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Coulomb excitation of the deuteron in peripheral collisions with a heavy ion
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We develop an ab initio, nonperturbative, time-dependent basis function (tBF) method to solve the nuclear
structure and scattering problems in a unified manner. We apply this method to a test problem: the Coulomb
excitation of a trapped deuteron by an impinging heavy ion. The states of the deuteron system are obtained by the
ab initio nuclear structure calculation implementing a realistic internucleon interaction with a weak external trap
to localize the center of mass and to discretize the continuum. The evolution of the internal state of the deuteron
system is directly solved using the equation of motion for the scattering. We analyze the excitation mechanism
of the deuteron system by investigating its internal transition probabilities and observables as functions of the
exposure time and the incident speed. In this investigation, the dynamics of the Coulomb excitation are revealed
by the time evolution of the system’s internal charge distribution.
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I. INTRODUCTION

A unified treatment of nuclear structure and reactions is
a central, but challenging, issue of ab initio nuclear theory.
Specifically, the challenge is to incorporate the discrete bound
states with the scattering states in the continuum [1,2]. For
few-body systems with mass number A � 4, highly precise
methods such as Faddeev [3], Faddeev-Yakubovsky [4,5], Alt-
Grassberger and Sandhas [6,7], and hyperspherical harmonics
[8,9] have been developed using internal coordinates. For light
and medium nuclei with A > 4, there are also a wealth of
cutting edge approaches. A survey of the methods includes the
no-core shell model with resonating group method [10–13],
the no-core shell model with continuum method [14–16], the
coupled cluster method with the Gamow basis [17–19], the no-
core shell model with the Gamow basis [20–22], the HORSE
(J-matrix) method [23–25], the configuration interaction with
resonating group method [26], the Green’s function Monte
Carlo method [27,28], and the nuclear lattice effective field
theory [29,30]. However, these successful methods may be
challenged to retain the full, nonperturbative quantum coher-
ence of the scattering over all potentially relevant interme-
diate and final states which could be important for complex
scattering processes involving exotic nuclei. For short-lived
rare isotopes, where the low-lying states are either weakly
bound or unbound, one will be challenged to include the
relevant degrees of freedom for a complete description of the
inelastic processes. In particular, a large number of interme-
diate states may be needed to provide accurate descriptions
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of the dynamical multistep processes contributing to the final
states.

In order to address these complex processes and retain
predictive power, we propose an ab initio, time-dependent
nonperturbative approach, which we call the time-dependent
basis function (tBF) approach. The idea, which is based on a
successful time-dependent approach in quantum field theory
[31–35], is to solve the equation of motion (EOM) for the
scattering of the system in the representation constructed from
the energy eigenbases of the system before scattering. The state
vector for the system hence reduces to a set of amplitudes with
respect to the chosen eigenbases, in which the full coherence is
retained, and the EOM becomes a set of first-order differential
equations in time.

We demonstrate the tBF approach with a very simple
problem: the internal excitation of a trapped deuteron in
the time-varying external Coulomb field of a heavy ion, or
deuteron Coulomb excitation [36,37]. Note, in this initial
application, the motion of the center of mass (COM) of
the deuteron is constrained to the trap and the excitation in
the COM degree of freedom is neglected. Future work will
remove the trap and evolve the motion of the COM. Within
the tBF formalism, the evolution of the deuteron system is
examined through its consequent transition probabilities and
through expectation values of different observables during the
scattering. The dynamics of the scattering process will also be
revealed by the time evolution of the deuteron system’s internal
charge density distribution.

This paper is organized as follows. We first introduce the
theory of the tBF approach in Sec. II. Then, we discuss the
details of our model problem in Sec. III and present the
simulation conditions of the problem in Sec. IV. Later, we
provide illustrative numerical results in Sec. V. Finally, we
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present conclusions and outlook in Sec. VI. The Appendix
contains useful mathematical details of the spherical harmonic
oscillator basis.

II. THEORY OF THE TBF APPROACH

We begin with an introduction of the framework for time-
dependent scattering within a basis space determined from an
ab initio structure calculation. In particular, we outline the
problem where the external field, which induces the transitions,
is treated as a classical, possibly strong, time-dependent elec-
tromagnetic (EM) source. The generalization to more complex
sources will be considered in subsequent works. To be concrete
and simple, we outline the approach for the specific case of a
trapped deuteron as the system undergoing excitation, which,
however, can be straightforwardly generalized.

A. Hamiltonian

Our full Hamiltonian for the target scattered by the time-
varying EM field produced by the impinging heavy ion (HI)
is

Hfull(t) = H0 + Vint(t), (1)

where the Hamiltonian for the intrinsic motion of the target is

H0 = Trel + VNN + Utrap, (2)

with Trel the relative kinetic energy and VNN the nucleon-
nucleon (NN) interaction. Utrap denotes an external harmonic
oscillator (HO) trap introduced to localize the COM of the
target and to discretize the continuum of the target’s scattering
states. We neglect the excitation of the COM motion. Remov-
ing the regularization provided by the trap will be the subject
of future investigations.

For physical motivation to retain a weak trap, one may
cite the utility of a quasideuteron approach to reactions as an
example. In that case, the presence of our trap simulates a
nuclear environment in which the deuteron degree of freedom
is selected to respond to an external probe [38].

The time-dependent interaction between the target and the
external EM field is Vint(t), which is formulated by the coupling
between the four-current Jμ = (ρ, �j ) of the target and the four-
potential Aμ = (ϕ, �A) of the external EM field:

Vint(t) =
∫

AμJμ d�r

=
∫

ρ(�r,t)ϕ(�r,t) d�r −
∫

�j (�r,t) · �A(�r,t) d�r. (3)

Note we adopt the natural units and set h̄ = c = 1 throughout
this paper.

B. EOM for the scattering

The EOM for the target during the scattering, in the
interaction picture, is

i
∂

∂t
|ψ ; t〉I = eiH0t Vint(t) e−iH0t |ψ ; t〉I ≡ VI (t) |ψ ; t〉I , (4)

where VI (t) denotes the interaction part in the full Hamiltonian.
The subscript I specifies the interaction picture. The state

vector of the target at time t � t0 (t0 is the time when the
target is defined in its initial state and begins to experience the
time-dependent interaction) can be solved as

|ψ ; t〉I = UI (t ; t0)|ψ ; t0〉I , (5)

where UI (t ; t0) is the unitary operator for the time evolution:

UI (t ; t0) = T̂

{
exp

[
−i

∫ t

t0

VI (t ′) dt ′
]}

, (6)

with T̂ the time-ordering operator towards the future.
The time-evolution operator UI (t ; t0) can be evaluated

numerically by first dividing the interval [t0,t] into segments
with step length δt = (t − t0)/n (n being sufficiently large
to attain numerically stable results) and then replacing the
integration in the exponent with additive increments. Keeping
only terms up to the order of δt in the following Taylor
expansion, we get

UI (t ; t0)
∑

δt−−−→ [1 − i VI (t)δt][1 − i VI (tn−1)δt] · · ·
[1 − i VI (t1)δt]. (7)

The direct evaluation according to Eq. (7) is called the Euler
scheme. It is numerically unstable since this scheme is not
symmetric in time; the norm of the state vector of the target
may not be conserved [39] during the evolution. We therefore
adopt the MSD2 scheme [40] in our tBF method. Via the MSD2
scheme, the state vector for the target at the time t1 = t0 +
δt is still evolved via the Euler scheme. However, for t ′ =
t2,t3, . . . ,tn−1, the state vector under time evolution is

|ψ ; t ′ + δt〉I ≈ |ψ ; t ′ − δt〉I − 2i VI (t ′) δt |ψ ; t ′〉I . (8)

For the current model problem, we also calculate the state
vector of the target via first-order perturbation theory for
comparison:

|ψ ; t〉I → [1 − i(VI (t) + · · ·VI (t2) + VI (t1))δt]|ψ ; t0〉I , (9)

where only the terms up to the order of δt are retained.

C. Basis representation

We solve the energy eigenbases of the target from its
intrinsic Hamiltonian [Eq. (2)]. The eigenequation is

H0|βj 〉 = Ej |βj 〉, (10)

where Ej is the eigenvalue corresponding to the eigenvector
|βj 〉 and the subscript j is an index running over the individual
states. In the basis representation defined by the set of bases
{|βj 〉}, the state vector of the target becomes a vector of time-
dependent amplitudes, while the operators become matrices
and the EOM [Eq. (4)] becomes sequential matrix-vector
multiplications.

D. Transition amplitude

In the basis representation, the state vector of the target at
any moment t during the scattering is

|ψ ; t〉I =
∑

j

AI
j (t)|βj 〉, (11)
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where the AI
j (t) is the amplitude corresponding to the basis

|βj 〉. Given the initial state vector of the target at the beginning
of the scattering (t = t0) to be |ψ ; t0〉 = |βi〉, AI

j (t) describes
the transition amplitude from |βi〉 to |βj 〉 and can be computed
as

AI
j (t) = 〈βj |UI (t ; t0)|βi〉, (12)

with AI
j (t0) = δij . The corresponding transition amplitude in

the Schrödinger picture is

Aj (t) = exp[−iEj t + iEit0]AI
j (t), (13)

and the full state vector of the target at time t is

|ψ ; t〉 =
∑

j

Aj (t)|βj 〉. (14)

E. Observables and the density distribution

Based on |ψ ; t〉, we can calculate the expectation values of
observables during the scattering as

〈O(t)〉 = 〈ψ ; t | Ô |ψ ; t〉 =
∑
j,k

A∗
j (t)Ak(t)〈βj |Ô|βk〉, (15)

where Ô denotes the operator for the selected observable.
As an example, we can study the dynamics of the target via

the evolution of its effective charge density distribution, which
is formulated as

ρ(�r; t) = 〈ψ ; t |�r〉〈�r|ψ ; t〉
=

∑
jk

A∗
k(t)Aj (t)〈βk|�r〉〈�r|βj 〉, (16)

where 〈�r|βj 〉 denotes the wave function of the j th basis in
coordinate space. The charge density distribution of the target
in its relative coordinates will be simply referred to as the
internal charge distribution in the following text.

III. SETUP OF THE MODEL PROBLEM

As shown in Fig. 1, we set the scattering plane to be the
xz plane. The target is a deuteron. For simplicity, we assume
its COM is fixed at the origin, i.e., the recoil of the target
during the scattering is neglected. The relative coordinates
of the target are defined as �r = �rp − �rn, where �rp and �rn are

FIG. 1. Setup of the peripheral scattering (adopted from
Ref. [35]). See the text for the details.

the single-particle coordinates for the proton and the neutron,
respectively. The masses of the neutron and the proton are taken
to be their average mass 938.92 MeV. The mesonic degree of
freedom is not considered and the unit charge of the target is
carried by the proton.

The projectile is a HI. It carries charge Ze and is assumed to
move, for simplicity here, with a constant velocity �v parallel to
the ẑ axis. The impact parameter b is set to be sufficiently large
such that the nuclear interaction is negligible compared to the
EM interaction during the scattering. �R denotes the position of
the HI with respect to the origin.

A. Background field

As an initial application of the tBF method, we assume
that the HI impinges with a low speed (nonrelativistic) and
the magnetic interaction between the target and the induced
vector field �A(�r,t) is ignored. That is, we evaluate only the
interaction between the target and the time-varying Coulomb
field. We then perform the multipole expansion of the Coulomb
field [41] and, for this initial application, we retain only the
contribution of the E1 multipole component. The investigation
on the contributions of other components (e.g., E0, E2) as well
as the magnetic transitions (e.g., M1) will be addressed in the
future.

In the basis representation, the operator for the E1 multipole
component [36,42] of the time-varying Coulomb interaction
VI (t) becomes a matrix with elements formulated as

〈βj |VI (t)|βk〉 = 4π

3
Ze2ei(Ej −Ek)t

∑
μ

Y ∗
1μ(	R)

|R(t)|2

×
∫

d�r 〈βj |�r〉 r

2
Y1μ(	r ) 〈�r|βk〉, (17)

where Yλμ(	) denotes the spherical harmonics (the Condon-
Shortley convention [43] is adopted in this work). λ = 1 de-
notes the dipole contribution out of the multipole components
of the Coulomb field. 	R denotes the direction of the HI, which
is specified by the polar angle and the azimuth angle of �R.
Similarly, 	r is specified by the polar and azimuth angles of
�r . The matrix representation for the time-evolution operator
UI (t ; t0) can thus be solved according to Eq. (17).

B. Structure calculation of the target

In our tBF method, we solve for target properties by an ab
initio nuclear structure calculation. In this work, the three-
dimensional (spherical) harmonic oscillator (3DHO) repre-
sentation in relative coordinates is implemented to calculate
the eigenenergies and the corresponding eigenbases. For the
internal motion of the deuteron system, each 3DHO basis
|nlSJM〉 is specified by the radial quantum number n, the
quantum number l for the orbital angular momentum, the
quantum number S for the spin, the quantum number J for
the total angular momentum (we adopt the scheme where
l is coupled to S to form J ) and the magnetic quantum
number M for the ẑ projection of the total angular momentum.
The truncation parameter for the model space is defined by
2n + l � Nmax. Hence the model’s 3DHO basis set {|nlSJM〉}
is specified by good quantum numbers S, J , M , and parity
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[determined by (−1)l] of the np system. We thus define our
retained eigenbasis in Eq. (10) as

|βj 〉 =
∑
nj lj

anj lj |nj ljSjJjMj 〉, (18)

where β stands for l, S, J , and M for each channel. {anj lj }
denotes the set of the expansion coefficients, which are ob-
tained by the diagonalization of the matrix H0 in the 3DHO
representation. The kernel in Eq. (15) thus becomes

〈βj |Ô|βk〉 =
∑
nj lj

∑
nklk

a∗
nj lj

anklk 〈nj ljSjJjMj |Ô|nklkSkJkMk〉.

(19)

Details of our conventions for the 3DHO basis representation,
the EM operators, and the observables employed here in the
3DHO basis are presented in the Appendix.

IV. SIMULATION CONDITIONS

In this work, we will adopt a concrete but simple test
application to demonstrate the feasibility of the tBF method
and to gain an initial appreciation of the coherent features
available in time-dependent evolution at the amplitude level.
The projectile is taken as a fully stripped uranium nucleus,
U92+. The incident speeds are set to be 0.1, 0.2, and 0.4. We
fix the duration of exposure time to be from −5 to 5 MeV−1,
which is approximately 6.582 × 10−21 s. The impact parameter
is chosen as b = 5 fm. That is, as an example, the projectile
with the incident speed v = 0.1 travels from 100 fm before the
distance of the closest approach between the projectile and the
origin to 100 fm after the closest approach.

One of the main features of the tBF approach is the ability
to incorporate microscopic nuclear structure via the ab initio
method with an adopted realistic nuclear interaction. For
the current work, we adopt the JISP16 [44–46] realistic NN
interaction to construct the target Hamiltonian [Eq. (2)]. In
the 3DHO representation, the eigenenergies and the corre-
sponding eigenstates of the np target are solved according
to Eq. (10) with both the trap and basis strengths taken to
be 5 MeV and Nmax = 60. For simplicity, we take only three
interaction channels for the target, which are (3S1,

3D1), 3P 0,
and 3P 1. The lowest states of each channel, as shown in
Fig. 2, are taken into account. In applying the tBF method
to this simple demonstration problem, we construct the basis
representation for the total time dependence of the target in
terms of these states. The initial state of the target is taken to be
(3S1,

3D1),M = −1, which is polarized against the ẑ axis. More
interaction channels, different NN interactions and different
targets will be studied in the future work.

The interaction between the target and the time-varying
external Coulomb field is then expressed as matrix elements in
the basis representation. According to the equation of motion
[Eq. (4)], the time-dependent state vector of the target can be
solved in the form of Eqs. (11) and (12).

In this work, we investigate selected observables of the tar-
get, the transition probability, the r.m.s. charge radius, the r.m.s.
intrinsic momentum, the r.m.s. angular momentum, the intrin-
sic energy and the ẑ projection of the total angular momentum,

FIG. 2. The eigenbasis vector of the target deuteron confined in
an external HO trap of strength 5 MeV. This vector makes explicit
the basis representation for our model and lists the channel quantum
numbers, the angular momentum projection, and the eigenenergies.
For the ab initio structure calculation, the 3DHO bases are adopted,
for which the basis strength is set to be ω = 5 MeV and the truncation
parameter Nmax to be 60. The lowest-lying seven states are chosen to
construct the basis representation for the target. Note there are the
expected degeneracies with respect to the target system’s magnetic
projection M .

as functions of the exposure time and the incident speed
(or, equivalently, bombarding energy). To help formulate our
intuition, we also present some details of the evolution of the
internal charge distribution [Eq. (16)] during the scattering.

V. RESULTS AND DISCUSSIONS

A. Transition probabilities

With the total exposure time fixed and only the incident
speed altered, we present in Fig. 3 the transition probabilities
of the basis states of the np target as functions of the time
and the incident speed of the HI at intermediate times (from
−1 to 2 MeV−1), which covers the time period where the
significant transitions occur. Note we ignore the corrections
from the relativistic effects and the magnetic transitions caused
by the induced vector field. For the numerical calculation,
we apply the same method introduced in our previous paper
[35], where we checked that the tBF method agrees with
first-order perturbation theory when the external Coulomb
field is sufficiently weak and the first-order effects dominate.
In addition, we conduct two more validity checks. First, the
normalization of the time-dependent wave function is verified
during the evolution of the np target. Second, the time-reversal
symmetry of the algorithm for the evolution is verified by
explicitly running the solution backwards to the initial state.

1. General features of the excitation

During the scattering, when the HI projectile is sufficiently
close to the mass center of the target, abrupt transitions occur
and the probabilities exhibit short-time fluctuations. Such
quantum fluctuations are expected in the quantal treatment of
scattering and we verified that these quantum fluctuations are
consistent with the uncertainty relation. We clearly observe
such quantum fluctuations in, for example, the evolution of the
initial state (3S1,

3D1),M = −1 with an incident speed v = 0.4
in Fig. 3. Here, the elastic scattering probability dips sharply
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FIG. 3. The Coulomb excitation (only the E1 multipole component is included) of the target illustrated as a function of the time and the
incident speed of the HI in the middle of the scattering. The target is characterized by seven basis states. It is initially prepared to be in the state
(3S1,

3D1),M = −1. The HI projectile is taken to be a fully stripped uranium nucleus, U92+, and the incident speed is taken as 0.1, 0.2, and 0.4.
The transition probabilities of each basis state of the target are calculated via the nonperturbative tBF method and compared with results from
first-order perturbation theory (curves labeled by “Pert” in the legend).

and relaxes to its asymptotic value. For this case, the full
width at half maximum (FWHM) (for the first dip during the
evolution) is �t > 0.1 MeV−1, while the transition energy is
�E > 12.7 MeV, yielding a product greater than unity which
is consistent with the uncertainty principle.

Eventually, short-time fluctuations attenuate and approach
asymptotic values as the Coulomb field fades away. The excited
target then evolves into a final superposition of the available
eigenstates of the target Hamiltonian. From the produced
scattering amplitude at later times, the amplitude for breakup
into a particular, kinematically allowed, final state is found by
projecting onto that final state. In reality, the excited target can
also decay through other kinematically accessible channels,
such as through spontaneous EM radiation, which is not
included in the present model.

2. Allowed and forbidden transitions

In Fig. 3, the difference in the transition probabilities given
by the nonperturbative tBF method and the corresponding
first-order perturbation theory shows the importance of the

higher-order effects during the scattering process. Specifically,
since only the E1 multipole component of the time-varying
Coulomb field is included, we expect the dominant transitions
in Fig. 3 to reflect the E1-selection rule for the calculations
based on first-order perturbation theory. We refer to transi-
tions from the initial state that are permitted by first-order
perturbation theory as “allowed” and all other transitions as
“forbidden” for the purposes of this discussion. However, for
the current setup (Z = 92, b = 5 fm), the Coulomb interaction
is strong when the projectile is close to the target; higher-
order effects, which are included by the nonperturbative tBF
approach, produce some major consequences when compared
with first-order perturbation theory. For example, first-order
perturbation theory predicts (3S1,

3D1),M = 1 to be a “dark”
state (an E1-forbidden transition), while its population is
clearly revealed by the nonperturbative tBF method during the
scattering process via a succession of E1 transitions through
the accessible intermediate states. The tBF population of two
additional dark states is shown in Fig. 3, which is evident by the
contrasting null results from first-order perturbation theory. For
the allowed transitions in Fig. 3, there are visible differences
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FIG. 4. Illustration of the state populations changing with time
during the scattering. Note the transition probabilities are all scaled.
The E1-allowed state 3P 1,M = −1 is populated initially. Then one
observes the transport of population from the state 3P 1, M = −1 to
the first-order forbidden state (3S1,

3D1), M = 0. Later, the transition
network populates the second-order forbidden state 3P 1, M = 1 with
that population fed from the state (3S1,

3D1), M = 0. The forbidden
states also receive population from other states, in which cases relative
phases can lead to interference.

in the magnitudes between the tBF and the perturbation
theory results, with first-order perturbation theory tending to
overestimate the transition probability for the simulations with
the incident speeds 0.1 and 0.2.

The time sequence of the transition probabilities is illus-
trated in Fig. 4. The states that obey the E1-selection rule from
the ground state are populated earlier with more population
(e.g., 3P 1,M = −1), compared to transitions forbidden at
leading order. Shortly thereafter, secondary transitions begin to
populate the first-order forbidden states [e.g., (3S1,

3D1),M =
0]. However, these effects do not significantly populate the
forbidden states until the E1-allowed states accumulate ap-
preciable population. It is important to note that the de-

excitation of states is also included among the transitions. After
the first-order forbidden states are sufficiently populated, the
transition network starts to build up the population for the
second-order forbidden states, e.g., 3P 1,M = 1. In general,
the forbidden states populated by the higher-order transitions
build up relatively smaller populations.

3. Dependencies of the transitions on the incident speed

With increasing incident speed, we find that the transitions
begin later and that the oscillations of the transition probabili-
ties attenuate more rapidly (transitions experience damping of
their oscillatory patterns and approach to asymptotic values).
These behaviors can be understood based on the strength and
time-variation of the Coulomb interaction sensed by the target.
According to Eq. (17), the time-variation of the interaction
matrix element is, in part, scaled by the geometric factor
Y ∗

1μ(	R )
|R(t)|2 . Since we set the scattering plane to be the xz plane, the

azimuth angle for �R vanishes and hence the geometric factor is
real. As an example, the values of the geometric factor and its
time variation are shown for the scattering with incident speed
v = 0.1 in Fig. 5. We find that significant transitions occur
only when the HI projectile is sufficiently close to the target
(note the time for approaching differs with the incident speed),
where the field strength is strong and the time variation of the
field is rapid. After the HI passes by, the transition probabilities
attenuate asymptotically due to the decreasing geometric factor
in the interaction matrix elements.

We note that the asymptotic transition probability of each
level does not depend on the incident speed monotonically.
This is due to the phase factor in Eq. (17), which depends on the
transition energies. In fact, this phase favors specific transition
energies depending on the incident speed. Taking into account
the specified transitions included for the current description
of the np target (Fig. 2), the nonmonotonic dependencies
of the transition probabilities on the incident speed can be
understood. In other words, the transition probability of each
state does not necessarily increase with incident speed. For
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FIG. 6. Selected observables of the np target as functions of the exposure time and the incident speed of the HI in the middle of the
scattering. Panels (a)–(d) show the evolutions of r.m.s. charge radius, r.m.s. momentum, r.m.s. orbital angular momentum, and intrinsic energy,
respectively.

example, the transition probability to the state 3P 1,M = −1 is
the largest when the incident speed is v = 0.2.

In addition, we find that first-order effects increasingly
dominate the final state populations as the incident speed of the
HI projectile increases. This could be due to the limitation of
the current seven-basis system, where higher-lying scattering
states are yet to be included. One expects that higher-lying
states receive more population as the incident speed increases.
Since our main purpose is to define the approach and demon-
strate the method of solution, we defer inclusion of a more
complete basis to a future effort.

B. Observables

With the same simulation conditions as those in Fig. 3, we
compute the wave functions of the target during the scattering
and evaluate a selected set of operators (we refer to them as
“observables” for brevity) as functions of the exposure time
and the incident speed (Fig. 6). We again provide calculations
based on first-order perturbation theory to compare with those
from the nonperturbative tBF method. Note that the expectation
values of the observables do not change appreciably until
the HI gets sufficiently close to the target, while they relax
to respective asymptotic values after the HI flies away from
the target. We also comment that the initial values of the
observables differ from those for a natural deuteron due to the
external HO trap introduced in Eq. (2). For example, the r.m.s.
charge radius of the target before the scattering is 1.472 fm,
which is about 25% smaller the experimental measurement
1.975(3) fm for a natural deuteron [47,48].

All the expectation values of the target observables are
evaluated with the time-dependent wave function of the target
during the scattering, in which the full quantal coherence is
retained. With our limited basis set (Fig. 2), the matrix repre-
sentation of each of our selected operators is diagonal. In other
words, the expectation of each observable at a certain moment
simplifies here to the calculation of the weighted average
(the possible values of the observable weighted by respective
eigenbasis probabilities). Therefore, it is not surprising that
the evolutions of different observables behave similarly; the
time dependencies of the observables can be easily understood
by the results in Fig. 3 and by the fact that higher-lying basis
states contribute larger r.m.s. charge radii, eigenenergies, and
r.m.s. orbital angular momenta together with smaller r.m.s.
intrinsic momenta. That is, for each observable as a function
of the different incident speeds, the sequence of the onsets
of the quantum fluctuations in the middle, the subsidence of
the oscillations at the end of the scattering, the importance of
the higher-order effects, and the dependence on the incident
speed are easily interpreted in terms of the behaviors of
the transition probabilities (Fig. 3). In future applications,
with a larger eigenbasis, we anticipate this simple picture
will be distorted, for example, by additional coherent effects
on the transition matrix elements since the time-dependent
amplitude will acquire contributions that are off-diagonal in
the eigenbasis.

We find that momentum, angular momentum, and energy
are transferred significantly to the target when the projectile
is near its closest approach. The spikes indicating quantum
fluctuations with short-time duration subside as the Coulomb
field weakens following the HI’s closest approach. After the
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FIG. 7. Expectation values of the ẑ projection of the total angular
momentum as functions of the exposure time and the incident speed
in the middle of the scattering. These values are calculated in the same
manner as the observables in Fig. 6.

scattering, we find from Fig. 6 that the intrinsic motion of the
target is excited and that excitation is greater when the incident
speed leads to favorable phase coherence within the current
level structure. For example, the average intrinsic energies
of the scattered np target [panel (d)] increase by at least
0.7 MeV when the incident speeds are 0.2 and 0.4, indicating
the important roles of the excited channels. Even for the case
with the incident speed v = 0.1, the average intrinsic energy
of the scattered target increases by about 10%.

We also note that the ẑ projection of the total angular
momentum, which determines the polarization of the target,
is similarly affected during the scattering process as seen in
Fig. 7. Indeed, the expectation value of the ẑ projection of the
total angular momentum indicates the orientation of the target
during the scattering.

C. Evolution of the internal charge distribution

The tBF method enables investigations of the detailed dy-
namics of the scattering process. As an example, we will show
in this work the evolution of the internal charge distribution of
the target during the scattering process. Since our main purpose

here is to set up the methodology, we shall consider only
the case with the incident speed v = 0.1, where higher-order
effects are clearly visible in the complex flow of populations
among the levels as discussed above.

In Fig. 8, we present the initial internal charge distribution
of the target. For the np system under investigation, it is a
prolate spheroid with the major axis along the ẑ axis. Our
distribution differs from the two peaked structure shown in
Refs. [49,50] due to the fact that our wave functions of the
np target are solved implementing the JISP16 NN potential,
which is a realistic “soft” potential without strong short-range
correlations. We present the difference in charge distributions
between the initial and the scattered targets (Figs. 9 and 10)
to investigate the dynamics at selected intermediate exposure
times. We emphasize that this is the information available
within our time-dependent treatment. We provide this infor-
mation to help develop one’s intuition, though it is difficult to
imagine an experiment that interrogates for this information.

We find, in general, the scattering of the target can be
mainly divided into three sequential stages as described in the
following.

Stage I: At the very beginning of the scattering, the internal
charge distribution of the target begins to polarize due to the
repulsive Coulomb interaction, producing a dumbbell shape
(the first row of Fig. 9). Shortly thereafter, more of the positive
charge density shifts to the far side (the side away from
the HI) of the target, as would be expected from the effect
of the repulsive Coulomb force in a classical picture. The
dipole fluctuation of the charge density [51] is also observed
together with the general migration of the positive charge
density. As the HI approaches, the amplitude of the dipole
fluctuation increases. These oscillations are the result of mixing
in the excited states with the initial state, however small those
mixings may be.

Stage II: As the HI nears the target, the strength of the
Coulomb field sensed by the target is stronger and time-
variation of the field intensifies. Transitions become stronger
(the second row of Fig. 9); the modes of different internal
motions become more apparent, generating more complex
patterns for the charge distributions. The dipole fluctuation of
the charge density is suppressed. The migrated positive charge
density (forced by the Coulomb repulsion) still concentrates at
the far side of the target.
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FIG. 8. The internal charge distribution (in fm−3) of the np target before scattering. The initial target is prepared in the state (3S1,
3D1),M =

−1, in which the polarization is antiparallel to the ẑ axis. The xz plane is the scattering plane (see Fig. 1), the xy and yz planes are respectively
perpendicular and parallel to the impinging HI.
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FIG. 9. The overview of the evolution of the internal charge distribution (in fm−3) of the np target during the scattering. The simulation
conditions are the same as those in Fig. 3, except that the incident speed is chosen as 0.1. These graphs show the difference in the internal
charge distributions between the scattered targets at T = −1.975,−0.255,0,0.255,1.975 MeV−1 and the initial target (T = −5 MeV−1) in
three orthogonal coordinate planes, where the transition amplitudes of each basis state of the target at the selected moments are calculated via
the nonperturbative tBF method. See the text for the details.

Right after the HI passes its closest approach to the np
system, different coordinate planes show the rotational motion
of the np target (indicated by the third and fourth rows of
Fig. 9). The directions are counterclockwise in the xy and
xz planes and clockwise in the yz plane. These rotational
directions are determined by the preparation of the initial target.
For example, if we had prepared (3S1,

3D1),M = 1 as the initial
state for the target, the direction of the rotation would switch

(e.g., the rotation would become clockwise in the xy plane). We
verified this by actual simulation. In addition to the rotational
motion, fluctuations with complex modes in the charge density
occur, as clearly shown in the fourth row of Fig. 9.

Stage III: When the HI moves further away, the Coulomb
field weakens and its time variation decreases, reducing the
amount of energy, momentum and angular momentum trans-
ferred to the target per unit time. The target begins to stabilize.
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FIG. 10. Stabilization of the target after the scattering. These graphs show the difference in the internal charge distributions (in fm−3)
between the initial target (T = −5 MeV−1) and the scattered targets at T = 0.36 MeV−1 (top row), 0.435 MeV−1 (second row), 0.565 MeV−1

(third row), 0.695 MeV−1 (bottom row). The other simulation conditions are the same with Fig. 9 and the transition amplitudes of each basis
state are calculated via the tBF method. See the text for the details.

The snapshots for the stabilization process are shown in Fig. 10.
Note that we present the sequence of graphs such that the
internal charge distribution rotates evenly in the xy plane, as
can be easily seen from the steady increase in the azimuth angle
of the “green cloud” in the leftmost column.

After stabilization (the fifth row of Fig. 9), the scattered
target evolves as a superposition of the basis states according
to the “unperturbed” Hamiltonian H0. The time evolution
of the internal charge distribution of the target shown in
Fig. 10 repeats, indicating the final state is reached. We find
the range of the internal charge distribution of the scattered
target expands compared to the initial distribution shown in
Fig. 8. This is signified by the expansion of the r.m.s. charge
radius as shown in the panel (a) of Fig. 6. In addition, the
complex patterns in the internal charge distribution indicate
the excitation of the orbital angular momentum [panel (c) in
Fig. 6]. Finally, we observe the combination of the rotation
and oscillations in the charge density, again indicating the
excitation of these degrees of freedom.

VI. CONCLUSIONS AND OUTLOOK

We develop an ab initio, nonperturbative approach to treat
the nonrelativistic nuclear structure and scattering problems in
a unified manner. We call this approach the time-dependent
basis function (tBF) method. Within the tBF formalism, the
state vector of the system is calculated at the amplitude
level during the scattering, by explicitly evaluating the time-
evolution operator. The full quantal coherence is therefore
retained and we are able to study the detailed dynamics for
complex scattering processes.

As an initial test problem for illustrating the tBF method,
we study the Coulomb excitation of a deuteron in a weak
harmonic potential (the setup shown in Fig. 1). We scatter a
U92+ projectile (with the incident speed v = 0.1,0.2,0.4 and
the impact parameter b = 5 fm) to generate the time-varying
Coulomb field, for which the multipole decomposition is
performed and only the E1 component is kept for illustration.

In this simple application of the tBF formalism, the structure
of the target is solved using the JISP16 NN interaction. With
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the 3DHO representation, we construct the target Hamiltonian
setting the full space truncation parameter Nmax � 60 and basis
strength ω = 5 MeV. To localize the target and to regulate the
continuum states, we also introduce a weak HO trap of strength
5 MeV for the target Hamiltonian. By diagonalization of the
target Hamiltonian, the lowest seven states in the interaction
channels (3S1,

3D1),3P 0 and 3P 1 are solved (Fig. 2). We select
these states as a basis set to construct a basis representation
for the time-dependent solution of the target under scattering.
Note the center of mass excitation of the target is neglected for
simplicity.

Within the basis representation, the time-dependent state
vector of the target becomes the wave function, which is
made up by a set of amplitudes of respective basis states.
Meanwhile, the equation of motion for the scattering takes the
form of matrix multiplications. In this work, we prepare the
initial target to be polarized in the state (3S1,

3D1),M = −1
and solve the wave function during the scattering numerically
by the MSD2 scheme. In order to reveal the importance of
higher-order effects in the scattering, we also solve the wave
function via first-order perturbation theory.

The time-dependent wave function, obtained via either the
MSD2 or first-order perturbation theory, is used to investigate
the intrinsic excitations of the target. We study the transition
probabilities to different basis states as functions of the expo-
sure time and the incident speed. We find that abrupt transitions
occur during the scattering, when the strength of the Coulomb
field is strong and its time variation is rapid. The transitions
subside and approach asymptotic values as the Coulomb field
subsides.

We also study the feeding of allowed and forbidden states.
It is found that higher-order transitions occur later and build
smaller populations for the forbidden states. With increasing
incident speed, first-order effects dominate the transitions, with
nonmonotonic dependencies of the transition probabilities on
the incident speed clearly visible in the simulations. This could
be due to the restricted basis representation for the target in the
current model problem.

The tBF method enables us to study the evolution of the
target observables, such as the r.m.s. charge radius, the r.m.s.
intrinsic momentum, the r.m.s. angular momentum, the intrin-
sic energy, and the ẑ projection of the total angular momentum.
Applying the matrix representations of the corresponding
operators as well as the time-dependent wave functions, we
study the evolution of the observables according to the ex-
posure time and the incident speed. The evolution of these
observables is analyzed based on the transition probabilities to
different basis states, from which we obtain the transfer of the
energy, the momentum, and the angular momentum between
the background field and the target during the scattering.

By the tBF method, we expose the dynamics of the
scattering directly from the evolution of the internal charge
distribution of the target. To illustrate, we show the difference
in internal charge distributions between the scattered and initial
targets for the case with the incident speed v = 0.1. We find
that the scattering of the target in the time-varying Coulomb
field is divided into three sequential stages, i.e., the polarization
stage, the transition stage, and the stabilization stage. At the
end of the scattering, the excitation in the intrinsic degrees

of freedom, such as the rotation and fluctuation of the charge
density, is evident.

In the future, simplifying assumptions in the current test
problem will be removed in order for the tBF method to pro-
duce results that can be compared with experimental outcomes.
First, for collisions of a light ion with a very heavy ion we will
replace the linear trajectory with the Rutherford trajectory.
Second, we will remove the trap and generate a discretized
version of the continuum and explore the sensitivity to the
discretization grid (sensitivity to continuum regulators such as
Nmax and h̄	 in the ab initio no-core shell model approach
[52]). Third, we will expand the set of transition operators to
include other electromagnetic multipoles and the additional
channels that they will feed. The fourth step, to include
the strong interaction, will lead us to consider microscopic
approaches to the inter-nucleus interaction beginning with
the double-folding approach [53,54]. Including the strong
interaction will also require an improved treatment of the
dynamical trajectory which we will investigate at this stage.
These improvements will enable us to systematically address
processes such as the reorientation [55–57] and the dissociation
[58–60] of the deuteron.

We plan to further generalize the tBF method to treat more
complicated problems such as the scattering of other light
nuclei on heavy targets where, for example, the dissociation to
clusters in the final states would be of interest (e.g., diffractive
dissociation applications [61–63]). Inclusive inelastic response
functions would also be valuable to calculate and check, for
example, their multipole sum rules [64,65]. Further into the
future, it may be possible to extend this approach to transfer
reactions, but that will require major additional developments.
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APPENDIX

We introduce the 3DHO basis in the coordinate representa-
tion as

〈�r|nlSJM〉 = Rnl(r)
∑
mlms

(lmlSms |JM)Ylml
(	r̂ )χSms

. (A1)
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The summations run over all the possible values of the
magnetic quantum numbers of the orbital angular momentum
l and the spin S. (lmlSms |JM) denotes the CG coefficient
following the Condon-Shortley convention [43]. χSms

denotes
the spin part of the wave function. The radial part of the wave
function in the coordinate space [43] is

Rnl(r) =
√

2n!

r3
0 �

(
n + l + 3

2

) (
r

r0

)l

exp

[
− r2

2r2
0

]
L

l+ 1
2

n

(
r2

r2
0

)
,

(A2)

where �(n + l + 3/2) is the gamma function and Lα
n(r2/r2

0 )
is the associated Laguerre polynomial. For the 3DHO basis
in the coordinate representation, the oscillator length is r0 =√

1/mω with m being the reduced mass of the np system and

ω being the oscillator strength. Note that the so-defined Rnl(r)
starts as positive at the origin. The energy eigenfunction in the
coordinate space, which is useful in evaluating Eq. (16), thus
becomes

〈�r|β〉 =
∑
nl

anlRnl(r)
∑
mlms

(lmlSms |JM)Ylml
(	r̂ )χSms

.

(A3)

The matrix element of the operator Ô in the 3DHO represen-
tation, 〈nj ljSjJjMj |Ô|nklkSkJkMk〉 in Eq. (19), is computed
in the coordinate space. The results for the operators that are
relevant to this work are shown in the following.

The E1 matrix element in the 3DHO representation is

〈nj ljSjJjMj | r
2
Y1μ(r̂)|nklkSkJkMk〉 =

∫
R∗

nj lj
(r)

r

2
Rnklk (r)r2dr

∑
mlj

msj

∑
mlk

msk

δSj Sk
δmsj

msk

(
ljmlj Sjmsj

∣∣JjMj

)(
lkmlkSkmsk

∣∣JkMk

)

× (−1)mlj

√
3(2lj + 1)(2lk + 1)

4π

(
lj 1 lk

−mlj μ mlk

)(
lj 1 lk

0 0 0

)
. (A4)

In our calculation, we adopt the 3j symbols, e.g., (
lj 1 lk

−mlj μ mlk

)
,

following the Condon-Shortley convention [43]. The radial integral in Eq. (A4) can be computed as

∫
R∗

nj lj
(r)

r

2
Rnklk (r)r2dr = r0

2

⎧⎪⎪⎨
⎪⎪⎩

√
nj + lj + 3

2 δnj nk
− √

njδnj ,nk+1 for lk = lj + 1,√
nk + lk + 3

2 δnj nk
− √

nkδnk,nj +1 for lj = lk + 1,

0 else.

(A5)

The matrix element of r2 is

〈nj ljSjJjMj |r2|nklkSkJkMk〉 = r2
0 δlj lk δSj Sk

δJj Jk
δMj Mk

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2nj + lj + 3
2 for nj = nk,

−
√(

nj + lj + 3
2

)
(nj + 1) for nj = nk − 1,

−
√(

nk + lk + 3
2

)
(nk + 1) for nj = nk + 1.

0 else.

(A6)

The matrix element of p2 is

〈nj ljSjJjMj |p2|nklkSkJkMk〉 = p2
0 δlj lk δSj Sk

δJj Jk
δMj Mk

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2nj + lj + 3
2 for nj = nk,√(

nj + lj + 3
2

)
(nj + 1) for nj = nk − 1,√(

nk + lk + 3
2

)
(nk + 1) for nj = nk + 1,

0 else,

(A7)

where p0 = √
mω is the oscillator momentum.

The matrix element of L2 is

〈nj ljSjJjMj |L2|nklkSkJkMk〉 = lj (lj + 1) δnj nk
δlj lk δSj Sk

δJj Jk
δMj Mk

. (A8)

The matrix element for the ẑ projection of the total angular momentum M is

〈nj ljSjJjMj |M|nklkSkJkMk〉 = Mj δnj nk
δlj lk δSj Sk

δJj Jk
δMj Mk

. (A9)
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