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Effects of nonlocality of nuclear potentials on direct capture reactions
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Calculations of the direct radiative capture reactions are made for the 48Ca(n,γ )49Ca, 7Li(n,γ )8Li, and
12C(p,γ )13N reactions with the Perey-Buck-type nonlocal potentials using a potential model. Our results
reproduce the experimental data reasonably well. From comparisons to results obtained by using local potentials,
it is found that the cross sections of direct capture reactions may change by around 25% due to the nonlocality of
nuclear potentials.
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I. INTRODUCTION

Radiative capture of nucleons at energies of astrophysical
interest is one of the most important processes for nucle-
osynthesis. The nucleon capture can occur through both the
compound nucleus formation and direct capture processes
[1–3]. At low incident energies, the cross sections of the
compound processes are usually very small because only a
few excited states of the compound nuclei are involved. In
these cases, the direct capture mechanism may be dominant.
The direct radiative capture reactions, especially at the low
energy region, play a crucial role in studies of big bang
nucleosynthesis, main path stellar evolution, element synthe-
sis at supernova sites, x-ray bursts, and so on since these
cross sections are often necessary for investigating the astro-
physical entities [4,5]. These necessitate reliable theoretical
models of direct radiative capture reactions from low to high
energies.

The direct radiative capture process represents a transition
of the projectile-target system from an initial continuum state
to a final bound state via interaction with the electromag-
netic field. The reaction selects those projectiles from the
appropriate partial waves with orbital angular momentum
that can jump into the final orbits by emission of γ ray of
multipolarity L. To calculate the direct capture cross sections,
one needs to solve the many-body problems for the bound
and continuum states of relevance. There are several levels
of difficulties in attacking this problem. Theories, such as the
microscopic cluster model [6] and the R-matrix method [7]
have been developed to overcome these difficulties. However,
the simplest solution is the potential model [8–12]. This model
represents the initial and final states of the reaction system
with the continuum/scattering and bound state wave functions,
which are solutions of the two-body Schrödinger equation
with a potential in the center-of-mass of the projectile and
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the target nuclei. The cross sections are sensitive to these
potentials.

In principle, the potentials that are responsible to the scat-
tering and reactions of a projectile (nucleon or nucleus) with a
target nucleus are nonlocal. Sources of the nonlocality in these
effective potentials arise predominantly from antisymmetriza-
tion [13] and channel couplings [14]. In a folding model, the
nonlocal character of the nucleon-nucleus optical potential is
solely determined by the off-shell structure of NN t-matrix
[15–17]. The nonlocality of nucleon-nucleus potentials can be
naturally dealt with in momentum space [18–20]. In coordinate
space, nonlocal potentials are often given in tabular forms
with microscopic models [21], which are not convenient to
be used in usual nuclear reaction calculations and to be
compared to results of different systems and different works.
Because of these reasons, the separable form of nonlocal
potentials proposed by Perey and Buck (PB) [22], which is
parameterized with a range of nonlocality, is most widely used
in various nuclear reaction calculations [23–28] although it
may not represent the real structure of nonlocal potentials given
by microscopic theories sufficiently well. Some systematic
nonlocal nucleon-nucleus potentials have also been proposed
with the Perey-Buck form [22,29].

We adopt the Perey-Buck-type nonlocal potential to study
the effects of potential nonlocality to direct capture reactions.
In Sec. II we briefly introduce the numerical method to
solve the Schrödinger equations with nonlocal potentials. We
investigate the nonlocality effects on neutron and proton direct
capture reactions in Sec. III. The cases reported here are the
48Ca(n,γ )49Ca, 7Li(n,γ )8Li, and 12C(p,γ )13N, reactions. A
summary of the present work is presented in Sec. IV.

II. POTENTIAL MODEL FOR DIRECT RADIATIVE
CAPTURE REACTIONS

With the potential model [8–12], the cross
sections for direct radiative capture reaction, x(n,γ )a
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where π = E or M , which stands for electronic or magnetic
transitions, respectively, L is the multipoliarity of the emitting
γ -ray. III n, III x , and III a are intrinsic spins of the cluster n (n can
also be a nucleon), the nucleus x, and the composite nucleus
a = n + x, respectively. In the n-x system, lllc is the orbital
angular momentum of n in continuum states, andjjj c = lllc + III n.
Similarly, lllb is the orbital angular momentum of n in bound
states, and jjjb = lllb + III n. JJJ c = jjjc + III x , and JJJ b = jjjb + III x are
channel spins of the incident- and exit-channels (corresponding
to continuum and bound states of the n-x system). Eb is the
binding energy of n in the bound states of a. Enx is the incident
energy in the center-of-mass system and 〈lbjb||O||lcjc〉 is the
reduced matrix element, which can be expressed as a product
of two factors:

〈lbjb||O||lcjc〉 = τb,cAb,c, (2)

where

τb,c =
∫

ub(r)rLuc(r)dr (3)

is the overlap integral of the radial parts of the scattering wave
function, uc, and the bound state wave function, ub, of n in the
n + x system. The factor Ab,c denotes an angular momentum
coupling coefficient [10].

The total direct capture cross section is obtained by adding
all multipolarities and final spins of the bound state

σ d.c.(Enx) =
∑
LJb

(SF )Jb
σ d.c.

LJb
(Enx), (4)

where (SF )Jb
are spectroscopic factors of n in each of the

bound states of a. For charged particles it is more convenient
to use the astrophysical S-factors instead of the cross sections

S(Enx) = Enxσ
d.c.(Enx) exp[2πη(Enx)], (5)

where η(Enx) is the Sommerfeld parameter

η(Enx) = ZnZxe
2

h̄

(
μ

2Enx

)1/2

, (6)

μ is the reduced mass of n in the n-x system, and Zn and Zx

are charge numbers of n and x, respectively.
The radial wave functions ub and uc in Eq. (3) are solutions

of Schrödinger equations. With local potentials, the radial part
of the Schrödinger equation reads:

h̄2

2μ

[
d2

dr2
− l(l + 1)

r2

]
ujl(r) + [E − VL(r)

−VC(r) − (InInIn · lll)Vso(r)]ujl(r) = 0, (7)

where the energy E is Eb for a bound state, and is Enx for
a scattering state, lll is the angular momentum of n in the

n-x system, jjj = lll + InInIn, VL(r) and Vso(r) are the central and
the spin-orbital parts of the local potentials, respectively, and
VC(r) is the Coulomb potential assuming a uniform charge
distribution with a radius RC:

VC(r) = ZnZxe
2

2RC

(
3 − r2

R2
C

)
, for r � RC

= ZnZxe
2

r
. for r > RC.

(8)

A Woods-Saxon and a derivative of Woods-Saxon form factors
are used for VL(r) and Vso(r), respectively, namely [12],

VL(r) = VLf0(r), (9)

and

Vso(r) = 2Vso
1

r

d

dr
fso(r), (10)

where

fi(r) =
[

1 + exp

(
r − Ri

ai

)]−1

,

i = 0 and so labeling the central and spin-orbital terms, respec-
tively, and Ri = riA

1/3 and ai are the radius and diffuseness
parameters with A being the atomic number of the target
nucleus.

In this work, we only take the central part of the potential
nonlocal and keep the spin-orbital and Coulomb terms local.
Furthermore, the Perey-Buck form of nonlocality is adopted,
with which the Schrödinger equation reads:

h̄2

2μ

[
d2

dr2
− l(l + 1)

r2

]
ujl(r)

+ [E − VC(r) − (InInIn · lll)Vso(r)]ujl(r)

−
∫ ∞

0
gl(r,r

′)ujl(r
′)dr ′ = 0, (11)

where [22]

gl(r,r
′) = 1√

πβ
exp

[
−

(
r2 + r ′2

β2

)]
2ilzjl(−iz)W (p), (12)

and W (p) = VNLf0(p), p = r+r ′
2 , and z = 2rr ′

β2 . Here β is
the range of nonlocality and jl(−iz) is the spherical Bessel
functions of the lth order.

The Schrödinger equation with a nonlocal potential is
solved with iterations. We first find the solution, u

(0)
j , of the

Schrödinger equation with an initial local potential Vinit:

h̄2

2μ

[
d2

dr2
− l(l + 1)

r2

]
u

(0)
j (r) + [E − (Vinit(r)

+VC(r) + (InInIn · lll)Vso(r)]u(0)
j (r) = 0. (13)

An iteration is then made until a converged result is obtained.
For the ith iteraction, we have

h̄2

2μ

[
d2

dr2
− l(l + 1)

r2

]
u

(i)
j (r) + {E − (Vinit(r)

+VC(r) + [InInIn · lll)Vso(r)]}u(i)
j (r)

=
∫

gl(r,r
′)u(i−1)

j (r ′)dr ′ − Vinit(r)u(i−1)
j (r). (14)
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III. RESULTS OF NUMERICAL CALCULATIONS

In this section, we present our results of numerical calcula-
tions for direct capture reactions, 48Ca(n,γ )49Ca, 7Li(n,γ )8Li,
and 12C(p,γ )13N within the ranges of incident energies from
0.01 to 0.4 MeV, from 0.01 to 2 MeV, and from 0 to 1.2 MeV,
respectively, which are interesting for nuclear astrophysical
studies. With these energy ranges, all these three reactions are
E1 dominant [30–34]. We first find the local and nonlocal
potential parameters for bound and scattering states of these
reactions in Sec. III A. The direct capture reaction cross sec-
tions are then calculated using these potentials and compared
to experimental data in Sec. III B.

A. Local and nonlocal potential parameters
for bound and scattering states

Usual Woods-Saxon form factors are assumed for these po-
tentials. Empirical values are used for the radius parameters and
the range of nonlocality, namely, r0 = 1.25 fm and β = 0.85
fm. The other parameters are allowed to vary to simultaneously
reproduce the binding energies and the s-wave scattering
lengths of the n-x systems. For the 12C(p,γ )13N reaction,
a potential supporting the resonance state at 0.422 MeV
is also found. The same is done for local potentials.

For the 48Ca(n,γ )49Ca reaction, we consider one neutron
capture into the ground ( 3

2
−

) and the first excited states ( 1
2

−
,

2.023 MeV) of 49Ca. These states are assumed to consist
of an inert 48Ca core and a neutron in the 2p3/2 and 2p1/2

orbitals, respectively. One set of potential parameters are found
to simultaneously reproduce the neutron binding energies in
both states of 49Ca and the s-wave scattering length, α0 =
0.36 ± 0.09 fm [35]. For the 7Li(n,γ )8Li reaction, the neutron
is assumed to be captured into the ground state (2+) and
the first excited state (1+, 0.981 MeV) of 8Li. These states
are assumed to consist of an inert 7Li core and a neutron in
the 1p3/2 and 1p1/2 orbitals, respectively. For this reaction
we have to find two sets of potential parameters, one set
to simultaneously reproduce the ground state binding energy
and the spin-state scattering length a+ = −3.63 ± 0.05 fm
(groups “local–gs” and “nonlocal–gs” for local and nonlocal
potentials, corresponding to the spin 2 of the ground state of
8Li) and another set to simultaneously reproduce the Eb in
the first excited state of 8Li and the spin-state scattering length

TABLE I. Potential parameters found for the 48Ca(n,γ )49Ca,
7Li(n,γ )8Li, and 12C(p,γ )13N reactions. See the text for the details.
The units of V0 and Vso are MeV and MeV fm2, respectively, and
those of r0, a0, rso, and aso are femtometer.

Target Group V0 r0 a0 Vso rso aso β

48Ca local 47.24 1.25 0.65 16.52 1.25 0.65
nonlocal 60.58 1.25 0.65 18.25 1.25 0.65 0.85

7Li local–gs 40.35 1.25 0.773 10 1.25 0.65
local–1ex 46.52 1.25 0.603 10 1.25 0.65
nonlocal–gs 45.78 1.25 0.773 10 1.25 0.65 0.85
nonlocal–1ex 54.5 1.25 0.603 10 1.25 0.65 0.85

12C local–dir 41.66 1.25 0.65 10 1.25 0.65
local–res 54.44 1.25 0.65 10 1.25 0.65
nonlocal–dir 48.35 1.25 0.65 10 1.25 0.65 0.85
nonlocal–res 70.43 1.25 0.65 10 1.25 0.65 0.85

a− = 0.87 ± 0.07 fm (groups “local–1ex” and “nonlocal–1ex”
for local and nonlocal potentials, corresponding to the spin 1
of the first excited state of 8Li) [36]. For the 12C(p,γ )13N
reaction, the proton is assumed to be captured in the ground
state of 13N, which is considered to consist of a inert 12C core
and a proton in the 1p1/2 orbital. There is a resonance state

in the p-12C system at 0.422 MeV with spin-parity of 1
2

+
. We

found two sets of potential parameters for these two states,
labeled as “local–dir” and “local–res” for local potentials
and “nonlocal-dir” and “nonlocal-res” for nonlocal potentials,
respectively. Parameters of these potentials are given in Table I.

The phase shifts for neutron scattering from 48Ca and
7Li and for proton scattering from 12C with these potentials
are plotted in Fig. 1 as functions of incident energies. For
simplicity, only phase shifts of the s-waves are presented,
which are the most important partial waves for these reactions
at energies below 1 MeV. Clearly, we see that these nonlocal
potentials and their associated local counterparts are not phase
equivalent. The differences in their phase shifts increase when
the incident energy increases. Given the fact that, for each
nucleon-target system, both local and nonlocal potentials are
obtained by fitting the same binding energies and s-save
scattering lengths, these results suggest that other properties
of the nucleon-target systems, such as their effective ranges
[37,38], are needed to confine these potential parameters. We,
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FIG. 1. S-wave phase shifts as functions of incident energies for neutron scattering from (a) 48Ca, from (b) 7Li, and for proton scattering
from (c) 12C with the potentials listed in Table I. Phase shifts obtained with nonlocal and local potentials are presented with solid and dashed
curve, respectively. The s-wave phase shifts for the total spin 2+ of the n + 7Li system is shifted by π for better visualization.
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FIG. 2. Upper panels: Comparisons between experimental data and results of theoretical calculations using local and nonlocal potentials
for reactions 48Ca(n,γ )49Ca (a), 7Li(n,γ )8Li (b), and 12C(p,γ )13N (c). Contributions of transition to the ground (dashed curves) and the first
excited sates (dotted curves) are shown explicitly for the 48Ca(n,γ )49Ca and 7Li(n,γ )8Li reactions and their summed cross sections (multiplied
by a factor of 5) are represented by solid curves. Results obtained with local and nonlocal potentials are discriminated by thin and thick
curves, with labels “nlp” and “lp,” respectively. Similarly, contributions of direct and resonant terms and their coherent sums are plotted for
the 12C(p,γ )13N reaction. The symbols represents the experimental data for the 48Ca(n,γ )49Ca reaction from Ref. [31], for the 7Li(n,γ )8Li
reaction from Ref. [39], and for the 12C(p,γ )13N reaction from Refs. [32] (asterisk) and [34] (solid circles). Lower panels: Comparisons of
cross sections with potential nonlocality treated in both bound and scattering states (the same as in the upper panels) with those treated in the
bound states only (solid curves) and in the scattering states only (double-dotted curves) for reactions 48Ca(n,γ )49Ca (d), 7Li(n,γ )8Li (e), and
12C(p,γ )13N (f). See the text for details.

however, do not endeavor to pursue exact phase equivalence
of these local and nonlocal potentials in this work. With
these potentials, we examine the effects of nuclear potential
nonlocality to direct capture reactions in the following text.

B. Direct capture reaction cross sections
with local and nonlocal potentials

Cross sections of the 48Ca(n,γ )49Ca, 7Li(n,γ )8Li, and
12C(p,γ )13N reactions are calculated using the aforemen-
tioned nonlocal potentials within the ranges of incident ener-
gies from 0.01 to 0.4 MeV, from 0.01 to 2 MeV, and from 0 to
1.2 MeV, respectively. Their comparisons to the experimental
data and to the results calculated using local potentials are also
made. The results are shown in Fig. 2. All calculations are
made with a modified version of the computer code RADCAP

[12].
For the 48Ca(n,γ )49Ca and 7Li(n,γ )8Li reactions, the pro-

cesses of neutron capture to the ground and the first excited
states of the composite nuclei are calculated separately. The
summed cross sections are then obtained by adding the cross
sections of these processes multiplied by their corresponding
neutron spectroscopic factors (SFs). The same is done for
both local and nonlocal potentials. The neutron SFs in the
ground and the first excited states of the composite nuclei
are 0.72 and 0.86, respectively, for 49Ca [31] and are 0.87
and 0.48, respectively, for 8Li [40]. From Fig. 2, one sees
that these summed cross sections reproduce the experimental

data reasonably well. The cross sections with the nonlocal
potentials are about 20% larger than those with the local ones
for the 48Ca(n,γ )49Ca reaction. However, due to their large
uncertainties, the experimental data of this reaction cannot
discriminate which theoretical result agrees better with them.
The experimental data of the 7Li(n,γ )8Li reaction, on the other
hand, is shown to be better reproduced with nonlocal potentials,
which is about 25% larger than the cross sections with local
potentials when the incident energy is below around 1 MeV.

For the 12C(p,γ )13N reaction, the astrophysical S-factor
defined in Eq. (5) is used instead of the cross sections. A
description of the experimental data requires a coherent sum
of the direct and resonance terms [32]

S(E) = Sdir(E) + Sres(E) + 2[Sdir(E)Sres(E)]1/2 cos(δγ ),

(15)

where δγ is the resonance phase shift given by

δγ = arctan

[

(E)

2(E − Eγ )

]
. (16)

The direct term Sdir is obtained when the bound and scattering
state wave functions are calculated with the potential, which
was confined only with the ground state binding energy of
proton in 13N (groups local–dir and nonlocal–dir in Table I),
while the resonance term Sres is obtained when the scattering
wave functions are calculated with the potential that was
adjusted to support the resonant state at 0.422 MeV (groups
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local–res and nonlocal–res in Table I). The results are shown
in Fig. 2(c), from which, one sees that the direct terms of
the S-factor are almost identical to the local and nonlocal
potentials. The changes induced by the nonlocality of nuclear
potentials manifest themselves in the resonance terms, Sres.
For incident energies at the vicinity of the resonance energy
and below, Sres calculated with local and nonlocal potentials
are very close to each other. Their difference increases with
the increase of the incident energy. At around 1 MeV, they
differ by around 25%. The interference between Sdir and Sres

are apparent and is seen to be important for the description
of the experimental data, which is familiar as in Ref. [32].
At the vicinity of the resonance energy, the experimental data
are rather well reproduced by the coherent sums of Sdir and
Sres calculated with both nonlocal and local potentials. At
above the resonant energies, however, they are underestimated
below 0.85 MeV and are overestimated above 0.85 MeV
by calculations with both potentials. The nonlocal potential
improved the description to the experimental data between
0.55 and 0.8 MeV, but the calculated S-factors are still smaller
than the experimental ones by around 50%. Calculations with
both local and nonlocal potentials also overestimated the
experimental data at below the resonant energies. In all these
calculations, Sdir is calculated with a proton spectroscopic
factor of 0.81, which was determined with a 12C(3He,d)13N
reaction [41]. The proton SF in the 0.422 MeV resonant state
was then determined by matching the calculated S(E) with
the experimental S-factor at the resonant energy. The resulting
SF of the resonant state is 0.36. It is very close to the value
(SF = 0.35) obtained in Ref. [42].

The nonlocality of nuclear potentials affects both the
bound and the scattering wave functions as compared to the
wave functions calculated using local potentials although both
potentials reproduce the same binding energies and s-wave
scattering lengths. It is interesting to see the effects to the direct
capture reactions from changes in the bound and scattering
wave functions separately. In the bottom panels of Fig. 2 we

compare the results of calculations with potential nonlocality
treated in both bound and scattering wave functions (dashed
and dotted curves) to those calculated with nonlocality treated
only in the bound states (solid curves) or only in the scattering
states (double-dotted curves) for the three reactions. These
results show that the effects of potential nonlocality in bound
and scattering state wave functions affect the direct capture
reactions differently and they interfere constructively in the
7Li(n,γ )8Li reaction and destructively in the 48Ca(n,γ )49Ca
and 12C(p,γ )13N reactions.

IV. SUMMARY

The effects of potential nonlocality in direct radiative
capture reactions are studied with 48Ca(n,γ )49Ca, 7Li(n,γ )8Li,
and 12C(p,γ )13N reaction at low energies with a potential
model. The parameters of Perey-Buck-type nonlocal potentials
are found for these reaction systems and theoretical cross
sections with these potentials are compared to the experimental
data. Our results show that the reproduction to the experimental
data is improved when nonlocal potentials are used for the
7Li(n,γ )8Li and 12C(p,γ )13N reactions. A change of cross
sections up to around 25% is found for these three reactions.
The effects of potential nonlocality in the bound and continuum
state wave functions are found to affect the direct capture
reactions differently and they interfere, which suggests that
potential nonlocality should be treated simultaneously for both
bound and continuum states in direct capture reactions.
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