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Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter
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We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface
tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested
equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground
state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters
we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical
temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the
physically most justified value of nuclear matter critical temperature is 15.5–18 MeV, the incompressibility
constant is 270–315 MeV and the hard-core radius of nucleons is less than 0.4 fm.
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I. INTRODUCTION

The determination of basic characteristics of symmetric
nuclear matter and possible interrelations between them is
of fundamental importance [1–6] not only for nuclear spec-
troscopy and for nuclear physics of intermediate energies,
but also for nuclear astrophysics in view of possible phase
transformations in compact astrophysical objects (neutron
stars, hypothetical hybrid, and quark stars). From the practical
point of view such characteristics of infinite nuclear matter as
the normal density n0 at zero pressure and zero temperature, its
binding energy per nucleon W0, and its incompressibility factor
K0 are of great importance for various phenomenological
models because just these characteristics are used to fix the
model parameters. Furthermore, such parameters of the nuclear
liquid-gas transition phase diagram as the critical temperature
Tc, the critical particle number density nc, and critical pressure
pc at the endpoint and the values of critical exponents are
important not only for the theory of critical phenomena, but
they are also important for a verification of the novel theoretical
approaches to study the phase transitions in finite systems with
strong interaction [5,7–11].

Although some of these parameters, namely n0 and W0 are
known well, the model-independent experimental determina-
tion of all other aforementioned characteristics is extremely
difficult, since these parameters correspond to an infinite
nuclear matter, while in the experiments one can study only
the nuclei of finite size. Therefore, any relations or conditions
that connect these characteristics are very important both for
nuclear theory and for experiment. Recently, a comprehensive
analysis of the relation between the critical temperature of
hot nuclear matter and incompressibility factor of its ground
state, i.e., at the particle number density n0 and vanishing
temperature, was performed in Refs. [12,13] for relativistic

mean-field (RMF) models. One of the important constraints
imposed on the RMF models discussed in Refs. [5,12] is
the so-called proton flow constraint [14]. This constraint [14]
requires that at vanishing temperature and high baryonic charge
densities the realistic equations of state (EoS) are soft, i.e., it
sets rather strong restrictions on the particle number density
dependence of pressure from two to about five values of
normal nuclear density. As a result, even having about ten or
more adjustable parameters, only 104 RMF models out of 263
analyzed in Ref. [5] are able to obey this constraint. It is clear
that so many model parameters do not allow us to perform
a systematic study of the flow constraint influence on the
characteristics of symmetric nuclear matter critical endpoint
(CEP) for the RMF models.

At the same time, two novel approaches to account for
the hard-core repulsion in relativistic quantum gases were
suggested recently [15,16]. Their advantage is that the novel
EoSs allow one to go beyond the usual van der Waals ap-
proximation [15,16]. However, the EoS developed in Ref. [15]
employs the parametrizations of attractive interaction, which
are typical for classical gases and, as a result, even the
minimal value obtained for the incompressibility factor K0

is somewhat above its experimental range of nuclear matter
[5,12,13,17], while the values of nucleon hard-core radius
are too large. Furthermore, in Ref. [16] it is shown that for
the same parametrization of the mean-field attractive potential
and temperatures below 1 MeV the EoS that belong to the
class suggested in Ref. [16] are essentially softer than their
analogs developed in Ref. [15]. Therefore, in order to study
the influence of the proton flow constraint it is natural to
use a softer EoS from the class suggested in Ref. [16]. For
this purpose here we formulate a family of four-parametric
EoSs with the phenomenological attraction similar to that in
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Ref. [18], which are normalized to the properties of nuclear
matter ground state and satisfy the proton flow constraint.
Using this EoS family, we perform a systematic investigation of
restrictions on the critical temperature Tc and incompressibility
factor K0 generated by the flow constraint [14]. This study
allows us to show that the critical compressibility factor Zc of
nuclear matter can be essentially lower than the typical values
0.28–0.31 obtained by the RMF models [13] and, hence, it
can be similar to the Zc values of ordinary nonorganic liquids.
Based on these results, we believe that the present approach
enables us to make a bridge between the nuclear matter EoS
and the ones for ordinary liquids.

The work is organized as follows. The main ingredients of
a novel EoS are given in Sec. II. Section III is devoted to a
systematic analysis of the proton flow constraint influence on
the nuclear matter EoS and its CEP properties. Our conclusions
are given in Sec. IV.

II. EQUATION OF STATE

Since we develop a phenomenological model of nuclear
matter, we are not bound by the Lagrangian choice and,
hence, we consider only the nucleons assuming that effect of
the � and heavier baryonic resonances, which can appear at
high densities is absorbed in the mean fields. The hard-core
repulsion in the present model is treated within a framework
of the induced surface tension � developed in Ref. [9]. The
model pressure p and � are a solution of the system (R is the
hard-core radius on nucleons)

p = pid (T ,νp) − pint[nid (T ,νp)], (1)

� = R pid (T ,ν�), (2)

where pid (T ,μ) is the grand canonical pressure of noninter-
acting pointlike fermions

pid (T ,ν) = T g

∫
d3p

(2π )3
ln

[
1 + exp

(
ν −

√
p2 + m2

T

)]
, (3)

and the particle number density is defined as

nid (T ,ν) = ∂pid

∂ ν
= g

∫
d3p

(2π )3

1

exp
(√

p2+m2−ν

T

) + 1
. (4)

Here the system temperature isT ,m = 940 MeV is the nucleon
mass and the nucleon degeneracy factor is g = 4.

The term −pint in Eq. (1) represents the mean-field con-
tribution to the pressure caused by an attraction between the
nucleons. Of course, the repulsive scattering channels are also
present in nuclear matter. However, at densities below nmax �
0.75 fm−3, which is the maximal density of the flow constraint
[14], they are suppressed by the presence of attractive ones.
Indeed, for such value of particle number density the average
nucleon separation is about rmin = ( 3

4πnmax
)
1/3 � 0.7 fm. At

such a separation the microscopic nucleon-nucleon potential is
attractive [19–21], while the residual repulsive interaction can
be safely accounted for by the particle hard-core repulsion.

The quantity � in Eq. (2) is the surface tension induced
by the hard-core repulsion between the nucleons and, hence,
in Ref. [9] it was called the induced surface tension (IST)

in order to distinguish it from the eigensurface tension of
ordinary nuclei. Appearance of the IST is caused by the fact
that virial expansion of the pressure includes the terms that are
proportional not only to the eigenvolume V0 = 4π

3 R3, but also
to the eigensurface S0 = 4πR2 of a particle with the hard-core
radius R. The surface term contribution is accounted for by
the induced surface tension coefficient �. The meaning of
this quantity as the surface tension coefficient can be easily
seen from the effective chemical potentials, which are defined
through the baryonic chemical potential μ as

νp = μ − pV0 − �S0 + U [nid (T ,νp)], (5)

ν� = μ − pV0 − α�S0 + U0, (6)

where �, indeed, is conjugated to S0 and the attractive
mean-field potentials are U [nid (T ,νp)] and U0 = const. From
these equations we conclude that the effects of hard-core
repulsion are only partly accounted for by the eigenvolume
of particles, while the rest comes through their eigensurface
and, consequently, through the IST coefficient (for a detailed
discussion see Ref. [9]). It is also worth to note that the presence
of the ideal gas pressures pid in Eqs. (1)–(2) is typical for
EoSs, which are formulated in the grand canonical ensemble
formalism. For example, the well known van der Waals EoS
without attraction can be written as pV dW = pid (T ,μ − 4pV0)
[22].

The system (1)–(6) is a concrete realization of the quantum
model suggested in Ref. [16], where the self-consistency
condition

pint(n) = nU (n) −
∫ n

0
dn′ U (n′), (7)

was thoroughly discussed for the EoS of the same class as the
one defined by Eqs. (1)–(6). Equation (7) relates the interaction
pressure pint[nid (T ,νp)] and the corresponding mean-field
potential U [nid (T ,νp)] and it guarantees the fulfillment of all
thermodynamic identities [16].

Note that by substituting the constant potential
U0[nid (T ,ν�)] = const into the consistency condition (7)
one automatically obtains that the corresponding mean-field
pressure should be zero, i.e., p̃int[nid (T ,ν�)] = 0. Different
density dependence of the attractive mean-field potentials
U (nid ) and U0 reflects the different origins of their forces,
namely U [nid ) is generated by the bulk part of interaction,
while U0 is attributed to the surface part. The meaning of U0

potential can be understood after the nonrelativistic expansion
of the particle energy

√
m2 + k2 � m + k2

2m
in the momentum

distribution function in Eq. (4): U0 decreases the nucleon mass
to the value m − U0, which resembles the RMF approach.

Finding the partial μ derivatives of Eqs. (1) and (2), one can
get the particle number density from the usual thermodynamic
identity

n = ∂p

∂μ
= nid (T ,νp)

1 + V0nid (T ,νp) + 3 V0 nid (T ,ν� )
1+3(α−1)V0 nid (T ,ν� )

. (8)

In principle, Eq. (2) for the IST coefficient could contain the
interaction pressure p̃int(nid (T ,ν�) [16]. However, since the
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pioneering work [22], in which the van der Waals-like hard-
core repulsion, i.e., the term −pV0 in Eq. (5), was introduced
into the RMF model of nuclear matter, it is well known that
such a repulsion is very weak at the vicinity of the nuclear
matter ground state because in this region p � 0 and, hence,
an additional repulsion is absolutely necessary. In Ref. [22]
the additional repulsion was provided by a vector meson
field interacting with nucleons, while here such a repulsion
is exclusively provided by the IST coefficient �. Hence, its
interaction pressure p̃int[nid (T ,ν�)] could not contain any
attraction in contrast to the term pint[nid (T ,νp)] in Eq. (1). As
it was shown in Refs. [23–25] exactly the form of Eq. (2), i.e.,
with p̃int[nid (T ,ν�)] ≡ 0, allows one to correctly account for
the hard-core repulsion in case of the Boltzmann statistics up
to the packing fractions η ≡ V0n � 0.2 (here n is the particle
number density), if the parameter α is chosen as α = 1.245. An
additional reason for such a simple parametrization of Eq. (2)
is to keep the number of parameters as small as possible. Due
to the same reason for the present model we fix α = 1.245.

The role of the parameter α = 1.245 can be seen from
the expression for the particle number density (8). Indeed,
from Eq. (8) one can see that at low pressures, when the
excluded volume effects are weak and the system is close
to the nonrelativistic ideal gas, i.e., for νp � m, ν� � m
and the temperatures |νp − ν�| � T � m, then the densities
nid (T ,νp) and nid (T ,ν�) are simply equal to each other,
i.e., nid (T ,νp) � nid (T ,ν�), and, hence, the particle number
density n � nid (T ,νp)

1+4 V0 nid (T ,νp) acquires the typical one component
excluded volume (EV) form [26]. The last equality was
obtained from Eq. (8) under an evident approximation that at
low pressures and densities the term V0 nid (T ,ν�) � 1 is small
and can be neglected. Thus, at low pressures the system (1)–(6)
recovers the usual excluded volume results by construction.

At higher pressures the situation is defined by the value
of parameter α. If α < 1, then at some value of nid (T ,ν�) =

1
3(1−α)V0

> 0 the particle number density vanishes and further
increase of pressure makes it negative. Hence, we conclude
that the case α < 1 is unphysical. If α > 1, then at high
pressures both densities nid (T ,νp) and nid (T ,ν�) diverge and
the particle number density becomes equal to the inverse value
of nucleon eigenvolume n → 1/V0. This feature of the present
EoS is caused by an accurate parametrization of the hard-core
repulsion effects for α > 1. Therefore, by fixing α = 1.245 we
keep the connection to the results obtained for the Boltzmann
statistics at high temperatures [23–25].

If, however, in a special case α = 1, then at high
pressures the behavior of particle number density n =

nid (T ,νp)
1+V0nid (T ,νp)+3 V0 nid (T ,ν� ) strongly depends on the details of the
model interaction. Thus, for μ → ∞ one finds that νp − ν� =
U [nid (T ,νp)] − U0. If the function U [nid (T ,νp)] corresponds
to an attraction and it is a growing function of its argument
nid (T ,νp), then in this limit one finds nid (T ,νp) 	 nid (T ,ν�)
and, therefore, n → 1/V0. Apparently, the speed of approach-
ing the limiting value depends on the strength of mean-field
potentials U (n) and U0. Now it is clear that for the case
of repulsion, i.e., for U [nid (T ,νp)] < 0, the particle number
density n → nid (T ,νp)

3 V0 nid (T ,ν� ) � 1/V0. It can be even lower than for
the classical excluded volume approximation. This is, actually,

one of the reasons of why the repulsion of the present model is
exclusively described by the hard-core repulsion, which allows
one to avoid such problems for α > 1.

III. NUCLEAR MATTER PROPERTIES

In this work we use the power parametrization of the mean-
field potential motivated by Ref. [18]. i.e.,

U (n) = C2
dn

κ ⇒ pint(n) = κ

κ + 1
C2

dn
κ+1, (9)

where the mean-field contribution to the pressure pint(n) is
obtained from the consistency condition (7). Note that this
is one of the simplest choices of the mean-field potential,
which includes two parameters only, i.e., C2

d and κ . Since the
parameter α is fixed the other two parameters of the IST model
are the hard-core radius R and the constant potential U0. Also it
is important that in a general way one can show that in contrast
to other phenomenological EoS the present one obeys the third
law of thermodynamics [16]. Furthermore, recently EoS of this
type was successfully applied for modeling the neutron star
interiors [27]. We consider this as another argument in favor
of simple parametrization given by Eq. (9).

The IST EoS with four adjustable parameters allows one
to simultaneously reproduce the ground-state properties of
symmetric nuclear matter, i.e., it has a vanishing pressure
p = 0 at zero temperature and the normal nuclear particle
number density n0 = 0.16 fm−3 and the value of its binding
energy per nucleon W0 = ε

n
− m = −16 MeV (here ε denotes

the energy density) and, hence, the corresponding chemical
potential is μ = 923 MeV. The present EoS with the attraction
term (9) was normalized to these properties of nuclear matter
ground state and, simultaneously, it was fitted to obey the
proton flow constraint. It is necessary to stress that effects of
the symmetry energy were systematically studied and found
to be insignificant for description of the proton flow data [14].
Furthermore, in Ref. [28] the same conclusion was drawn based
on the thorough analysis of a rich collection of the nuclear
matter EoSs, which are able to reproduce the maximal value
of mass of observed neutrons stars. Thus, the flow constraint
is sensitive only to the isospin independent part of the nuclear
matter EoS and, consequently, it can be safely studied with the
symmetric nuclear matter EoS. In our analysis we considered
several values of parameter κ = 0.1,0.15,0.2,0.25, and 0.3.
For a fixed value of parameter κ the two curves in the n-p plane
were found in such a way that the upper curve is located not
above the upper branch of the flow constraint, while the lower
one is located not below the lower branch of this constraint. The
details are clear from Figs. 1 and 2. These are highly nontrivial
results for an EoS with only four adjustable parameters, since
to parametrize the proton flow constraint alone one needs at
least eight independent points. One can readily check that all
parametrizations of the IST EoS shown in Figs. 1 and 2 also
obey the kaon production constraint obtained in Ref. [29] for
the symmetric nuclear matter pressure in the following range
1.2 n0 < n < 2.2 n0 of the particle number density n.

The larger values of parameter κ were not considered, since
the good description of the proton flow constraint cannot be
achieved for κ � 0.33. The reason is apparent from the bottom
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FIG. 1. Density dependence of the system pressure is shown for
several sets of parameters, which are specified in the legend of each
panel. See Table I for more details. The dashed area corresponds to
the proton flow constraint of Ref. [14].

panel of Fig. 2. The values of parameter κ below 0.1 were
not considered as well because they correspond to very large
values of the incompressibility constant K0 ≡ 9 ∂p

∂n
|T =0,n=n0

.
As one can see from Table I for κ = 0.1 the minimal value of
the incompressibility constant K0 is about 306 MeV, while for
κ < 0.1 it gets even larger.

Of course, we employed the other parametrizations of the
attractive mean-field potential U (n) as well, namely the van der
Waals one U (n) = 2an − 4V0an2, the constant one U (n) = c,
and the Clausius one U (n) = a

c
(1 − 1

(1+c n)2 ) with the constant
values of parameters a and c, but none of them gave as good
results, as we found for the parametrization (9) with α = 1.245.
Therefore, we believe that the IST EoS with the attraction (9)
catches the correct physics from the normal nuclear density up
to the maximal particle number density nmax � 0.75 fm−3 of
the proton flow constraint.

Similarly to all models with the mean-field attraction the
IST EoS has the liquid-gas phase transition, whose line ends
at the CEP. The latter is defined as an inflection point in the

FIG. 2. Same as in Fig. 1, but for κ = 0.2,0.25, and 0.3.

n-p plane. In other words, at CEP one finds

∂p

∂n
= 0,

∂2p

∂n2
= 0. (10)
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TABLE I. Different sets of parameters which simultaneously reproduce the properties of normal nuclear matter (p = 0 and n = n0 =
0.16 fm−3 at μ = 923 MeV, see text for details) and obey the proton flow constraint on the nuclear matter EoS along with incompressibility
factor K0 and parameters of CEP. R,C2

d ,U0, and κ are the adjustable parameters of EoS, while the baryonic chemical potential μc, Tc, particle
number density nc, pressure pc and compressibility constant Zc ≡ pc

Tc nc
at CEP are found for each set of model parameters.

κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.25 κ = 0.3

R(fm) 0.28 0.42 0.35 0.48 0.41 0.50 0.47 0.52 0.53 0.54
C2

d (MeV fm3κ ) 284.98 325.06 206.05 229.57 168.15 179.67 146.97 152.00 133.79 134.60
U0(MeV) 567.32 501.65 343.93 312.83 231.42 217.76 162.03 157.41 114.32 113.84
K0(MeV) 306.09 465.13 272.55 405.97 242.56 322.80 217.16 256.44 192.35 199.27
μc(MeV) 890.94 881.01 900.08 895.08 906.44 904.49 911.11 910.53 914.74 914.70
Tc(MeV) 17.62 20.60 15.60 17.97 13.93 15.36 12.49 13.20 11.16 11.30
nc(fm−3) 0.009 0.010 0.013 0.014 0.016 0.017 0.018 0.020 0.022 0.022
pc(MeV fm−3) 0.0186 0.028 0.031 0.045 0.043 0.055 0.053 0.061 0.060 0.062
Zc 0.1173 0.1359 0.1529 0.1789 0.1929 0.2106 0.2357 0.2311 0.2444 0.2494

The IST EoS supplemented by these conditions allows us to
define critical temperature Tc, chemical potential μc, density
nc, and pressure pc of the present model. The obtained results
are summarized in Fig. 3 and in Table I. In Fig. 3 we
divided the range of K0 values into two regions, namely the
lower one K0 = [200,250] MeV and the upper one K0 =
[250,315] MeV. The lower region of K0 values corresponds
to the traditional experimental estimates (see a discussion
in Ref. [5]), while the upper one corresponds to the more
recent estimates given in Ref. [17]. The proton flow constraint
defines the allowed region of K0 and critical temperature Tc

values, which are located between the lines ABC and FED in
Fig. 3. From Fig. 3 one can see that the lower region of K0

values determines the rectangle ABEF for the corresponding
Tc values, while the upper one determines the rectangle BCDE.
The obtained range of values is very similar to the results of

FIG. 3. Values of incompressibility constant K0 and critical
temperature TC , which obey the proton flow constraint are located
between the lines ABC and FED. The lines ABC and FED are,
respectively, generated by the lower and upper branches of the proton
flow constraint. The vertical lines AF, BE, and CD correspond to K0

values 200 MeV, 250 MeV, and 315 MeV, respectively.

RMF models and the nonrelativistic mean-field ones discussed
in Ref. [12].

However, the IST EoS allows one to obtain an essentially
narrower range of K0 and Tc values. Indeed, if one requires
that this EoS should be applicable at the maximal value of
particle number density nmax � 0.75 fm−3 of the proton flow
constraint, then such a condition acquires the form

4
3πR3nmax � ηmax, (11)

where the range of the model applicability is given by the
maximal packing fraction ηmax of the model. Assuming that the
maximal packing fraction of the present model is ηmax = 0.2,
i.e., it is similar to the Boltzmann version of the IST EoS
[23–25], one finds the following restriction on the nucleon
hard-core radius R � 0.4 fm. This border line is shown in
Fig. 3 by the short dashed line BG. It is necessary to stress that
the value 0.4 fm is only 10% larger than the hard-core radius
of baryons recently determined within the IST formulation
of the hadron resonance gas model from fitting the hadronic
multiplicities measured in central nuclear collisions at the
AGS, SPS, RHIC, and LHC energies [23–25].

If, however, the present model has a wider range of appli-
cability, i.e., ηmax = 0.3, then the inequality for the nucleon
hard-core radius becomes R � 0.45 fm. It is shown in Fig. 3
by the long dashed line JH. Since there is no reason to expect
that the quantum version of the IST EoS is applicable at the
packing fractions exceeding the value ηmax = 0.3 we consider
it as an upper limit of the model applicability. Alternatively,
this means that the value 0.45 fm is an upper limit for the
hard-core radius of nucleons.

The weak radius constraint R � 0.45 fm immediately
reduces the range of K0 and Tc values to the triangle JCH
in Fig. 3. The strong radius constraint R � 0.4 fm defines
even smaller triangle BCG of the allowed K0 and Tc values
in Fig. 3. Note that for the constraint R � 0.45 fm the lower
range of K0 values gets narrower, i.e., K0 ∈ [230; 250] MeV
and, hence, Tc ∈ [13.2; 14.3] MeV, while for the inequality
R � 0.4 fm there are no allowed values of K0 from the
lower range of values as one can see from Fig. 3. In other
words, the constraint R � 0.4 fm rules out the values of the
incompressibility K0 < 250 MeV, while it is consistent with
the results of Ref. [17].
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The determined range of K0 and Tc values allows us to
reveal the mutual consistency of experimental results. Thus,
the recent experimental estimates of the nuclear matter critical
temperature belong to the following range: 15.5 MeV � Tc �
21 Me [2,30–32]. From Fig. 3 one can see that the values
Tc > 18 MeV are inconsistent with the upper range of K0

values, i.e., the critical temperature values above 18 MeV
require K0 values above 315 MeV. On the other hand the region
15.5 MeV � Tc � 18 MeV is consistent with the following
range of values of incompressibility constant K0 ∈ [270; 315]
MeV. It is interesting that these ranges of Tc and K0 values
are consistent with the inequality on the nucleon hard-core
radius R � 0.35 fm. The latter is just about 17% above the
value r � 0.3 fm used in the realistic nucleon-nucleon inter-
action potential to reproduce the low-energy nucleon-nucleon
scattering data [33,34].

Although the values of Tc and K0 are very well consistent
with the ones found for the RMF models [12,13], the other
characteristics of CEP, namely the pressure pc, the particle
number densitync, and the compressibility constantZc = pc

Tc nc
,

are essentially lower than the ones found by the RMF as one can
see from Table I. Surprisingly, the found Zc ∈ [0.117; 0.249]
values demonstrate a rich diversity, but all of them are in the
range of values known for real liquids, namely Zc � 0.117 cor-
responds to the hydrogen fluoride, whereas Zc � 0.249 corre-
sponds to the hydrogen chloride [35]. Among other real liquids
that fall into the found range of Zc values we would mark the
deuterium oxide (Zc � 0.228), ammonia (Zc � 0.244), water
(Zc � 0.229), acetic acid (Zc � 0.201), acetone (Zc � 0.232),
acetonitrile (Zc � 0.185), metanol (Zc � 0.223) [35], etc. At
the same time the range of the critical compressibility constant
of the RMF models is ZRMF

c ∈ [0.284; 0.331] [13], i.e., it is
close or slightly above the critical compressibility constants
of the following substances [35]: Ar, Kr, Xe, CH4, N2, O2,
and CO, but there is no reason to believe that there is a
close similarity between the properties of particularly these
atomic/molecular gases and the gas of nucleons. Therefore,
a priori for the realistic EoS one would expect an essentially
wider spectrum of Zc values, like the RMF models show for
Tc, nc, and pc values.

Of course, one may be surprised by the low values of
the critical density found within the IST EoS, but we would
like to remind the reader that all experimental estimates of
nc and pc are the model-dependent ones. Furthermore, one
should remember that our estimates for nc and pc correspond
to a nuclear matter, while in the experiments one cannot
ignore the Coulomb interaction. Since there is no exact way
to account for the Coulomb interaction, then an extraction of
the nuclear matter critical properties is inevitably a model-
dependent procedure. Moreover, it is clear that, if in addition
we include into a model EoS with a fixed value of κ a repulsive
Coulomb-like (i.e., weak) interaction of large, but finite range,
this would increase the attraction strengthC2

d to compensate the
shift of binding energy. This is apparent, since the long-range
repulsion will affect the low-density characteristics, namely it
will increase the pressure and binding energy per nucleon. The
increase of C2

d will, in turn, increase the critical density and
critical pressure (see the columns of same κ values in Table I).
Such a modification, however, will make the whole treatment

too complicated and will destroy the main attractive feature of
this model, namely its simplicity.

Besides, the typical values of nRMF
c obtained in the

RMF models analyzed in Ref. [13] are as follows: nRMF
c ∈

[0.295 n0; 0.343 n0]. Suppose that these are, indeed, the true
values of nuclear matter critical density. Then, if one included
into these EoS a repulsive Coulomb-like interaction of large,
but finite, range, it immediately would increase the critical den-
sity further, i.e., one would expect that the critical density in the
real systems studied in experiments should be larger than nRMF

c .
In this case, however, one faces a severe problem to explain how
it occurs that the experimental data on size (charge) distribution
of nuclear fragments demonstrate a power law, which is typical
for the CEP [2,37,38] and, moreover, how it occurs that the sta-
tistical multifragmentation model [36], which up to now is the
most successful one in explaining the data obtained in the mul-
tifragmentation reactions, is able to reproduce the mentioned
power law with the break-up density nbr � 1

6n0 − 1
3n0 [2,36].

On the other hand, the low values of critical density obtained
within the IST EoS do not face such a problem. Therefore, it
seems that the typical values of nRMF

c reported in Ref. [13] may
evidence some internal inconsistency of these models.

IV. CONCLUSIONS

In this work we developed a novel family of EoS for
symmetric nuclear matter based on the IST concept for the
hard-core repulsion. It seems that the quantum version of the
IST EoS employed here catches the right physics, since by
having only four adjustable parameters each formulation of
this EoS is able to reproduce not only the main properties
of the nuclear matter ground state (three conditions), but,
simultaneously, it is able to obey the proton flow constraint
[14] up to particle number density 0.75 fm−3 (at least eight
conditions). Moreover, one can easily check that all versions
of the IST EoS presented here automatically obey the kaon
production constraint [29].

A detailed analysis of the proton flow constraint allows us
to obtain the band of values for the incompressibility constant
of normal nuclear matter K0 and the critical temperatures
Tc, which are consisted with the proton flow constraint.
Assuming that the quantum IST EoS is valid up to the maximal
packing fraction ηmax = 0.2 and requiring that it holds for
maximal particle number density of the proton flow constraint
0.75 fm−3, we obtained the condition R � 0.4 fm for the
hard-core radius of nucleons. This condition rules out the K0

values below 250 MeV. Furthermore, analyzing the recent data
on the critical temperature value Tc � 15.5–21 MeV, which,
apparently, are not very accurate, we conclude that only the
range Tc � 15.5–18 MeV is consistent with the values K0 �
270–315 MeV, while the larger values of Tc require K0 values
above 315 MeV, which are not supported by the recent findings
[17]. It is interesting that the mutually consistent values of
K0 and Tc are also consistent with the inequality R � 0.35
fm for the hard-core radius of nucleons. This is a remarkable
finding since the value 0.35 fm is just 17% above the radius
of nucleon-nucleon interaction potential and at the same time
this is just the hard-core radius of baryons found recently
by the IST formulation of the hadron resonance gas model
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from fitting the experimental hadron multiplicities measured
in central nuclear collisions in the whole range of collision en-
ergies from

√
sNN = 2.7 GeV to

√
sNN = 2.76 TeV [23–25].

Therefore, we conclude that the physically most justified range
of these quantities is as follows: K0 � 270–315 MeV and
Tc � 15.5–18 MeV. Based on these results, we hope that our
systematic analysis of the correlations between the K0 and Tc

values will help to establish the mutual consistency of their
values found with higher accuracy.

The obtained hard-core radii of nucleons are essentially
smaller than the ones found recently within the novel approach
of Ref. [15]. It seems that R � 0.53 fm claimed in [15] are
highly unrealistic, since in the IST EoS they correspond to very
low values of Tc � 11.16–11.3 MeV and K0 � 192–199 MeV
(see the column κ = 0.3 in Table I). It seems that such values
are generated by the parametrization of internuclear attrac-
tion, which is typical for ordinary liquids used in Ref. [15].
This conclusion is supported by a success of the mean-field
parametrization (9) employed here. We would like to point
out that the interaction pressure (9), as it was first found in
Ref. [18], cannot be expanded into a Taylor series at n = 0 and,
hence, the traditional virial expansion cannot be established for
this family of IST EoS. We hope that further studies of the EoS
of dense quantum liquids with strong interaction will clarify
the question whether the nonanalytic density dependence of
pressure (9) is an inherent property of nuclear Fermi liquid or
it is common for other Fermi liquids.

In contrast to the RMF models, the developed family of
EoS demonstrates a wide diversity of values of the critical

compressibility constant Zc, namely Zc � 0.117–0.249,
which, however, are well known for the ordinary liquids.
Therefore, we hope it can be straightforwardly applied to
the quantum and classical liquids, to which the RMF models
discussed here, apparently, cannot be applied.
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