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We study the formation of fluid vorticity and the hyperon polarization in heavy-ion collisions at energies
available at the JINR Nuclotron-based Ion Collider fAcility in the framework of the parton-hadron-string dynamic
model, taking into account both hadronic and quark-gluonic (partonic) degrees of freedom. The vorticity properties
in peripheral Au+Au collisions at

√
sNN = 7.7 GeV are demonstrated and confronted with other models. The

obtained result for the � polarization is in agreement with the experimental data by the STAR Collaboration,
whereas the model is not able to explain the observed high values of the antihyperon �̄ polarization.
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I. INTRODUCTION

The hydrodynamical approach has been applied to describe
heavy-ion reactions for a long time [1–3] and has enjoyed
increasing interest in recent years. With a possibility of quark-
gluon plasma (QGP) formation in reactions at high beam ener-
gies, the scope of the hydrodynamical studies is widening even
more [4]. In peripheral heavy-ion collisions the initial angular
momentum can be of the order of (103–105)h̄. Although only
about one fifth of it is transferred to the fireball medium and
the rest is carried away by spectators [5], at the initial state
of the hydrodynamical stage of the collision the shear flow
pattern can be formed that could lead to rotation [6] or even
to the Kelvin-Helmholtz instability (KHI) [7] in the reaction
plane provided the medium has a low viscosity. Applications
of modern computational schemes to these processes in (3+1)
dimensions allow a realistic description of the energy and
momentum balance which leads to the observation of the
collapse of a direct flow v1(y) and prediction of the third flow
component or antiflow [8].

There is an inherent correlation between rotation of the
medium and its magnetization [9], which may lead to particle-
spin polarization. The primary example is the Einstein–de
Haas effect [10], which demonstrates that sudden magne-
tization of electron spins in a ferromagnetic material leads
to mechanical rotation because of the angular momentum
conservation. Vorticity formation is largely discussed as a
manifestation of the angular momentum conservation [11].
Barnett [12] proved the existence of a reverse process: the
rotation of an uncharged body leads to the polarization of atoms
and spontaneous magnetization. It is expected that quarks are
also polarized in the rotating quark-gluon plasma created in
off-central heavy-ion collisions. Liang and Wang first proposed
that � hyperons can be polarized along the orbital angular
momentum of two colliding nuclei [13,14]. Besides the global
orbital angular momentum, the local vorticity may be created

by a fast jet going through the QGP that will affect the hadron
polarization as well [15].

The method of computing spin polarization in the matter
near equilibrium was developed within a statistical hydro-
dynamics approach in Refs. [16–18]. It was later confirmed
within the quantum-kinetic approach [19]. Relativistic fluid
dynamics of a particle with spin was also reconsidered recently
in Ref. [20].

Some hydrodynamic calculations quantitatively predict the
global polarization in off-central heavy-ion collisions [21–26].
The fluid vorticity created in heavy-ion collisions has also been
investigated in transport simulations [27–29]. For more studies
of the fluid vorticity and � polarization we refer the reader to
Refs. [30–34] and the review article [35].

Recently, STAR Collaboration measured the global polar-
ization of � and �̄ in off-central Au+Au collisions in the
Beam Energy Scan (BES) program [36]. From the measured
polarization, the fluid vorticity of the strongly coupled QGP
and the magnitude of the magnetic field created in off-central
heavy-ion collisions were extracted for the first time using
spin-vorticity and spin-magnetic coupling [36]. It indicates that
the rotational fluid has the largest vorticity that ever existed in
the universe of the order of 10−21 Hz. So the strongly coupled
QGP has an additional extreme feature: it is the fluid with the
highest vorticity. The observation of polarization of hyperons
plays an important role in probing the vorticity field of the
QGP. Therefore, it is worth studying the inherent correlation
between the hyperon polarization and the microscopic vortical
structure in detail.

The vorticity developed in high-energy heavy-ion collisions
was estimated within various models. Recently, a compre-
hensive study of the � polarization of the BNL Relativistic
Heavy Ion Collider (RHIC) beam energy scan was presented
in [22] where only the lowest RHIC energy overlapping
with the energy range available at the Nuclotron-based Ion
Collider fAcility (NICA) was considered. In this paper, we
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focus on the properties of the vorticity field and the global
� polarization at the energy

√
sNN = 7.7 GeV within the

parton-hadron-string dynamics (PHSD) model which is proved
to work reliably at NICA energies [37,38]. The PHSD transport
approach [38,39] is a microscopic covariant dynamical model
for strongly interacting systems formulated on the basis of the
Kadanoff-Baym equations for Green’s functions in the phase-
space representation. The approach consistently describes the
full evolution of relativistic heavy-ion collision from the initial
hard scatterings and string formation through the dynam-
ical deconfinement phase transition to strongly interacting
quark-partonic quasiparticles as well as hadronization and the
subsequent interactions in the expanding hadronic phase as in
the hadron-string-dynamics transport approach [37].

The PHSD version used was extended to incorporate es-
sential aspects of chiral symmetry restoration (CSR) in the
hadronic sector (via the Schwinger mechanism) [40]. The
calculated data are discussed and compared with the results
of other models for the same energy range.

II. DEFINITIONS

To compute vorticity, we must first define numerically the
realistic velocity field for nuclear collisions. The kinetic model
tracks positions and momenta of all particles at any moment of
time. These particles need to be fluidized on space-time grids
in order to calculate the velocity field numerically. This can be
achieved by introducing a grid in the coordinate space and a
smearing function �(�x,�xi(t)) for each particle where �x is the
field point and �xi(t) is the time-dependent coordinate of the ith
particle. The effect of�(�x,�xi(t)) is to smear a physical quantity,
e.g., energy or momentum, carried by the ith particle which
is located at �xi(t), to another coordinate point �x. Therefore,
�(�x,�xi) somehow represents the quantum wave packet of the
ith particle. So the particle distribution function can be written
as

f (t,�x, �p) =
∑

i

(2π )3δ(3)[ �p − �pi(t)]
1

N
�(�x,�xi(t)), (1)

where N = ∫
d3x�(�x,�xi(t)) is a normalization factor, pi(t)

and p0
i (t) are the momentum and energy of the ith particle,

and the summation is over all the particles on the grid. Then
the smeared (averaged) energy-momentum tensor and particle
number current are given by

T μν(t,�x) =
∫

d3p

(2π )3

pμpν

p0
f (t,�x, �p)

= 1

N

∑
i

p
μ
i (t)pν

i (t)

p0
i (t)

�(�x,�xi(t)), (2)

Jμ(t,�x) =
∫

d3p

(2π )3

pμ

p0
f (t,�x, �p)

= 1

N

∑
i

p
μ
i (t)

p0
i (t)

�(�x,�xi(t)), (3)

In our simulations, pi(t) and xi(t) in each event and at each
time moment are generated by the PHSD model [38].

The collective velocity field associated with the particle flow
(3) in the given cell a is defined as

va(t,�x) = J a(t,�x)/J 0(t,�x), (4)

where a = 1, 2, 3 are the spatial indices. So the velocity field
for a given colliding event on some grid is [41]

va(t,�x) = 1∑
i �(�x,�xi(t))

∑
i

pa
i (t)

p0
i (t)

�(�x,�xi(t)). (5)

Unlike classical hydrodynamics, where vorticity is defined
only as rot �v, in relativistic hydrodynamics, one can introduce
several different vorticities, each useful in different applica-
tions. We will use the definitions from [41]. In the Eckart frame
the kinetic vorticity is defined as

ωμν = 1
2 (∂νuμ − ∂μuν), (6)

where uν is a relativistic four-vector of the velocity field

uν(t,�x) = γ (1,�v(t,�x)), γ (t,�x) = [1 − �v 2(t,�x)]−1/2 (7)

in the fluid rest frame. The spatial components of the ki-
netic vorticity can be written in terms of the circulation of
velocity ωij = 1

2εijk(rot �v)k and the mixed components are
ω0j = 1

2 ( �ω0)j , where we introduce a vector

�ω0 = �∇u0 + ∂t �u. (8)

We shall use also thermal vorticity which is defined as

βμ = uμ

T
, (9)

i.e., the field of the reciprocal temperature flow

�μν = 1
2 (∂νβμ − ∂μβν). (10)

Thermal vorticity �μν is dimensionless and, in contrast to
relativistic vorticity, depends on the temperature gradients
and, as shown in [18], determines the induced polarization
vector of relativistic particles with spin. As in the case of
kinetic vorticity we can introduce the circulation of the vector
�β, ��ij = 1

2εijk rot �β and the vector

��0 = �∇β0 + ∂t
�β (11)

determining �0j = 1
2 ( ��0)j .

III. NUMERICAL RESULTS FOR VORTICITY
FORMATION

The evolution of quantities characterizing a state of nuclear
matter formed in Au+Au collisions, i.e., baryon density nB ,
energy density ε, and temperature T , is shown in Fig. 1.
The time evolution is calculated within the PHSD model
[38] without introducing a freeze-out procedure. We have
performed the internal study of the conservation of the angular
momentum within our code. In each elementary (elastic or
inelastic) collision the angular momentum calculated with
respect to the each individual collision point is not conserved
and varies strongly as final particles are placed at coordinates
chosen randomly with no respect to the angular momentum
conservation. However, the averaged angular momentum cal-
culated with respect to the center of colliding nuclei roughly
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FIG. 1. Time dependence of the baryon density, energy density and temperature in Au + Au (
√

sNN = 7.7 GeV) collisions with the impact
parameter 7.5 fm (local system).

remains constant over the collision evolution fluctuating within
10% around the average. The first time-moment t = 2 fm/c
corresponds to the case when the centers of colliding nuclei
approaching each other at an almost minimal distance, then a
fluid is formed and fluid matter expands developing a less dense
shell in the peripheral zone. The freeze-out takes some finite
time and occurs locally in cells specified by freeze-out energy
density ∼0.2 GeV/fm3 [42]. As is seen, in our model such a
regime is reached somewhere between t = 8 and 12 fm/c.
The hybrid model joining the kinetic and hydrodynamic
descriptions gives for this case about 10 fm/c for an average
freeze-out time [43].

The temperature T entering into Eq. (10) is not defined
within the kinetic PHSD approach. To find it, we use the
same grid as for a vorticity study and in every cell solve the
equations for conservation of energy and baryon charge. The
evolution of the average energy, temperature, and baryon
density is shown in Fig. 1. All these distributions are rather
smooth, because the relativistic equation of state for a mixture
of the ideal resonance gas (with nuclear potential for baryons)
and partons is used [43].

In Fig. 2 evolution of the directed flow of all charged hadrons
from Au+Au collisions at

√
s = 7.7 GeV and the impact

parameter 7.5 fm is shown for four time moments t = 3, 5, 7,
and 10 fm/c. It is seen that rapidity distribution of the directed
flow has been formed already at the very early time moment
and its shape changes weakly with time but depends on the
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FIG. 2. Rapidity distribution of the charged hadrons directed
flow v1(η) in Au+Au (

√
sNN = 7.7 GeV) collisions with the impact

parameter 7.5 fm at four time moments.
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FIG. 3. Time dependence of the relativistic vorticity ω (the first column) and different projections of the thermal vorticity �xz in Au+Au
(
√

sNN = 7.7 GeV) collisions with the impact parameter 7.5 fm. Thin contour lines correspond to the boundary �xz = 0.

particle type. Taking into account experimental conditions, the
PHSD model describes well v1(η) for protons and dominating
charged mesons in the large interval of colliding energy but
not for antiprotons [44].

The evolution of the relativistic kinematic vorticity in the
reaction plane, ωxz, and different components of relativistic
thermal vorticity, �xz, calculated in the PHSD model for
8400 events is presented in Fig. 3, cf. [22,34]. To suppress
fluctuations, the results are obtained under the condition ε >
0.1ε0 = 0.015 GeV/fm3 and |�ij | < 1 for any, i,j = x,y,z.
As seen in columns 2 and 3 in Fig. 3, the thermal vorticity in
the (x,z) plane, �xz, is larger on the boundary of the system
compared to the relativistic vorticity (column 1 in Fig. 3),
because of the smallness of T and larger gradients. In pe-
ripheral collisions, particle multiplicities are relatively small,
therefore, fluctuations in the reaction plane are considerable.
The relativistic ω and thermal � vorticities fluctuate strongly
at the final stage of the collision. These random fluctuations
are visible at later times in the dilute matter and, especially, on
outer edges of the fireball where the thermal vorticity has an
enhanced amplitude. The (x,y) projection of �tz demonstrates
clear cylindrical symmetry (see column 4 in Fig. 3).

In order to illustrate which vorticity field is seen by hy-
perons, we plot in Fig. 4 the thermal vorticity distributions of
� and �∗(1385) hyperons and their antiparticles for various
moments of time. The histograms are normalized to unity in the

interval of vorticities |�xz| � 1. We see that the distributions
are typically asymmetric with respect to zero with a positive av-
eraged value. The averaged thermal vorticity for � is typically
larger than that for �∗. At initial times t ∼ 5 fm/c the averaged
vorticity for � is maximal and then decreases monotonously,
whereas the averaged vorticity for �∗ increases first up to
t ∼ 10 fm/c and decreases at later times. The distributions for
�∗ are typically broader than those for �. For the antihyperons
the general pattern is similar for times t <∼ 10 fm/c. For later
times the number of antihyperons decreases rapidly and the
distributions show strong fluctuations. The averaged vorticity
values for � and �∗ can become negative for t >∼ 15 fm/c.

To reduce fluctuations due to the regions, where the matter
density is quite low and the hydrodynamic description is less
applicable, one considers a proper-energy-density-weighted
kinematic and thermal vorticities in the whole volume and in
the reaction (xz) plane:

〈�xz(�x)〉 =
∑

α �α
xzε

α
xz∑

α εα
xz

, (12)

weighted with the local energy density in every α cell at the
given fixed vorticity. The cells with the values of 〈�xz〉 smaller
than some threshold value are rejected in the sum. Such an
averaging procedure is used in Ref. [34] but it differs from that
in Refs. [25,27,33].
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FIG. 4. Thermal vorticity distribution of � and �∗ hyperons (upper row) and � and �∗ antihyperons (lower row) at four interaction time
moments in Au+Au (

√
sNN = 7.7 GeV) collisions with the impact parameter b = 7.5 fm. The vertical lines indicate the averaged values of the

thermal vorticity.

Keeping in mind that � hyperons are abundantly produced
from the hottest region of the system, it is of interest to
apply certain constraints on this averaging. Let us consider
the weighting of cells with T > Tm for different values of the
cut temperature Tm as

〈�μν(t)〉T >Tm
=

∫
T >Tm

d3x �μν(t,�x) ε(t,�x)∫
T >Tm

d3x ε(t,�x)
. (13)

Time evolution of the quantity 〈�μν(t)〉T >Tm
is presented in

Fig. 5 forTm = 5, 50, and 100 MeV for both kinetic and thermal
averaged vorticities. The inclusion of the weighting procedure
with a threshold temperature Tm strongly suppresses peaks of
the thermal vorticity at early times, especially for small Tm,
but this effect is noticeably weaker for the weighted kinetic
vorticity (see left panel in Fig. 5). This finding is in agreement
with the recent results of the three-fluid hydrodynamical model
[34]. However, physical details of this calculation are a little
bit different: the results in [34] are given for pure baryonic
fluids whereas we treat the matter including also mesons and
partons. This difference is not very essential at the moderate
colliding energy under consideration.

Multiplicities of strange particles and antiparticles are
presented in Fig. 6. The calculations are performed with
and without accounting for the chiral symmetry restorations
(CSRs), cf. Ref. [40]. Besides �∗ and �∗ rapidly decaying into
� or �, the strange and antistrange hyperons increase smoothly
with time and differ roughly by two orders of magnitude. Note
that multiplicity of (anti)� hyperons includes both direct and
those coming from the resonance decay. As demonstrated in
Ref. [40], the inclusion of the CSR provides a microscopic
explanation for the “horn” structure in the excitation function
of the K+/π ratio: the CSR in the hadronic phase produces a
steep increase of this particle ratio up to

√
sNN ≈ 7 GeV, while

the drop at higher energies is associated with the appearance
of deconfined partonic medium [40]. At the colliding energy
considered the PHSD model accounts for the prediction of a

fast growth of � and �̄ with time and then their flattening at
about 20 fm/c. In contrast, the multiplicity of � hyperons and
antihyperons smoothly decreases in time. The conventional
PHSD model [38] without the CSR effect (lower panels in
Fig. 6) provides similar qualitative behavior but the absolute
multiplicity of � and �̄ is lower by a factor of about 2.

IV. POLARIZATION TREATMENT AND RESULTS

The mean spin vector of a particle of mass m and spin s,
produced around the point x with the four-momentum p, in
the leading order of thermal vorticity [18,28] is

Sμ(x,p) = − s(s + 1)

6m
[1 ± n(x,p)]εμνλδ �νλ pδ, (14)

where n(x,p) is the Bose/Fermi distribution function and the
Levi-Civita symbol εμνλδ satisfies ε0123 = 1.

This result may be directly applied to a primary � particle
and we obtain for the 4-vector S

μ
�

S
μ
� = (

S0
�,�S�

)

= 1 − n�

8m�

( �p� · rot �β,E� rot �β + [ �p� × ��0]), (15)

where m�,p�, and E� =
√

m2
� + p2

� are the mass, momen-
tum, and energy of the � particle.

The magnitude of spin polarization of � particles is de-
termined by the asymmetry of the momentum distribution of
daughter protons produced in decays � → p + π− which in
the � rest frame can be parametrized as

4π
dN

d�∗ = 1 + α�
�P ∗
��n∗

p, (16)

where �P ∗ is the polarization vector related to the spin vector
as

�P ∗
� = 2�S∗

�, (17)
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FIG. 5. Time dependence of weighted and nonweighted kinetic 〈ωxz〉 (left panel) and thermal 〈�xz〉 (right panel) vorticities of strange
hadrons. Thin lines are plotted for nonweighted quantities, heavy lines for weighted ones.

and �n∗
p is the unit vector in the proton momentum direction both

calculated in the � rest frame, and α� = −α�̄ = 0.642 is the
� nonleptonic decay constant. Boosting the 4-vector S

μ
� to the

� rest frame, we obtain that the zeroth component vanishes
identically, S∗

0 = 0, and the spatial component becomes

�S∗
� = �S� + �S� · �p�

�p
m�(E� + m�)

− S0
�

�p
m�

= �S� − �S� · �p�

�p�

E�(E� + m�)
, (18)

where in the last equation we used the relation S0
�E� = �S� · �p,

obviously following from Eq. (15). Using Eq. (15) we can write
explicitly

�S∗
� = 1 − n�

8m�

(
E� rot �β + [ �p� × ��0]

− �p� · rot �β �p�

(E� + m�)

)
. (19)

t  [fm/c]
0 10 20 30

H
N

0

2

4

6

8

10

12 no CSR H
N

0Λ

*Σ 0Σ

Ξ*Ξ

0

H
N

2

4

6

8

10

12 with CSR H
N

0Λ

*Σ
0Σ

Ξ*Ξ

t  [fm/c]
0 10 20 30

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 no CSR

0Λ
0Σ

*Σ
Ξ

*Ξ

00

0.01

0.02

0.03

0.04

0.05

0.06

0.07 with CSR

0Λ

0Σ

*Σ Ξ

*Ξ

FIG. 6. Average numbers of strange particles (left panel) and antiparticles (right panel) as functions of collision time for Au+Au (
√

sNN =
7.7 GeV) with the impact parameter b = 7.5 fm. The upper panels correspond to the results calculated with and the bottom ones without the
chiral symmetry restoration effect [40].
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In sampling the experimental data, one sums over the
direction of �p�. The vector �S∗ averaged over the �p� direction
takes a very simple form

〈�S∗
�〉�np

= (1 − n�)

8m�

(
E� − 1

3

�p 2
�

E� + m�

)
rot �β. (20)

A sizable amount of the final �’s is a product of resonance
decays. In decays, the �’s inherit a fraction of polarization
of the initial (parent) states. The spin vector of the parent
state can be calculated using expressions (19) or (20) with the
replacement of the � mass, momentum, and energy replaced
by the corresponding quantities of the parent hyperon state.
Additionally, one has to take into account the spin degeneracy
factor and multiply the expression by 4

3 sP (sP + 1), where sP is
spin of the parent state. For example, for the spin-3/2 hyperons
�∗ and �∗ it will give the factor 5.

The main sources of secondary �’s in our case are electro-
magnetic decays �0 → � + γ , strong decays �∗ → � + π
and � → �π , and sequential processes �∗ → � + π →
� + π + γ and �∗ → � + π → � + π + π . Thus, the num-
ber of secondary �’s produced in the �∗, �,�, and �∗ decays
can be calculated as

N
(sec)
� = N

(�)
� + N

(�∗)
� + N

(�)
� + N

(�∗)
� ,

N
(�∗)
� = B��∗N�∗ + B��∗ (N�∗+ + N�∗− )/2,

N
(�)
� = B�� N�, N

(�∗)
� = B��N�∗ , N

(�)
� = N�0 , (21)

where N�∗ = N�∗+ + N�∗0 + N�∗− , N� = N�0 + N�− , and
N�∗ = N�∗0 + N�∗− ; and BHf Hi

is the branching ratio for the
transitions Hi → Hf + · · · between the initial (Hi) and final
(Hf ) hyperons. In Eq. (21) we take into account that the
branching ratios B��0 and B��∗ are equal to unity and that �∗0

does not decay in �0 + π0. For other branching ratios we have
from [45] B��∗ = 0.870, B��∗ = 0.117, and B�� = 0.995.
Relations similar to Eq. (21) hold also for antihyperons.

As argued in [28], the polarization of a daughter (D) baryon
is proportional to the polarization of a parent (P ) baryon
�S∗
D = CDP

�S∗
P , where CDP is a spin recoupling coefficient.

For strong and electromagnetic decays CDP is found in
[22,28] to be independent of the decay kinematics with the
result C��∗ = C��∗ = C��∗ = 1

3 and C��0 = − 1
3 , whereas

in weak decays of � the recoupling coefficient does depend on
the decay kinematics and C��− = 0.927, and C��0 = 0.900.
Thus, the averaged polarization of secondary � particles can
be calculated as

�S∗(sec)
� = �S∗(�)

� + �S∗(�∗)
� + �S∗(�)

� + �S∗(�∗)
� ,

�S∗(�)
� = C��0p�0 �S∗

�,

�S∗(�∗)
� = [

C��∗B��∗p�∗

+ 1
2C��0C��∗B��∗ (p�∗+ + p�∗− )

]�S∗
�∗ ,

�S∗(�)
� = B��(C��0p�0 + C��−p�− )�S∗

�,

�S∗(�∗)
� = 1

3B��C��∗ [(C��0 + 2C��− )p�∗0

+ (C��− + 2C��0 )p�∗−]�S∗
�∗ , (22)
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FIG. 7. Time dependence of the average hyperon polarization in
peripheral Au+Au collisions. Full circles and triangles correspond
to the primary and resonance decaying �, respectively, while similar
but empty marks correspond to �̄. Semi-filled marks correspond to
the results obtained without taking into account the chiral symmetry
restoration. Stars with error bars are experimental data for Au+Au
collisions at

√
sNN = 7.7 GeV [36].

where pH is a relative contribution of hyperon H to the
total number of �’s, pH = NH/(N� + N

(sec)
� ). The averaged

contribution of primary �’s is then given by �S∗(prim)
� = �S∗

� p�.
The same relations are valid also for antihyperons.

Taking into account a possibility of multistep two-body
decays, we write the mean spin vector of primary+feed-down
�’s and the corresponding polarization as

�S∗
�,tot = 1

2
�P ∗
�,tot = �S∗(prim)

� + �S∗(sec)
� . (23)

The average polarization vector calculated within the PHSD
model, Eq. (17), for Au+Au(

√
sNN = 7.7 GeV) collisions and

centrality 20–50% is plotted in Fig. 7 for different moments
of time. For the considered reaction we compute the global �
polarization and estimate the �’s feed-down from resonance
decays, cf. Eq. (23). The experimental cut |η�| � |1 is taken
into account at a fixed time moment in such a way that it does
not influence the subsequent hadron evolution. At time t ≈
10 fm/c, the projection of the � polarization onto the direction
of the global angular momentum in off-central collisions,
P ∗

�,tot ≈ 2% which is nicely close to the experimental value
2.0 ± 0.6%, cf. Ref. [36], with the feed-down factor about
25%. As to �, none of the available models can predict
correctly P ∗

�,tot
which is close or even higher than P�,tot . The

energy
√

sNN = 7.7 GeV is of particular interest. Here the
measured P ∗

�,tot
= 8.7 ± 3.5% is four times larger than P ∗

�,tot

[36] and fluctuates at later time of interaction. The agreement
with experiment for anti-λ cannot be reached by variation
of any parameters. This point is illustrated in Fig. 7 by the
calculation results without accounting for the chiral symmetry
restoration effect (semi-filled marks).
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V. CONCLUSIONS

An analysis of vorticity within the kinetic PHSD model
was performed for peripheral Au+Au collisions at the en-
ergy

√
sNN = 7.7 GeV. The relativistic vorticity reaches a

maximum soon after local equilibrium when the rotation
equilibrates in the system. Then, similar to other model
considerations, the vorticity decreases rapidly due to explosive
expansion of the system, still at ≈5 fm/c after the begin-
ning of fluid dynamical expansion. Transition to the analysis
in terms of the thermal vorticity gives larger values even
at ultrarelativistic RHIC and CERN Large Hadron Collider
(LHC) energies. A similar study was performed recently
[32,33] using the quark-gluon string model approach. In the
PHSD model the vorticity is oriented in the −y direction
and the result is maximal transverse polarization for particles
emitted in the reaction plane in the (+/−)x direction while the
polarization of particles emitted into the perpendicular (+/−)y
direction is negligible. In the case of chiral vortaic effect with

time, significant helicity enhancement is expected for particles
emitted in the (+/−)y direction.

The calculated global polarization of � in the midrapidity
region is close to the measured one but �̄ polarization is
strongly underestimated. We plan to extend this kind of
calculation to higher energies and different centralities in order
to determine the best conditions for vorticity formation in
relativistic nuclear collisions.
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