

∫ ymax

ymin

dy

× k2(
k2 + M2x2 + m2

g

)2

×
(

1 + 


4sT 3

q2(1 − 3y2)

1 − y2

)
FLT (q,y). (B9)

With the help of the commutator relation [ta,tc][tc,ta] =
3CRDR and defining the strong-coupling constant αs =
g2/(4π ), the coefficient in front of the integral can be written
as 3α2

s CRT /π3. We use the notation FLT ≡ FL − FT for the
difference in the polarization tensors FZ = 2 Im �Z(y){[q2 +
Re �Z(y)]2 + [Im �Z(y)]2}−1 with Z ≡ (L,T ). The upper
limits of integration are set to qmax = √

6ET and kmax =
2E

√
x(1 − x) [58].
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FIG. 8. Feynman diagram M1,2 for the heavy quark radiative
energy loss to first order in opacity (left) and the corresponding loop
diagram M1,2 (right). The notations are the same as in Fig. 7 except
that the emission of the gluon of momentum k occurs from the virtual
or exchanged gluon of momentum q.

APPENDIX C: COMPUTATION OF DIAGRAM M1,2 AND
CORRESPONDING RADIATIVE ENERGY LOSS

We present detailed calculations for a diagram correspond-
ing to M1,2 where both ends of the exchanged gluon q are
attached to the radiated gluon (see Fig. 8). The contribution of
this diagram is given below, M>

1,2 = 2 Im M1,2,

M>
1,2 = g4

2E
f bactbf

dactd

∫
d4p′

(2π )4

d4q

(2π )4

d4k

(2π )4

×(2π )4δ4(p−p′−k−q)D>(p′)H, (C1)

where we have defined

H = (2p−k′)μ(2p−k′)νDμρ(k′)D>
λα(k)D>

τβ(q)D∗
σν(k′)

×[gρτ (k′+q)λ + gλτ (k−q)ρ − gλρ(k′+k)τ ]

×[gσβ(k′+q)α + gαβ(k−q)σ − gασ (k′+k)β]. (C2)

We follow similar algebra for the vector contraction as used
in Eqs. (B2)–(B6). The fermionic propagator can then be
expressed as

(k+q)2 − m2
g = m2

g − q2 + 2

(
kz + k2 + m2

g

2kz

)

×
(

qz − k2 + M2x2 + m2
g

2kz

)

− 2kzqz − 2kq − m2
g,

≈ −[
(k+q)2 + M2x2 + m2

g

]
. (C3)

Furthermore, using if bactb = [ta,tc] and the viscous correction
due to Grad [see Eq. (A2)], one can compute the diagram of
Eq. (C1). The corresponding radiative energy loss in Grad’s

14-moment approximation,

1

E

dE

dτ

∣∣∣∣
1,2

= 2g4T [ta,tc][tc,ta]

(2π )5DR

∫ 1

0
dx

∫ kmax

0
k dk

∫ 2π

0
dφk

×
∫ qmax

0
q dq

∫ 2π

0
dφq

∫ ymax

ymin

dy

× (k + q)2[
(k + q)2 + M2x2 + m2

g

]2

×
(

1 + 


4sT 3

q2(1 − 3y2)

1 − y2

)
FLT (q,y). (C4)

APPENDIX D: COMPUTATION OF DIAGRAMS M1,1 AND
CORRESPONDING RADIATIVE ENERGY LOSS

We present calculations of the diagrams M1,1 where one of
the ends of the exchanged gluon q is attached to the radiated
gluon. This can be evaluated as the product of the previous
two diagrams (see Fig. 9). For the first diagram M>

1,1,a one
can express

M>
1,1,a ≈ g4

2E
f cbatbtcta

∫
d4p′

(2π )4

d4q

(2π )4

d4k

(2π )4

× 1

(p′+k)2 − M2 − iε
(2π )4δ4(p−p′−k−q)

×D>(p′)G, (D1)

where we denote

G ≈ [(2p − k′)μ(2p′ + k)ν(2p − q)σ

×Dμρ(k′)D>
νλ(k)D>

στ (q)]

×[gρτ (k′+q)λ + gλτ (k−q)ρ − gλρ(k′+k)τ ],

≡ G1 + G2 − G3. (D2)

Here,

G1 = [(2p−k′)μDμρ(k′)D>
ρσ (q)(2p−q)σ ]

×[(k′+q)λD>
λν(k)(2p′+k)ν], (D3)

G2 = [(2p−k′)μDμρ(k′)(k−q)ρ]

×[(2p′+k)νD>
νλ(k)D>

λσ (q)(2p−q)σ ], (D4)

G3 ≈ [(2p − k′)μDμρ(k′)D>
ρν(k)(2p′ + k)ν]

×[(k+k′)τD>
τσ (q)(2p−q)σ ]. (D5)

FIG. 9. Feynman diagram M1,1 for the heavy quark radiative energy loss to first order in opacity computed as a product of the diagrams in
Figs. 7 and 8 (left) and the corresponding loop diagram M1,1 (right).
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We consider only G3 as it gives a dominant contribution in the approximations involving the kinematics noted in Appendix B.
With the help of the above equations and viscous correction Eq. (A2), one can compute the energy loss for the diagram M>

1,1,a .
The energy loss for the other diagrams in this set M>

1,1,b, M>
1,1,c, M>

1,1,d can be calculated accordingly. On summing all four
diagrams we get the total energy loss for this set as

1

E

dE

dτ

∣∣∣∣
1,1

= 2g4T [ta,tc][tc,ta]

(2π )5DR

∫ 1

0
dx

∫ kmax

0
k dk

∫ 2π

0
dφk

∫ qmax

0
q dq

∫ 2π

0
dφq

∫ ymax

ymin

dy

× −2k · (k + q)[
(k + q)2 + M2x2 + m2

g

][
k2 + M2x2 + m2

g

](
1 + 


4sT 3

q2(1 − 3y2)

1 − y2

)
FLT (q,y). (D6)
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