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A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal
acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These
results include dN/dη measured in p + p, Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy
Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional
Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and
other thermodynamic quantities in those collisions.
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I. INTRODUCTION

Starting from Landau’s seminal paper [1] and the Hwa-
Bjorken solution [2,3], the application of relativistic hydro-
dynamics for high energy physics has a long and illustrious
history. Hydrodynamic calculations allow us to study the prop-
erties of the strongly interacting quark-gluon plasma (QGP or
sometimes denoted as sQGP). Relativistic hydrodynamic mod-
els provide a valid description of a broad range of experimental
data in heavy ion collisions [4,5] as well as proton-proton
and hadron-proton collisions [6,7]. One can use relativistic
hydrodynamic simulations to study the quark-hadron phase
transition [8,9], elliptic flow [10,11], viscosity [12], vorticity
[13], and many other aspects of high energy heavy ion
physics. Results from hydrodynamic calculations for p + p,
Cu+Cu, Au+Au, Pb+Pb collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) and the CERN Large Hadron
Collider (LHC) have provided a comprehensive comparison
between experimental data and models, such as the model
on 1 + 1-dimensional hydrodynamical description [14], the
QGP medium response to jet quenching [15]. Hydrodynamics
has also been used to provide a basic estimate for the initial
energy density using the Bjorken estimate [3], see for example
Refs. [16–18]. However, such estimates of the initial energy
density have to take into account the longitudinal acceleration.

Recently, based on the successful Buda-Lund hydrody-
namic model [4,19], a class of analytic, exact, 1 + d dimen-
sional, accelerating hydrodynamic solutions [20] has been
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presented. By applying these solutions to describe rapidity
density dN/dy results, one can extract the flow element’s
longitudinal acceleration parameter λ and obtain an improved
estimation for the initial energy density of QGP [21]. Such a
study [22,23] for accelerating hydrodynamics has also been
used to study p + p collisions at

√
s = 7 and 8 TeV from the

CMS and TOTEM Collaborations. In these cases, an advanced
estimate of the initial energy density was provided, yielding
approximately 0.6 GeV/fm3, for the average multiplicity.

In this paper, we apply the previously mentioned class
of acceleration hydrodynamic solutions of perfect relativistic
hydrodynamics [21] and combine it with the Buda-Lund model
[4,19] to estimate the initial energy density in various collision
systems and center of mass energies at RHIC and LHC.
We provide the charged particle pseudorapidity distributions
(dN/dη), applicable for the aforementioned collision systems.
Based on a hydrodynamic model with acceleration and the
experimental data, we extract acceleration parameter (λ) for
these different systems. The extracted results show that with
the increase of center of mass energy

√
s

NN
, the longitudinal

acceleration λ decreases, while at the same center of mass en-
ergy, it increases from peripheral to central collisions. We also
find that the change of λ with multiplicity is less pronounced
in case of

√
s

NN
= 2.76 TeV PbPb collisions. These features of

λ may offer insights to study the longitudinal acceleration also
in viscous hydrodynamics. Based on the obtained acceleration
parameter, we estimate the initial energy density, temperature,
and pressure for various collision systems at RHIC and LHC.

The organization of the paper is as follows. In Sec. II we
describe the hydrodynamic solutions and calculate pseudo-
rapidity densities. In Sec. III we detail the advanced initial
energy density estimate. In Sec. IV the centrality dependent
analysis is discussed. In Sec. V the accelerating hydrodynamic
solution is applied to describe RHIC and LHC data for
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various systems, and the initial energy density, pressure and
temperature estimates are presented. Finally, in Sec. VI a
summary and conclusions are given.

II. PSEUDORAPIDITY DISTRIBUTIONS
FROM HYDRODYNAMICS

In this section, we discuss how pseudorapidity densities
are obtained from perfect fluid hydrodynamics. We adopt the
following notations in this paper: gμν is the metric tensor, uμ

is the four-velocity, n is the density of a conserved charge, ε is
the energy density, p is the pressure, and T is the temperature.
We also utilize the equation of state (EoS) ε = κp, where κ
may depend on the temperature T . In the case of a perfect
hydrodynamics, the energy-momentum tensor in the Landau
frame is

T μν = (ε + p)uμuν − pgμν. (1)

The local continuity and energy-momentum conservation laws
are given as

∂ν(nuν) = 0, ∂νT
μν = 0. (2)

By projecting the above hydrodynamic conservation equations
into components orthogonal and parallel to uμ, one obtains the
relativistic Euler equation, the energy conservation equation,
and the continuity equation (for one conserved charge):

ω

1 − v2

d �v
dt

= −
(

∇p + �v ∂p

∂t

)
, (3)

1

ω

dε

dt
= −(∇�v) − 1

1 − v2

d

dt

v2

2
, (4)

d

dt
ln

n√
1 − v2

= −(∇�v). (5)

We use the well-known Rindler coordinates τ and η as indepen-
dent variables here, with τ = √

t2 − r2 being the coordinate
proper-time and ηS = 0.5 log((t + r)/(t − r)) the space-time
rapidity. For simplicity, we assume a temperature independent
EoS, κ �= κ(T ), and we search for spherically symmetric
solutions in 1 + d dimensions, xμ = (t,r1, . . . ,rd ), and r =√


ir
2
i . Then we parametrize the velocity with �(τ,ηS ) as

v = tanh �(τ,ηS ), where � is the rapidity of the flow element.
With calculations shown in detail in Ref. [20], v = tanh(ληs),
one obtains exact analytic solutions for the above presented
hydrodynamic equations, which depends on the acceleration
parameter λ [21]. Table I presents the parameters for five
different classes of accelerating hydrodynamic solutions, valid

TABLE I. The five different cases of solutions, from Refs. [20,21].

case λ d κ φλ

(a) 2 ∈ R d 0
(b) 1

2 ∈ R 1 k+1
k

(c) 3
2 ∈ R 4d−1

3
k+1
k

(d) 1 ∈ R ∈ R 0
(e) ∈ R 1 1 0

for different values of acceleration parameter λ, number of
spatial dimensions d, EoS parameter κ and auxiliary rapidity
parameter φλ, as detailed in Table I.

In all cases, the velocity field and the pressure takes the
following form:

v = tanh ληS , (6)

p = p0

(
τ0

τ

)λd κ+1
κ

(
cosh

(
ηS

2

))−(d−1)φλ

, (7)

where p0 and τ0 define the initial values for pressure and
thermalization time. The properties of these accelerating, exact
solutions are detailed in Ref. [21].

Combining accelerating hydrodynamics and the Cooper-
Frye flux term [24] in the Boltzmann approximation,
one can obtain momentum distributions as a function
of four-momentum components (E,px,py,pz), or of the

transverse momentum pT =
√

p2
x + p2

y and pseudorapidity

η = 0.5 log((p + pz)/(p − pz)) or rapidity y = 0.5 log((E +
pz)/(E − pz)). The pseudorapidity distribution dN/dη
[19,20] in terms of the rapidity distribution dN/dy can be
given as as [20,22,23]

dN

dη
� p̄T

Ē

dN

dy

∣∣∣∣
y=η

= p̄T cosh η√
m2 + p̄2

T cosh2 η

dN

dy

∣∣∣∣∣∣
y=η

, (8)

where m is the average mass of the charged particles, p̄T is
the mean transverse momentum, and the Jacobian connecting
rapidity and pseudorapidity has been utilized [20]. Based on
the Buda-Lund hydrodynamic model [4,19], in the region of
pT < 2 GeV, the relation between mean transverse momentum
and the effective temperature Teff = Tf + m〈uT 〉2 at a given
rapidity y can be written as

p̄T = Teff

1 + σ 2

2 (y − ymid)2
, (9)

where σ parametrizes the effective temperature gradient, and
ymid is the central rapidity. The rapidity distribution for ymid =
0, as calculated in Refs. [20–23], is then

dN

dy
� N0 cosh− α

2 −1

(
y

α

)
exp

[
− m

Tf

coshα

(
y

α

)]
, (10)

where α = 2λ−1
λ−1 is a derived acceleration parameter, Tf is

the freeze-out temperature with typical values around 90–170
MeV, 〈uT 〉 is a measure of the strength of the radial flow [4,19],

and N0 =
√

2πmT 3
f

λ(2λ−1)
S⊥mτf

2πh̄
is a normalization constant, with S⊥

being the transverse cross section of the fluid. In Sec. V, the
above calculated dNch/dη approximation is used to determine

TABLE II. Fit parameters for 7 and 8 TeV pp data, from Ref. [23].
Auxiliary values of Tf = Teff , m̄ = 0.14 GeV have been utilized,
based on Refs. [16,19]

√
s dN

dη
|
η=η0

λ σ Teff [GeV] χ 2/NDF

7 TeV 5.78±0.01 1.073±0.001 0.81±0.05 0.18 0.18/22
8 TeV 5.36±0.02 1.067±0.001 0.86±0.13 0.17 0.30/28
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the acceleration parameter λ for the various collision systems
and energies.

III. THE ENERGY DENSITY ESTIMATE

An important consequence of the previously discussed
result for the pseudorapidity density is that it allows for an
improved initial energy density estimate. The accelerationless
Hwa-Bjorken-flow yields an initial energy density estimate εBj,
the Bjorken estimate [3]. In this case, a thin transverse overlap
area of the two nucleus at midrapidity at the thermalization
time (τ = τ0) is considered, and the energy density is then
estimated from the finial state [17]. The Bjorken estimate can
thus be expressed at midrapidity as

εBj = 1

S⊥τ0

d〈E〉
dη

= 〈E〉
S⊥τ0

dN

dy
, (11)

where S⊥ can be understood as the transverse overlap area of
the colliding nuclei, and τ0 is the proper-time of thermalization,
which was estimated by Bjorken to be τ0 = 1 fm/c. For the
most central collisions of identical nuclei, the transverse area
can be approximated as S⊥ = πR2 with R being the nuclear
radius, R = 1.18A1/3 fm. For noncentral collisions, this can
be calculated via Glauber calculations [25,26], as we will
discuss subsequently. The volume element of this system
is dV = (R2π )τdηS , where dηS is the space-time rapidity
element corresponding to the volume. The energy content in
this volume is dE = 〈E〉dN . One may then utilize experi-
mental dE/dy results, e.g., from Refs. [17,18] to estimate
the Bjorken energy density. Alternatively, average transverse

mass or transverse momentum may also be used, via 〈mt 〉 =√
〈pT 〉2 + m2, determined from π±, K±, p, and p̄ transverse

momentum distributions at midrapidity [16]. Note that in the
present paper we try to use the experimental information on
dET /dy whenever available, and we fix the values of Tf

and Teff to constant values, as we do not attempt to analyze
the transverse momentum distributions. However, we have
checked that these two methods provide similar results within
two standard deviations for the collisions investigated in this
manuscript.

For accelerationless, boost-invariant Hwa-Bjorken flow,
the initial and final space-time rapidities coincide with the
momentum rapidity: ηS,0 = ηS,f = y. However, in case of lon-
gitudinally accelerating flow, one has to apply a correction
to take into account the acceleration effects on the energy
density. Given an acceleration parameter λ ∈ R, the maximal
particle production occurs at y �= ηS,f , which yields a correction
factor of ∂y

∂ηS,f
= (2λ − 1). The volume element is also changed

by a factor of
∂ηS,f

∂ηS,0
= ( τf

τ0
)λ−1, see Ref. [21] for details. The

initial energy density that corresponds to a given final state
is also dependent on the EoS parameter κ . A conjecture that
is consistent with known exact results for the λ = 1 or the
κ = 1 case, and also consistent with numerical results, was put
forward in Ref. [20]. This conjectured initial energy density is
given by a corrected estimate εcorr as [23]

εcorr = (2λ − 1)

(
τf

τ0

)λ−1(
τf

τ0

)(λ−1)(1− 1
κ

)

εBj. (12)
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FIG. 1. Left: Charged particle pseudorapidity distributions measured bythe CMS [30] and TOTEM [31] Collabroations at 7 TeV (first row)
and 8 TeV (second row), compared to calculations from the relativistic hydrodynamic solution presented in this paper, similarly to Ref. [23].
Right: The correction factor εcorr/εBj is shown as a function of freeze-out time versus thermalization time (τf /τ0) for the central collision (the
dashed lines represent the uncertainty).
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TABLE III. Initial thermodynamic quantities obtained by the
hydrodynamic fits to 7 and 8 TeV pp data from the TOTEM and
CMS Collaborations, using τf /τ0 = 2.

√
s εBj[GeV/fm3] εcorr[GeV/fm3] Tcorr[GeV] Pcorr[GeV]

7 TeV] 0.51±0.01 0.64±0.01 0.16±0.001 0.06±0.001
8 TeV 0.52±0.01 0.64±0.01 0.15±0.001 0.06±0.001

This advanced estimate is based on the acceleration param-
eter λ (determined from pseudorapidity density measure-
ments), initial proper time τ0, freeze-out proper time τf . In
Refs. [20,21], the accelerating hydrodynamic model was fitted
to rapidity distributions measured by BRAHMS in 200 GeV
0–5 % centrality Au+Au collisions, and assuming τf /τ0 =
8 ± 2, an advanced estimate of εcorr � (10.0 ± 0.5) GeV/fm3

was obtained for κ = 1, while for realistic κ ≈ 7–10 values
εcorr � (14.5 ± 0.5) GeV/fm3 was obtained in Ref. [20].

IV. CENTRALITY DEPENDENT ENERGY
DENSITY ESTIMATE

In case of noncentral collisions, several properties used in
estimating the initial energy density are different from the
most central collisions. With the increase of impact parameter,
the volume of the created fireball decreases. Based on the
experimental data [17,18], one can use the Glauber Monte
Carlo model of Ref. [27] to obtain S⊥, the transverse overlap
of the two colliding nuclei. Also, it is necessary to discuss
the change of initial proper time τ0 for different collision
energies and centralities. It is reasonable to assume that τ0 is
anticorrelated with

√
s

NN
, and is not necessarily correlated with

the centrality at a fixed
√

s
NN

. The initial central temperature
T0 is inversely related to the initialization time τ0, and T0

values of 500 MeV and 650 MeV for RHIC and LHC [11]
may be used then to estimate τ0. This relationship results
in a rough estimate for the value of proper time τ0. Note
however, that τ0 = 0.6 fm/c was given in Ref. [11] for 130
GeV Au+Au collisions. In our model, freeze-out happens on
a hypersurface pseudo-orthogonal to the four-velocity field
when the temperature at η = 0 reaches a given Tf value
[21]. With considerations of initial equilibration time τ0 and
freeze-out condition, the τf /τ0 ratio is directly correlated with√

s
NN

, but there is an inverse correlation between τf and the
impact parameter b. Here, for simplicity, we follow Bjorken’s

TABLE IV. Fit parameters for 130 GeV Au+Au data, with their
systematic uncertainties. Auxiliary values of Teff = 0.18 GeV, Tf =
0.09 GeV, m̄ = 0.24 GeV have been utilized, based on Refs. [16,19].

Centrality [%] dN
dη

|
η=η0

λ σ χ 2/NDF

0–6 563.9±59.5 1.29±0.06 1.36±0.03 24.5/51
6–15 437.6±41.2 1.27±0.08 1.40±0.03 24.9/51
15–25 230.6±18.2 1.27±0.02 1.44±0.04 88.4/51
25–35 152.5±13.1 1.26±0.03 1.50±0.04 128.8/51
35–45 98.5±7.8 1.26±0.03 1.55±0.06 180.6/51
45–55 67.8±5.5 1.24±0.04 1.52±0.08 174.5/51

TABLE V. Fit parameters for 200 GeV Au+Au data, with their
systematic uncertainties. Auxiliary values of Teff = 0.18 GeV, Tf =
0.09 GeV, m̄ = 0.24 GeV have been utilized, based on Refs. [16,19]

Centrality [%] dN
dη

|
η=η0

λ σ χ 2/NDF

0–6 642.6±61 1.24±0.04 1.44±0.10 6.6/51
6–15 498.5±45 1.25±0.04 1.51±0.08 18.5/51
15–25 347.5±32 1.24±0.04 1.51±0.12 28.0/51
25–35 243.2±22 1.24±0.03 1.55±0.08 66.7/51
35–45 151.5±15.5 1.23±0.02 1.56±0.03 87.4/51
45–55 91.8±8.8 1.24±0.03 1.52±0.10 17.0/51

estimate for the initial energy density, and assume the proper
time τ0 = 1 fm/c for different centrality dependence collisions
as usual. When acceleration effects become important, the
corrected initial energy density estimate is given in Eq. (12),
which contains the influence of τ0 and τf correlations [28]. For
different centralities and collision energies, the acceleration
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FIG. 2. Acceleration parameter λ for
√

s = 7 and 8 TeV p +
p collisions is given at the average multiplicity of the measured
pseudorapidity distributions. The calculated multiplicity dependence
of the initial energy density, temperature and pressure is indicated
for various EoS parameter κ values. Systematic uncertainties are also
indicated, stemming from the determination of τf /τ0, λ, dN/dη, as
well as from the systematic uncertainties of the data.
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TABLE VI. Fit parameters for 200 GeV Cu+Cu data, with their
systematic uncertainties. Auxiliary values of Teff = 0.18 GeV, Tf =
0.09 GeV, m̄ = 0.24 GeV have been utilized, based on Refs. [16,19].

Centrality [%] dN
dη

|
η=η0

λ σ χ 2/NDF

0–6 179.5±17.5 1.22±0.025 1.43±0.07 14.58/51
6–15 139.3±12.8 1.21±0.036 1.43±0.06 21.39/51
15–25 99.4±9.6 1.21±0.030 1.46±0.06 43.3/51
25–35 67.6±6.3 1.20±0.025 1.45±0.07 60.67/51
35–45 45.3±3.95 1.20±0.029 1.48±0.06 77.9/51
45–55 28.3±3.27 1.17±0.022 1.17±0.08 85.9/51

parameter λ, the transverse area S⊥, and the ratio τf /τ0 are
different. The experimentally given dE/dy values may then
also be utilized instead of 〈E〉dN/dy, to arrive at

εcorr = (2λ − 1)

(
τf

τ0

)λ−1(
τf

τ0

)(λ−1)(1− 1
κ

) 1

S⊥τ0

dE

dy
. (13)

The estimation of Eq. (13) gives then modification of the initial
energy density for various λ, S⊥, τ0, τf , and dE/dy values, in
case of a centrality dependent analysis.

V. ANALYSIS OF PROTON-PROTON AND
NUCLEUS-NUCLEUS COLLISIONS AT LHC

AND RHIC ENERGIES
Detailed measurements of the charged particle pseudora-

pidity distribution dN/dη at different
√

s
NN

are available at
RHIC [17,29] and at the LHC [18,26]. Hence one can extract
the acceleration parameter of these systems. In this section,
we analyze a series of dN/dη datasets, obtain acceleration
parameter λ, and calculate the energy density correction ratio
εcorr/εBj (as a function of τf /τ0). We then give the improved
estimate of the initial energy density εcorr, the initial temper-
ature and the initial pressure with different equations of state
(different κ values) as a function of multiplicity.

Before showing the results for nucleus-nucleus collisions,
let us recapitulate and show the results for LHC pp collisions
[23], measured by the CMS [30,32] and TOTEM [31,33]
Collaborations at

√
s = 7 TeV and 8 TeV. From the fits to CMS

TABLE VII. Fit parameters for 2.76 TeV Pb+Pb data, with their
systematic uncertainties. Auxiliary values of Teff = 0.27 GeV, Tf =
0.09 GeV, m̄ = 0.24 GeV have been utilized, based on Refs. [16,19].

Centrality [%] dN
dη

|
η=η0

λ σ χ 2/NDF

0–5 1615±39 1.05±0.005 0.92±0.05 5.6/39
5–10 1318±32 1.05±0.003 0.95±0.03 4.2/39
10–20 982±24 1.05±0.003 0.94±0.04 3.9/39
20–30 666±16 1.04±0.003 0.91±0.03 3.0/39
30–40 422±11 1.04±0.001 0.88±0.04 3.4/31
40–50 259.1±6.5 1.04±0.002 0.92±0.04 4.2/31
50–60 147.1±3.6 1.04±0.001 0.91±0.03 4.5/31
60–70 74.7±1.8 1.04±0.005 0.87±0.08 9.8/31
70–80 34.8±0.86 1.04±0.003 0.94±0.07 8.1/31
80–90 13.4±0.35 1.03±0.005 0.99±0.09 10.2/31

TABLE VIII. Thermodynamic quantities and their systematic
uncertainties obtained by the hydrodynamic fits to

√
s

NN
= 130 GeV

Au+Au data from PHOBOS.

Centrality εBj εcorr Tcorr Pcorr

[%] [GeV/fm3] [GeV/fm3] [GeV] [GeV]

0–6 4.74±0.49 12.48±3.13 0.58±0.03 1.25±0.25
6–15 4.12±0.42 10.29±2.51 0.55±0.02 1.03±0.18
15–25 3.45±0.37 8.62±1.68 0.52±0.02 0.86±0.15
25–35 2.78±0.32 6.73±1.05 0.49±0.02 0.67±0.08
35–45 2.14±0.27 5.18±0.77 0.46±0.02 0.51±0.06
45–55 1.52±0.20 3.44±0.56 0.42±0.02 0.34±0.04

and TOTEM dN/dη data, shown in the left panel of Fig. 1 and
detailed in Table II, longitudinal acceleration parameters λ =
1.073 ± 0.001 (

√
s = 7 TeV) and λ = 1.067 ± 0.001 (

√
s = 8

TeV) are obtained. These yield an estimate for the initial
energy density εcorr = 0.640 GeV/fm3 at 7 TeV, and εcorr =
0.644 GeV/fm3 for 8 TeV. Let us note, that εcorr as well
as εBj is directly proportional to the charged particle multi-
plicity dN/dη, so in large multiplicity event classes, εBj � 1
GeV/fm3 initial energy density can be reached, as illustrated
in Fig. 2. We may also estimate the initial temperature and
pressure, based on the ε ∝ T 4 relationship and the EoS
relationship ε = κp [34,35]. We may use κ = 10, i.e., a speed
of sound of cs ≈ 0.32 [36–38]. Values are given in Table III,
and for more details, see Ref. [23].

Let us then move to nucleus-nucleus collisions. We analyze
RHIC PHOBOS dN/dη data measured in

√
s

NN
= 130 GeV

Au+Au [29], 200 GeV Au+Au [29], and 200 GeV Cu+Cu [29]
collisions of various centralities. We also analyze LHC ALICE
dN/dη data [18] measured in

√
s

NN
= 2.76 TeV Pb+Pb colli-

sions of various centralities. Fit results to these data are shown
in Fig. 3, and the fit parameters and properties are given in
Tables IV–VII. Note that in this case and in all the subsequent
cases, no statistical uncertainty was given experimentally,
and also the point-by-point fluctuating part of the systematic
uncertainty was not given. In order to be able to perform fits,
we assumed a 5% fluctuating systematic uncertainty, and used
this value when minimizing the χ2 during the fits. We then
used the full systematic uncertainties to estimate the systematic
uncertainty of our parameters: we performed fits to datapoints
shifted up and down by one unit of systematic uncertainty. In

TABLE IX. Thermodynamic quantities and their systematic un-
certainties obtained by the hydrodynamic fits to

√
s

NN
= 200 GeV

Au+Au data from PHOBOS.

Centrality εBj εcorr Tcorr Pcorr

[%] [GeV/fm3] [GeV/fm3] [GeV] [GeV]

0–6 5.42±0.54 12.33±2.64 0.57±0.03 1.23±0.21
6–15 4.70±0.48 11.03±2.06 0.56±0.02 1.10±0.16
15–25 3.87±0.41 8.81±1.61 0.53±0.02 0.88±0.12
25–35 3.10±0.37 7.06±1.07 0.50±0.02 0.71±0.09
35–45 2.40±0.30 5.27±0.77 0.53±0.02 0.53±0.06
45–55 1.71±0.24 3.88±0.57 0.39±0.02 0.39±0.05
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FIG. 3. Plots in the left column show dNch/dη data measured by PHOBOS in 130 GeV Au+Au collisions (first row), 200 GeV Cu+Cu
collisions (second row), 200 GeV Au+Au collisions (third row), and by ALICE in 2.76 TeV Pb+Pb collisions (fourth row). These data are
compared to the hydromodel result by the fit described in the paper. Plots in the right column show the εcorr/εBj correction factor, as a function
of the ratio of freeze-out time and thermalization time τf /τ0, for the most central collisions. Dashed lines represent the uncertainty.
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FIG. 4. Acceleration parameter λ, initial energy density, temper-
ature and pressure is indicated as a function of central multiplicity
density and EoS parameter κ , for

√
s

NN
= 130 GeV Au+Au colli-

sions. Systematic uncertainties are also indicated, stemming from the
determination of τf /τ0, λ, dN/dη, as well as from the systematic
uncertainties of the data.

all the figures and tables, the parameter uncertainties represent
this systematic uncertainty, as the statistical uncertainty was
much smaller. Under these assumptions, all the analyzed data
(all energies and centralities) are statistically well represented
by the fitted curves, hence we may proceed to interpret the
parameters. From the obtained acceleration values, we then
calculate the energy density correction ratio εcorr/εBj, these
are shown in the right column plots of Fig. 3, as a function
of τf /τ0. In all cases, the initial energy density is strongly
underestimated by the Bjorken model. The reason for this
is the longitudinal acceleration, driven by pressure gradients
and volume expansion [20]. As shown in Figs. 4–7 and
Tables IV–II, the acceleration parameter λ shows a clear trend:
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FIG. 5. Acceleration parameter λ, initial energy density, temper-
ature and pressure is indicated as a function of central multiplicity
density and EoS parameter κ , for

√
s
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= 200 GeV Au+Au colli-

sions. Systematic uncertainties are also indicated, similarly to Fig. 4.
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√
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= 200 GeV Cu+Cu colli-

sions. Systematic uncertainties are also indicated, similarly to Fig. 4.

it decreases with collision energy from 1.29 ± 0.06 (130 GeV
Au+Au, most central collisions) to 1.05 ± 0.01 (2.76 TeV
Pb+Pb, most central collisions). The multiplicity dependence
of λ is also similar in the RHIC cases: a roughly 5% decrease
in λ is seen for midcentral collisions, as compared to the most
central case. However, for the LHC Pb+Pb data, approximately
constant values (around λ ≈ 1.05) are observed. Slightly lower
λ values are obtained from from 7 and 8 TeV p + p data—
acceleration seems to be much smaller at these high energies,
in other words, almost perfect longitudinal Bjorken or Hubble
flow is formed in these collisions. However, due to lack of
centrality dependent dN/dη data in p + p collisions at 7 and
8 TeV, for the analysis of these collisions we have assumed
that λ is approximately independent of mean multiplicity.
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FIG. 7. Acceleration parameter λ, initial energy density, temper-
ature and pressure is indicated as a function of central multiplicity
density and EoS parameter κ , for

√
s

NN
= 2.76 TeV Pb+Pb collisions.

Systematic uncertainties are also indicated, similarly to Fig. 4.
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TABLE X. Thermodynamic quantities and their systematic
uncertainties obtained by the hydrodynamic fits to

√
s

NN
= 200 GeV

Cu+Cu data from PHOBOS.

Centrality εBj εcorr Tcorr Pcorr

[%] [GeV/fm3] [GeV/fm3] [GeV] [GeV]

0–6 3.06±0.34 6.53±0.90 0.48±0.02 0.65±0.09
6–15 2.62±0.31 5.42±0.72 0.47±0.02 0.54±0.07
15–25 2.16±0.39 4.46±0.58 0.45±0.02 0.45±0.06
25–35 1.75±0.37 3.49±0.41 0.41±0.02 0.35±0.04
35–45 1.41±0.21 2.82±0.34 0.40±0.02 0.28±0.03
45–55 1.17±0.20 2.13±0.22 0.37±0.02 0.21±0.02

We can estimate the initial energy density of nucleus-
nucleus collisions by assuming τf /τ0 = 6 ± 2 conservatively,
based on Refs. [17,39], using multiplicities from the dN/dη
data, and in case of ALICE data, using transverse energy
distributions from Ref. [26]. We may obtain the S⊥ values
from Refs. [17,25] and utilize the EoS parameter κ = 10,
corresponding to cs ≈ 0.32 [36–38]. We again estimate the
temperature utilizing the ε ∝ T 4 relationship, similarly to
Ref. [23]. We estimate the pressure using the EoS ε = κp.
Alternatively, for comparison, we also utilize a very hard EoS
of κ = 1 [21]. The results are shown in Figs. 4–7, with all
the values given in Tables VIII–XI. We observe that the initial
energy density is increasing with multiplicity (almost a factor
of 3 from central to midperipheral) and collision energy. The
Bjorken estimate increases by roughly a factor of 3 when
going from RHIC to LHC, but the corrected estimate, due to
smaller acceleration, indicates a much smaller increase. While
εcorr/εBj may reach values of nearly 3 at RHIC, the change
is only 20–30 % at the LHC. We also observe that the initial
energy density is decreasing with system size, as seen from
a 200 GeV Au+Au to Cu+Cu comparison. The multiplicity
dependence of the initial temperature is qualitatively similar,
albeit shows smaller changes, with values ranging from 0.35
GeV to 0.62 GeV. Pressure behaves similarly to the energy
density, due to the linear EoS relationship.

TABLE XI. Thermodynamic quantities and their systematic un-
certainties obtained by the hydrodynamic fits to

√
s

NN
= 2.76 TeV

Pb+Pb data from ALICE.

Centrality εBj εcorr Tcorr Pcorr

[%] [GeV/fm3] [GeV/fm3] [GeV] [GeV]

0–5 12.53±0.44 15.07±0.81 0.60±0.02 1.50±0.08
5–10 11.13±0.39 13.39±0.71 0.59±0.02 1.34±0.07
10–20 10.14±0.34 12.20±0.64 0.57±0.02 1.21±0.06
20–30 8.29±0.32 9.97±0.57 0.54±0.02 1.00±0.06
30–40 6.61±0.25 7.67±0.46 0.51±0.02 0.77±0.05
40–50 5.07±0.19 5.87±0.34 0.48±0.02 0.58±0.03
50–60 3.61±0.15 4.18±0.26 0.44±0.02 0.42±0.03
60–70 2.47±0.09 2.86±0.17 0.40±0.01 0.27±0.02
70–80 1.76±0.10 2.04±0.16 0.37±0.01 0.20±0.02

VI. CONCLUSIONS

New results were shown on pseudorapidity distributions and
the initial energy density estimate from the previous known
exact accelerating solutions of hydrodynamics. The model
result was successfully fitted to pseudorapidity densities from
PHOBOS and ALICE. From these fits, we extracted a series of
acceleration parameters λ for different systems at RHIC and
LHC energies. Taking the acceleration effect into account and
refining the Bjorken model, we obtained an initial energy den-
sity estimation εcorr for different systems, significantly larger
than the conventional Bjorken estimate. For this estimate, we
utilized transverse area values from MC Glauber simulations.
We found that there are clear trends in both collision energy and
multiplicity: the acceleration is the largest in central collisions,
and it decreases with increasing center of mass energy. The
resulting corrected energy density estimate indicates that the
energy density is increasing with collision energy and system
size (nucleon size and centrality as well). We find that energy
densities more than 10 GeV/fm3 have been reached in central
Au+Au collisions at RHIC and central Pb+Pb collisions at
the LHC. We furthermore observe, that the calculated initial
temperature and pressure depends strongly on the assumed
equation of state, and hence these quantities shall be estimated
based on penetrating probes (such as direct photons) or models
that describe observables sensitive to the initial temperature.
For now, we have utilized the average value for the speed of
sound, cs ≈ 0.32, as determined from PHENIX measurements
in

√
s

NN
= 200 GeV Au+Au collisions [36–38], that leads to

a significant EoS dependent increase.
Our results indicate that the longitudinal expansion dy-

namics in heavy ion collisions at RHIC and LHC as well
as proton-proton collisions at LHC energies can be described
using the same exact, accelerating and finite solution of per-
fect fluid hydrodynamics. Our quantitative investigations also
indicate that proton-proton collisions with about two times the
average multiplicity can produce initial energy densities that
are larger than 1 GeV/fm3, the critical energy believed to be
needed for the production of strongly interactive quark-gluon
plasma. Hence one of the necessary conditions for quark-gluon
plasma creation is satisfied in high multiplicity proton-proton
collisions at LHC. The estimation of viscous corrections is
currently under investigation but goes beyond the scope of the
present paper.
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