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We propose a framework to calculate the dynamics at the scission point of nuclear fission, based as far as
possible on a discrete representation of orthogonal many-body configurations. Assuming axially symmetric
scission shapes, we use the K orbital quantum number to build a basis of wave functions. Pre-scission
configurations are stable under mean-field dynamics while post-scission configurations evolve to separated
fragments. In this first exploratory study, we analyze a typical fission trajectory through to scission in terms of these
configurations. We find that there is a major rearrangement of the K occupancy factors at scission. Interestingly,
very different fragment shapes occur in the post-scission configurations, even starting from the same pre-scission

configuration.
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I. INTRODUCTION

The dynamics around the scission point is crucial to un-
derstand many aspects of the fission final state, including
for example the kinetic energy distribution of the fragments
and the odd-even effects in mass distributions. At present
[1], the leading tool for microscopic fission theory is the
generator coordinate method (GCM) applied to mean-field
wave functions derived from energy density functionals. Using
GCM, we understand the whole set of procedures required
to carry out the method, from the construction of the set
of mean-field wave functions for the generator states, to the
calculation of the Hamiltonian overlaps required for both
stationary (Hill-Wheeler equation) or dynamic calculations.
This has been highly successful for mapping out the potential
energy surface (PES) in a space of nuclear shapes and for
describing the multiple barriers and the topography needed
to reproduce the observed excitation functions and mass
distributions.

However, the GCM becomes problematic for calculating the
dynamics of induced fission. There is a competition between
many configurations (collective and non-collective) interacting
with each other, and the GCM formulation becomes very
complicated [2]. Also, the GCM based on shape degrees of
freedom hardly has the discrimination power to follow the last
state to scission [3]. We will see this very clearly in the example
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we examine in this article. Finally, there is a computational
issue in the GCM associated with the nonorthogonality of the
basis functions [4, p. 475].

This has to be contrasted with the theory of spontaneous
fission lifetimes. There, a predictive theory is possible using
a semiclassical action derived from the PES and an inertial
tensor also based on the GCM approximations [4—6].

Since the GCM formulation in shape variables turns out to
be quite unwieldy, an alternative microscopic fission theory
might make use of the configuration-interaction (CI) represen-
tation of the many-particle wave function. In contrast to the
GCM, which is formulated in terms of continuous generator
coordinates, the configuration interaction method diagonalizes
a discrete Hamiltonian in the space of Slater determinants. The
Clis very well developed for nuclear structure studies [7], butin
the fission problem there is the added complication of needing
at least some shape degrees of freedom. We would like to use
CI methods as far as possible but with deformed mean-field
orbitals rather than orbitals from the spherical shell model.
Many deformed configurations can be generated as local
minima of a Hartree-Fock Hamiltonian. Those configurations
do not need any help from a generator coordinate to separate
them. And, unlike the GCM configurations, local minima are
automatically orthogonal if the single-particle Hamiltonian
has some symmetry to classify states by some quantum
numbers.

While this approach might diminish the role of the GCM,
it cannot replace it entirely. In particular, the final state of
separated fragments cannot be reasonably represented in a
space of local Hartree-Fock (HF) minima, since the final state
has no minimum at finite separation.
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To explore the feasibility of a CI formalism for fission
dynamics, the following questions need to be answered.

Question 1: Can one construct a useful orthogonal basis
from the orbitals of self-consistent mean-field
theory?

Question 2: How do we represent the final state (two fission
fragments in the continuum)?

Question 3: How can we calculate the coupling between
pre- and post-scission configurations?

In this work, we only address Question 1. We shall examine
in detail a typical fission trajectory produced by the GCM
using Hartree-Fock-Bogoliubov (HFB) mean-field states. We
then project the intermediate wave functions onto a HF basis
and examine properties of the states that would go into a CI
calculation of the dynamics.

An ultimate goal is to gain a theoretical understanding of
the competition between inertial and dissipative dynamics in
fission. Statistical models without any dynamic evolution at all
have been fairly successful [8,9]. There are also a number of
studies investigating the dynamics in the strongly dissipative
limit, e.g., Refs. [10-12]. We also note recent work including
both Newtonian inertial dynamics and dissipative effects via
Langevin stochastic force [13]. On the other hand, purely quan-
tum Hamiltonian treatments can also exhibit the fluctuations
seen in fragment mass distributions [14—17]. So far, there
have been few attempts to combine statistical and quantum
dynamics in fission, but see Ref. [18]. It should be possible to
determine the qualitative character of the dynamics from our
present knowledge of the nucleon-nucleon interaction, given a
broad enough calculational scheme.

II. THE TRAJECTORY

We model the fission of 2*°U by following a single tra-
jectory of GCM-constrained HFB configurations. We take the
quadrupole operator

0y =227 — 32 — 37 (1

as the generator in a HFB calculation of the constrained config-
urations. Starting from an initial configuration, which could be
the ground state, we increase the constrained Q5 expectation
value by 2—4 b, and solve for the new HFB minimum with
the previous one as the starting configuration. The energy
functional is based on the Gogny DIS interaction [19], with
Coulomb exchange treated in the Slater approximation and
center-of-mass energy subtracted out of the total kinetic energy.
Two codes were used to carry out the HFB minimizations,
namely the HFBAXIAL code by Robledo and a similar code
by Younes.' These codes assume that the HFB mean field is
axially symmetric, which seems reasonable past the second
barrier. Both codes use an axially deformed harmonic oscillator
(h.o.) basis; the included h.o. quantum numbers (n,,n,,A) are
selected according to the formula [21]

n./q+2n,+A <N, (2

"These codes have been applied to fission in previous publications,
e.g., [5] and [20].
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FIG. 1. Solid circles: points on the HFB potential energy surface
(PES) constrained by the Q, operator; solid squares: the same PES
calculated in the HF approximation as described in Sec. I1I.

with ¢ = 1.7 and N = 12. The codes only treat configura-
tions invariant under time reversal, permitting an additional
truncation A > 0. The single-particle Hamiltonian is block
diagonal, with the largest block (K = 1/2) having a dimension
of 140. Finally, the h.o. length parameters were fixed at b, =
2.97 fm and b, = 1.9 fm. Often some deformation-dependent
optimization is carried out on the length parameters [22], but
since our purpose here is largely a qualitative understanding
of the configuration space we keep them fixed.

Figure 1 shows the energy of the GCM states along the
computed trajectory. One sees a plateau at high deformation
leading to a cliff near Q9 ~ 310 b. The points beyond that
are lower in energy by about 10 MeV. Furthermore, the neck
size precipitously drops to a small value.? The sudden jump at
the cliff edge highlights the problem of understanding scission
dynamics. Other measures of the shape are discontinuous as
well. Figure 2 shows the same trajectory in the plane of shape
parameters Qoo and Q3¢ = (r>\/4m/7Y3y). One sees that Q3
is discontinuous as well. We could try to put in a constraint
on Qs to fill in the steps along path, but this turns out to
be quite difficult [3]. In a different approach, as many as five
shape coordinates have been invoked to describe the path to
scission [23].

III. HF REDUCTION

By assumption, the HF mean field is axially symmetry and
the angular momentum K of the orbitals about the symmetry
axis is a good quantum number. Also, we assume that the
time-reversed orbitals £K are occupied in pairs. Therefore,
we can characterize the configurations by the number of pairs
of different | K |, which we call the K partition. In the absence

’Here and in Table II the neck parameter is defined following
Ref. [21] as Apeck = exp[—(2 — zy)?/a3)] with ay = 1 fm and zy
the position of the neck.

064619-2



SCISSION DYNAMICS WITH K PARTITIONS

PHYSICAL REVIEW C 97, 064619 (2018)

60

50}

40t

Q30

20+

10+

o]

0 50 100 150 200 250 300 350

Q20

FIG. 2. The PES minima from Fig. 1 inthe (Q20, Q30) plane. Lines
are shown to guide the eye.

of an octupole deformation, the particles can be partitioned
further by parity, but that is not possible on the outer fission
landscape.

The HFB solutions of course are composed of many HF
configurations and we would like to identify the most important
ones. One choice to project onto a HF configuration is to
adiabatically decrease the strength of the pairing until the
wave function approaches a condition where all the orbital
occupancy factors are close to zero or one. In the HFBAXIAL
code of Robledo, this is achieved by adding to the density
constraint an additional one on the particle-number fluctuation.
We find that requiring it to be (IW) — (1\7)2 ~ 0.1 gives an
unambiguous assignment to the HF occupancies. The residual

_177O‘V|‘|‘V|V|\V\Y|\I\YI

s0%%00000a

17751 :
2, -1780[- ]
€ | [VHE :
= 178sk |, gg -

. |+ HF . ]
L L HF [ ] i
1790+  |— HFB :

ZOd 220 240 260 280 300 320 340

Q,, (b)

FIG. 3. Expanded view of the constrained minima around the
scission point. HF energies for the configurations derived from the
HFB path are shown by the symbols in the key, with identical
symbols for configurations with the same K partition. The vertical
lines separate the different partitions. The originating HFB energies
are shown with the small circles connected by the lines.
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FIG. 4. Density distributions at O,y = 288, 312, 316, and 320 b
for Lighthouse, Buenavista, Glider, and Bobsled, respectively.

pairing correlation energy under this constraint is less than a
tenth of an MeV.

The HF reduction for the HFB states described in the last
section is shown in Fig. 1 as the upper curve. The energy
difference between the two curves is the pairing correlation
energy. Going from ground state to scission, there are about
20 changes of the K partition along the way. Most of them are
recognizable as kinks in the HF PES. From the second barrier
on, there are about 9 changes of the K partition. Figure 3
shows an expanded view of the two PESs near the scission
point, with borders between different K partitions indicated by
vertical lines. The three or four K partitions near the scission
point are of most interest. We give them names as follows:
green diamonds, “Lighthouse”; black circles, “Buenavista”;
blue triangles, “Glider”; and red squares, “Bobsled”.
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TABLE I. K partitions for the ground state and some of the
configurations close to scission.

2K protons 2K neutrons
Name 1 3 5791 1 3 5 79 11 13
G.S. 9 13 7 4 2 1 26 19 13 7 4 2 1
Lighthouse 23 13 6 3 1 0 31 20 12 6 2 1 O
Buenavista 23 13 6 3 1 0 32 20 11 6 2 1 O
Glider 22 14 6 3 1 0 31 20 11 6 3 1 O
Bobsled 20 13 7 4 2 0 28 20 12 7 3 2 O

Note also that the pairing is rather weak in the pre-scission
configurations Lighthouse and Buenavista, but it is strong
again in Glider and Bobsled. For the remaining discussion,
we focus on the properties of the HF-reduced configurations.
The densities distributions for the named configurations are
shown in Fig. 4.

Their K partitions are listed in Table I. For comparison
purposes, we have included the ground state as well in the
tabulation. Qualitatively, the major changes are in the K =
1/2 orbitals and the high-K orbitals. The higher K becomes
depopulated in region where the shape is very elongated. But
then Bobsled gains back much of high-K occupancy at the
expense of the K = 1/2 orbitals. Further aspects of the K-
partition distributions near the ground state deformations have
been discussed in Ref. [24].

Given the K partitions, we can extend the range of the con-
figurations in shape space by carrying out the HF minimization
with both shape and K constraints. The results for the range
00 = 200-350 b are shown in Fig. 5.

So far, there is no controlled theory for locating where
the path jumps from one K partition to another. To see the
ambiguity, let us suppose that the fission path goes through
Lighthouse. It could make a big difference in the final state
excitation energies (and the total kinetic energy) whether the
jump goes through Bobsled at Q59 & 270 b or through Glider
at 0y ~ 320 b.
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FIG. 5. The PES for the named K partitions over an extended
range of Qyp.

To assess how difficult it is to get from one K partition to
the next along the path, a useful measure is the number of pair
jumps in the transition. We define the pair-jump number as

Nio=4%Y ANk, 3)
K,o
with
ANko = Ingoli +1) = ng o ()| )

and ng (i) is the number of pairs in orbitals with quantum
number K, and o = n or p. The configuration is labeled by i.
The total number of jumps is

Ny=Nyp,+ Ny, (5)

Note that the application of the pairing interaction to the wave
function induces single pair jumps. Thus, if there are two or
more pair jumps the two-particle interaction matrix element
between the configurations vanishes.

For the traversal of the fission path from the second saddle
to the Glider configuration we find 15 pair jumps. Thus, if
the pairing interaction were treated as a perturbation, the
endpoint configurations would only be connected in 15th-order
perturbation theory. Up until Glider, configuration changes
mostly take place by single pair jumps with a few double
jumps. One can visualize single jumps as level crossings
which become avoided crossing when the pairing interaction
is included in the Hamiltonian.

The situation is quite different at the final transition from
Glider to Bobsled, which has N;, = 3 for both neutrons and
protons for a total of N, = 6. There is obviously a major
rearrangement at the scission point that would be difficult to
describe purely in terms of shape variables.

When there are multiple pair jumps in the transition between
HF configurations there will be a number of possible intermedi-
ate paths, taking the jumps one by one. For the first jump, there
are N, choices for the starting K, if all the K’s are different.
The choices for its landing point depends on whether it is a
proton or neutron pair; the number of distinct configurations
that can be reached by the first proton jump is pr, provided
that all the landing K’s are different. For the second and later
jumps the choices become increasingly restricted until at the
penultimate configuration there is only one possibility. The
choice of making a neutron or proton jump can also take place
in any order. The total number of the minimal-length paths Np
is given by

Njp! Nyy!
Mo (ANgo)!

According to this formula, there are 2160 minimal-length paths
connecting Glider and Bobsled. Many of these paths will be
energetically unfavorable and it would be a considerable task
to examine them all. As a baseline path, we have examined
the HF energies of intermediate steps along the way. Taking
the lowest energy landing point at each step starting from
Glider, we obtain the path shown in Fig. 6. The energies
along the path monotonically decrease, allowing the jump
to be accessed by the HFB minimization procedure. The
Hamiltonian dynamics would connect the endpoints most
effectively if all the configurations along the path have the same

Np = Ny! (6)
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FIG. 6. Intermediate steps from Glider to Bobsled along the
minimal-energy path.

energy. If the endpoint has a much lower energy (as is the case
here), a quasiparticle excitation of the final configuration at an
energy close to the initial energy might be more favored.

IV. HF MINIMA AND POST-SCISSION PROPERTIES

So far we have used both the shape constraints and the
K partition to specify the configuration. Since the shape
constraints are continuous quantities, we would like to release
them as far as possible to construct a discrete basis. As a
first test to explore their role, we examine how many HF
local minima each configuration along the path is attracted
to when the shape constraint is removed. Thus we repeat the
computation of the minima, starting with the configurations
shown in Fig. 5 but without any shape constraint. The K
partition will remain the same under the HF minimization.

Applying this procedure to the named configurations, we
find that all configurations with the same K partition converge
to the same state. The converged shape parameters are given
in Table II. One sees that the neck parameter is large for
Lighthouse, intermediate for Buenavista, and small for Glider
and Bobsled. Thus, Lighthouse is a pre-scission configuration,
and the last two are post-scission. The finite values of the Q9
for Glider and Bobsled are obviously an artifact of the finite
dimensional space. Otherwise, the fragments would separate
to infinity.

When the neck parameter is small, the nucleon numbers
and shape parameters of the individual fragments can be

TABLE II. Converged shape parameters for the named HF con-
figurations. See [21] for the definition of the neck parameter 7,k

Name Q2 (b) 030 (b3/ 2) Mpeck
Lighthouse 262 423 6.9
Buenavista 394 65.1 1.9
Glider 416 66.6 0.1
Bobsled 434 429 ~0.0

TABLE III. Fragment properties obtained by releasing the shape
constraints for the Bobsled and Glider configurations in Table 1.

Configuration Fragment Z N 0y (b)

Bobsled 1328n 50 82 0.4
104Mo 42 62 -5.3

Glider 136 52 84 4.0
1007y 40 60 7.6

determined unambiguously. These parameters are shown in
Table III for Glider and Bobsled. Not surprisingly, one of the
configurations is anchored by the doubly magic '*2Sn. It is
interesting to see that the deformation of the light fragment
is quite different for the two cases. In one case it is strongly
prolate and in the other it is strongly oblate. In fact, the PES in
the region of '°°Zr has coexisting minima at the two extremes
[25], so perhaps it also not surprising that the both can be
populated upon scission.

V. REMAINING QUESTIONS ON EXPLOITING
THE CI BASIS

It remains for future work to examine the overlaps between
the shape-constrained configurations along the path, as was
done in Ref. [26] for the GCM based on an HFB energy func-
tional. If the overlaps are large, one can use some convenient
point along the path to represent all of the GCM states there.
More likely, the overlaps become too small to ignore at the
endpoints of a K partition along the path, for example, the
states at 0,9 = 236 and 288 b in the Lighthouse configurations.
In that case, several states of the same K partition would be
required to span that space along the path. We note that the
overlaps can be calculated analytically in the Nilsson harmonic
oscillator model [27], but that is too oversimplified for our
purposes here.

The localization of particles on the two fragments raises
another issue in the construction of the HF basis. For well-
separated fragments, the orbitals will be localized on one
nucleus or the other except for accidental degeneracies or
fission into identical fragments. Localization to the left or the
right can perhaps be used as additional quantum number to
specify the HF wave function, playing the same role as the
parity of the HF orbitals when the mean field is invariant. No
such separation is possible for the highest occupied orbits in the
pre-scission configurations. But the possibility of specifying
the neutron and proton numbers of the fragments within the
HF framework gives an avenue to calculate fluctuations on
a finer scale than is possible with only shape degrees of
freedom. Even when no clean separation is possible, it may
be useful to transform to an orbital basis that maximizes
the separation when calculating transition matrix elements
between configurations [28]. See also Ref. [29] for a different
approach to nucleon localization.

Another issue that needs to be dealt with in the future
is the inclusion of states with unpaired particles. In the CI
shell-model language, these are the higher seniority states
in the generalized seniority wave function basis [30]. It is
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straightforward to include any configurations of the general-
ized seniority basis as wave functions in the HF representation.
In fact the K partitions with respect to the nucleons themselves
rather than pairs would give more discriminating power. The
typical number of unpaired particles v in the initial compound
nucleus for induced fission of **U by thermal neutrons is large.
We can estimate v by the formula [31]

v = (aU)"?1n4, 7

where a is the usual level density parametera ~ A/8 and U is
the back-shifted excitation energy. The result is in the range 15—
20. This number changes a lot along the fission path, so we will
need estimates of the interaction matrix elements that change
the number of quasiparticles, as well as one that are diagonal
in quasiparticle number. Obviously, these interaction will have
to be treated in some statistical way, perhaps by sampling.
This emphasizes the need to set up a machinery to com-
pute interaction matrix elements between configurations. One
difficulty that arises is modeling the nucleon interaction to be
employed. As is well known, the energy functionals in use to
compute mean-field wave functions are not reliable for residual
interactions [32,33]. Perhaps it might be adequate for the first
estimates to use a simple zero-range parametrization of the
residual interaction, in the spirit of effective field theories.

VI. PERSPECTIVE

We believe the results presented here are promising to build
auseful wave function basis for treating the scission dynamics.
We have found two bound configurations at the frontier of the
transition, Lighthouse and Buenavista, and two post-fission
configurations, Glider and Bobsled. Exactly how the nucleus
gets from one configuration to another is far beyond what has
been achieved here, but we can see some possible branching

of the trajectories. The deformation of the final light fragment
is very different in the two post-fission configurations, so the
detailed transition dynamics will give a nontrivial prediction
for the initial fragment shapes.

Itis also of great interest to determine where on the path the
transition from the frontier to the HF-unstable configurations
takes place. In Fig. 5, Bobsled crosses Lighthouse at O, =
274 b; if the transition took place there, it would not add
any internal excitation energy. Thus, the final state would
have a relatively large total kinetic energy. On the other hand,
if the transition took place at Q,9 = 316 b where the HFB
minimization procedure places it, there would need to be a
large increase in the number of quasiparticles in the final state
to conserve the overall energy. The roughly 10 MeV energy
difference between the HFB minima would appear as increased
excitation energy in the fragments (and correspondingly lower
total kinetic energy).

We look forward to developing this approach along the
lines discussed in the previous section to address questions
like these.
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