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Background: Being able to rigorously quantify the uncertainties in reaction models is crucial to moving this field
forward. Even though Bayesian methods are becoming increasingly popular in nuclear theory, they have yet to
be implemented and applied in reaction theory problems.
Purpose: The purpose of this work is to investigate, using Bayesian methods, the uncertainties in the optical
potentials generated from fits to elastic-scattering data and the subsequent uncertainties in the transfer predictions.
We also study the differences in two reaction models where the parameters are constrained in a similar manner,
as well as the impact of reducing the experimental error bars on the data used to constrain the parameters.
Method: We use Bayes’ theorem combined with a Markov chain Monte Carlo to determine posterior distributions
for the parameters of the optical model, constrained by neutron-, proton-, and/or deuteron-target elastic scattering.
These potentials are then used to predict transfer cross sections within the adiabatic wave approximation or the
distorted-wave Born approximation.
Results: We study a number of reactions involving deuteron projectiles with energies in the range
10–25 MeV/nucleon on targets with mass A = 48–208. The case of 48Ca(d,p)49Ca transfer to the ground state
is described in detail. A comparative study of the effect of the size of experimental errors is also performed. Five
transfer reactions are studied, and their results are compiled in order to systematically identify trends.
Conclusions: Uncertainties in transfer cross sections can vary significantly (25–100 %) depending on the reaction.
While these uncertainties are reduced when smaller experimental error bars are used to constrain the potentials,
this reduction is not trivially related to the error reduction. We also find smaller uncertainties when using the
adiabatic formulation than when using the distorted-wave Born approximation.
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I. INTRODUCTION

The overarching questions in nuclear physics span a wide
variety of topics including understanding how visible matter
came into being and how it evolves, how subatomic matter
organizes itself and what phenomena emerge from this orga-
nization, and whether or not the fundamental interactions that
govern these structures and evolutions are fully known [1].
Many quantities of interest to these goals can be extracted
from experiment, but this extraction often relies on reaction
theory. Thus, having a solid understanding of the reaction
theory, including the associated uncertainties, is crucial to
properly describe the results of these experiments. There are
several sources for the uncertainties in reaction theory [2]:
the approximations made in solving the few-body scattering
problem, the use of effective interactions and structure func-
tions, a consequence of mapping the many-body problem into
a few-body problem, and finally the influence of the degrees of
freedom left out of the model space. Systematic methods for
quantifying the uncertainty introduced by these various sources
are needed to move the field forward.

Recently, we used a statistical method to quantify the uncer-
tainty introduced by the effective interactions within a given re-
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action model [3]. Neutron and deuteron optical potentials were
fit to elastic-scattering data through χ2 minimization, using
both an uncorrelated and a correlated χ2 function. Exploring
the χ2 function around the minimum, we constructed 95%
confidence bands for the (n,n) and (d,d) elastic cross sections
and made predictions for the corresponding (n,n′) inelastic and
(d,p) transfer cross sections. This work was done within the
frequentist approach.

There are many reasons to pursue uncertainty quantification
with Bayesian statistics rather than the frequentist approach.
With Bayesian statistics, we can systematically introduce
our prior knowledge into the formulation, and two different
theories can be compared and even mixed to provide a better
prediction. Moreover, instead of being able to only answer
questions where there is a choice of solutions (out of a list
of options, one of them must occur—the basis of frequentist
statistical methods), Bayesian statistics can give probabilities
to unique occurrences (such as “will it rain tomorrow?”) [4].
This provides a more consistent interpretation based on a single
set of data, instead of needing multiple occurrences to interpret
results in terms of a probability or confidence level.

Although Bayesian methods have been around for centuries,
introduced in an essay from the mid-18th century [5], it was
only within the past few decades, with the advent of modern
Monte Carlo methods, that they became more widely imple-
mented. In the last several years, nuclear theory has embraced
them. In effective field theories (EFTs), these methods have

2469-9985/2018/97(6)/064612(16) 064612-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.97.064612&domain=pdf&date_stamp=2018-06-21
https://doi.org/10.1103/PhysRevC.97.064612


A. E. LOVELL AND F. M. NUNES PHYSICAL REVIEW C 97, 064612 (2018)

been particularly effective across a range of applications: pa-
rameter estimations [6–8], assessing uncertainties from model
truncations [9], understanding how well assumptions hold
[10], and, through all of this, propagating uncertainties to
observables. Bayesian methods are also beginning to be widely
used in areas such as heavy ion collisions [11,12] and density
functional theory [13,14].

Although all of these references show the power of Bayesian
techniques in nuclear theory, there are aspects specific to
few-body reaction theory that need to be studied in order to
guarantee its usefulness in this subfield. This work takes the
very first step in this direction. Our goals are (i) computing un-
certainties on nucleon and deuteron optical model parameters
constrained by elastic-scattering data using Bayes’ theorem,
(ii) determining uncertainties in the elastic and (d,p) [or (d,n)]
transfer angular distributions, (iii) rigorously comparing two
approximations in the theory for transfer reactions, and (iv)
understanding the information gain on transfer observables,
with improvements on elastic-scattering measurements.

These points are addressed in the following work. In Sec. II,
we discuss the theoretical framework for this article, including
the Bayesian methods used and the reaction formalism for
which it is implemented. The systems that were studied are
listed in Sec. III, along with some numerical details that are
necessary for the work. Section IV presents the results from
this study, using one detailed case as an example and then
summarizing the remaining results, which are discussed in
Sec. V. Finally, we conclude in Sec. VI with an outlook of
how these methods can be further improved.

II. THEORETICAL FRAMEWORK

A. Bayes’ theorem

Bayesian methods have become very popular recently in
nuclear theory, because of both their power and their simplicity
(see [4,15] for good introductions). Here we provide a brief
summary of the main concepts surrounding Bayes’ theorem
so the work is self-contained, and the nonexpert can follow
without needing additional background reading. The main idea
that Bayes uses is the fact that the probability of picking two
items from a group does not depend on whether you pick
item 1 first and then item 2 or item 2 first and then item
1: p(2|1)p(1) = p(1|2)p(2), with p(1) and p(2) being the
independent probabilities of picking either item 1 or item 2
and p(2|1) being the conditional probability of picking 2 after
having first picked 1 [and vice versa for p(1|2)].

When applied to our field, typically we have a hypothesis H
(given by a model) and some constraining external information
D (the data). Bayes’ theorem is then written as

p(H |D) = p(H )p(D|H )

p(D)
(1)

and provides a method to calculate the posterior distribution,
p(H |D), of the hypothesis H , conditional on a set of data
D. This gives the most likely distribution of the parameters
dependent on the given data. Translating for the application
here, the hypothesis is the optical model for scattering, which
introduces many optical potential parameters, and the data are
elastic-scattering angular distributions. The question we try

to answer is this: What is the most likely distribution for the
optical potential parameters given the elastic-scattering data?

To calculate the posterior distributions with Eq. (1), several
pieces are needed. The first is the prior distribution, p(H )
(the probability distributions over the various parameters in
the optical model), which summarizes our knowledge before
the data are seen. The likelihood function, p(D|H ), folds in
information about how well the model reproduces the data,
typically through a χ2 function. In this work, we stick to the
standard normal distribution, e−χ2/2, for the likelihood, and the
standard definition of the χ2 distribution,

χ2 = 1

N

N∑
i=1

(σ th − σ exp)2

�σ 2
. (2)

The denominator in Eq. (1) is the Bayesian evidence, p(D),
which typically contains a sum over all possible hypotheses
each weighted by their own likelihood function.

In Bayesian statistics, 95% confidence intervals are defined
by the smallest interval [a,b] for which∫ b

a

p(Hi |D)dxi = 0.95, (3)

for a given quantity of interest xi . In practice, for our numeri-
cally drawn posteriors, the integral becomes a sum.

For example, to calculate the 95% confidence intervals for
the prior distributions of the constrained and predicted cross
sections, at each angle that the calculation was performed, we
find the smallest range of cross-section values that contains
95% of the posterior draws. The minimum and maximum
cross-section values at each angle define the upper and lower
bounds of the 95% confidence interval. These intervals then
represent the belief that the real value of the cross section of
interest has a 95% chance of falling within that region. This
can be equally calculated for each parameter posterior, which
would then define a distribution of the values that the given
parameter is most likely to take.

B. Markov chain Monte Carlo

While Bayes’ theorem is simple in principle, in practice
there can be added complications. In many cases, calculating
the Bayesian evidence numerically is either computationally
intractable or impossible. Then, it is necessary to sample the
posterior distribution through a Monte Carlo method. The
longer the sampling, the closer the pulled distribution comes
to reproducing the exact posterior distribution. For this work,
we use a Metropolis-Hastings Markov chain Monte Carlo
(MCMC) [16,17]. Because we are interested in calculating
free parameters in our model, our hypothesis is a set of
parameters, x, that define the interaction between projectile
and target nuclei. At each step of the MCMC method, we
obtain a set of parameters, xi , from which the prior, p(Hi),
and likelihood, p(D|Hi) for the next iteration are obtained.
A new set of parameters, xf , are randomly chosen such that
xf ∼ N (xi ,εx0), where N represents the normal distribution,
ε is a scaling factor which controls the step size in parameter
space, and x0 is some fixed set of initial parameters; the prior,
p(Hf ), and likelihood, p(D|Hf ), are also calculated with this
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second set of parameters. If the condition

p(Hf )p(D|Hf )

p(Hi)p(D|Hi)
> R (4)

(where R is a random number between zero and 1) is satisfied,
the new parameter set is accepted and becomes the initial
parameter set of the next iteration. If Eq. (4) is not fulfilled, the
parameter set is rejected, and a new random set of parameters
is drawn from N (xi ,εx0). This process is continued until a
predefined number of parameter sets is accepted.

There is no guarantee that the initial parameters are within
the posterior distribution that we are interested in sampling.
For this reason it is important to have a burn-in process, by
rejecting a number of the initial sets obtained with the condition
in Eq. (4), Nburn-in [18]. Signatures of a good burn-in and
healthy sampling are likelihoods and parameter distributions
that oscillate around a mean. Following the burn-in, each
accepted parameter set is dependent on the previously accepted
set. To remove this dependence, one needs to reject Njump sets
in between each accepted set, so erroneous correlations are
not introduced. More details on implementing MCMC can be
found in [18,19].

C. Optical model

In this work, we constrain the parameters within the optical
model, which describes the scattering of a projectile on a target
by solving the single-channel scattering equation, in the center
of mass system, with an effective interaction U (r), r being the
relative coordinate between projectile and target. The so-called
optical potentials are characterized by both real and imaginary
terms:

U (r) = V (r) + iW (r). (5)

The imaginary term takes into account flux that leaves the
elastic channel and is not explicitly described by the reaction
model.

These potentials generally have volume and surface parts
which are written as Woods-Saxon shapes or derivatives of
Woods-Saxon shapes. Regardless of whether the real volume
term,

V (r) = − VV

1 + exp
(

r−RV

aV

) , (6)

or the imaginary volume term,

W (r) = − WV

1 + exp
(

r−RW

aW

) , (7)

is considered, each term contains three free parameters, a
depth, radius, and diffuseness. The radii of the optical potential
terms are often parametrized in terms of a radius parameter ri ,
and for the cases we here consider, Ri = riA

1/3 with A being
the mass number of the target. The surface term is typically
purely imaginary and written as the derivative of a Woods-
Saxon shape. These three terms—real volume, imaginary
volume, and imaginary surface—introduce nine parameters.

In addition to the nuclear central potential, there
is a spin-orbit term, typically parametrized by a
Woods-Saxon derivative and, for charged projectiles, a

Coulomb potential. Because the spin orbit does not strongly
influence the elastic-scattering cross section for nucleons and
deuterons, in this work we fix the parameters for the spin-orbit
term at chosen initial values. We consider the standard
finite-size Coulomb potential (e.g., [20]), parametrized by a
Coulomb radius, which we also keep fixed throughout this
work.

D. Describing transfer reactions

There are two reaction models that we consider. The first
is the adiabatic wave approximation (ADWA), which starts
from a three-body description of n + p + A and relies on the
separation between a fast and a slow variable, namely, the fast
center of mass of a projectile-target system, �R, compared to
the slow internal motion of the deuteron, �r ([21], Chap. 7.1).
This approximation consists of exactly solving

[TR + VpA + VnA − (E − ε0)]�ad(�r, �R) = 0, (8)

where TR is the kinetic energy of the center of mass, VpA

and VnA are the optical potentials that describe the proton-
target and neutron-target interactions, and E is the incoming
beam energy. The term ε0 is the ground state energy of the
deuteron and arises from the adiabatic approximation where
the deuteron breakup states can be made degenerate with
the ground state. In the adiabatic method, breakup of the
deuteron is treated to all orders [22]. A discussion of breakup
and finite-range effects in ADWA can be found in [23]. The
adiabatic wave function is then introduced in the post-form T
matrix for the A(d,p)B transfer process [21]:

T ADWA
post = 〈�nA(�rnA)χp( �Rf )|Vnp|�ad(�r, �R)〉, (9)

where �nA is the bound-state wave function of B = n + A,
χp is the outgoing proton wave function, Vnp is the deuteron
binding potential, and the remnant term �, corresponding to
the difference between the A + p and B + p optical potentials,
is neglected. From the T matrix, angular distributions for the
(d,p) cross sections can be readily obtained [21].

A simpler approach is the distorted-wave Born approx-
imation (DWBA), often used when interpreting A(d,p)B
data. This is a perturbative approach, which, when taken
to first order, assumes the reaction takes place in one step
and only includes breakup effectively through the elastic
deuteron channel. Then, the elastic scattering of the deuteron
is described by an effective deuteron-target interaction, UdA

(as opposed to ADWA that uses the individual nucleon-target
interactions). Solving the single-channel scattering equation
with UdA provides the distorted-wave χd for the deuteron
relative to the target. The post-form DWBA T matrix for the
A(d,p)B is given by [21]

T DWBA
post = 〈�nA(�rnA)χp( �Rf )|Vnp

∣∣�np(�rnp)χd�ki
( �Ri)

〉
, (10)

where the initial three-body state is replaced by the elastic
deuteron channel, namely, the product of the initial deuteron
bound state, �np(�rnp), and the distorted wave of the deuteron
relative to the target χd�ki

( �Ri).
In the equations for ADWA and DWBA presented above

we have assumed (d,p) reactions. These can be trivially
reformulated for (d,n) reactions. In this case, B = A + p, and
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TABLE I. Summary of elastic-scattering pairs used in this work.
Column four gives the corresponding reference for the experimental
data.

Target Projectile E (MeV) Data

48Ca p 14.03 [24]
48Ca n 12.0 [25]
48Ca p 24.0 [26]
48Ca d 23.3 [27]
90Zr p 12.7 [28]
90Zr n 10.0 [29]
90Zr p 22.5 [30]
90Zr n 24.0 [29]
90Zr d 23.2 [27]
116Sn p 22.0 [31]
116Sn n 24.0 [32]
116Sn p 49.35 [33]
208Pb p 16.9 [34]
208Pb n 16.0 [35]
208Pb p 35.0 [36]
208Pb d 28.8 [37]

χp is replaced by the distorted wave of the outgoing n + B
system.

III. NUMERICAL DETAILS

For this work we studied five transfer reactions using both
ADWA and DWBA as described in Sec. II: 48Ca(d,p)49Ca at
24 MeV, 90Zr(d,p)91Zr at 22 MeV, 90Zr(d,n)91Nb at 20 MeV,
116Sn(d,p)117Sn at 44 MeV, and 208Pb(d,p)209Pb at 32 MeV.
These were chosen specifically because, in addition to the
transfer data, there were all relevant elastic-scattering data to
constrain the optical potentials in both the entrance and exit
channel. Table I gives a list of the relevant elastic-scattering re-
actions, along with the reference to the experimental data. The
starting potentials for the nucleon elastic scattering was taken
from Becchetti and Greenlees [38], and the starting potentials
for the deuteron elastic scattering were from An and Cai [39].

For the ADWA calculations, we study the individual
and combined uncertainties from the incoming proton- and
neutron-target interactions as well as from the outgoing
nucleon-(A + 1) interaction. Likewise, for the DWBA calcu-
lations, we study the uncertainties coming from the deuteron-
target interaction and outgoing nucleon-(A + 1) interaction.

The interaction between the neutron and proton of the
deuteron is taken to have a Gaussian shape which reproduces
the nucleon separation energy of the system. The interaction
describing the final bound state between the transferred nu-
cleon and the target is taken to be a central potential (Woods-
Saxon shape) with a spin-orbit term. These two terms are
parametrized with typical radius and diffuseness values of 1.20
and 0.65 fm. The depth of the spin-orbit term is also set to a typ-
ical value of 6.0 MeV, while the depth of the central term is fit
to reproduce the binding energy of the nucleon-target system.

For the majority of this work, we consider a Gaussian
prior. An individual Gaussian is defined for each optical
model parameter, centered on the original parameter value

FIG. 1. Representation of the MCMC samplings for
90Zr(n,n)90Zr at 24.0 MeV. Different shades of gray (different
colors online) represent different processors.

(from either [38] or [39]) and with a width of the original
parameter value. This is discussed in more detail in Sec. IV A.

As mentioned in Sec. II, the MCMC method requires some
specifications that must be adjusted for each system (burn-in,
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step size, etc.). The step taken by each parameter for the Monte
Carlo in this work is drawn from a Gaussian distribution, with a
width defined to be a percentage of the starting parameter value
(εxi

0). In this way, the step size is not dependent on the previous
parameter draw and has the appropriate scale. Throughout this
work, ε = 0.005, which results in a 50% rejection of the tested
parameters by the Monte Carlo method, as typical in other
applications [18].

In our work we use Nburn-in = 500, which is sufficient to
get close to a minimum in parameter space constrained by the
prior distribution. By examining the χ2 and likelihood values
recorded after the burn-in, we can verify that these values are no
longer changing systematically and that the posterior distribu-
tion is being adequately sampled. Also, to ensure that each pa-
rameter set is pulled independently from the previous one, we
set Njump = 10 and record one out of every ten accepted param-
eter sets. A representation of a set of draws is shown in Fig. 1.

For many of the experimental data sets that we use, the
quoted errors are due to the digitalization of the data from the
original publications and do not reflect the actual experimental
error. When errors are quoted in the original work, they often
only include statistical errors and not systematic ones, which
tend to be larger. For these reasons, we initially take all
experimental errors to be 10% of the experimental data. Then,
we can also systematically study the effect that the reduction
of experimental error bars has on the overall transfer cross
sections and any extracted quantities.

The Monte Carlo methods and Bayesian analysis discussed
here are newly implemented but make use of the codes
FRESCO [40] to calculate elastic cross sections, SFRESCO [40]
to constrain the cross sections based on data (using the MINUIT

[41] minimization routine), and NLAT [42] to calculate transfer
cross sections in ADWA and DWBA.

IV. RESULTS

A. Dependence on the prior

In Bayesian statistics, there is an interplay between the prior
distributions and the likelihood (given by the data) to produce
the posteriors. In principle, well-measured data will cause the
likelihood to dominate over the prior distribution, negating the
influence of the prior [4]. In order to understand the relevance of
the prior in these sorts of reactions, it is important to investigate
the effect it has on our parameter posterior distributions and
on the resulting cross-section confidence intervals.

Before focusing on our physics cases, we compared prior
distributions for four elastic scattering data sets: 48Ca(p,p) at
21.0 MeV, 90Zr(p,p) at 40.0 MeV, 120Sn(n,n) at 13.9 MeV, and
90Zr(n,n) at 24.0 MeV, but all results shown in Figs. 2–5 pertain
to 90Zr(n,n). These cover a range of masses and energies, as
well as include both neutron and proton projectiles. We tested
both a linear (flat) prior and a Gaussian prior, each one with a
wide width (covering a range of parameter space much larger
than the expected physical range of the parameters) and a
medium width (covering the expected physical range of the
parameter space). The centers and widths of these priors are
listed in Table II, specified for 90Zr(n,n)90Zr at 24.0 MeV.
For this case, we also compare these four priors to narrow

FIG. 2. Comparison of the posterior distributions (histograms)
resulting from various prior distributions (corresponding solid lines)
for a wide Gaussian (WG), medium Gaussian (MG), and narrow
Gaussian (NG) as defined in Table II for 90Zr(n,n)90Zr at 24.0 MeV.

linear and Gaussian priors to illustrate the effect of stringent
prior limits on the potential and resulting observables. The
narrow priors have widths of 10% the initial value for each
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FIG. 3. Comparison of the (a) 90Zr(n,n)90Zr elastic scattering
and (b) 90Zr(d,p)91Zr(g.s.) transfer at 24.0 MeV for the posterior
distributions shown in Fig. 2.

parameter, medium priors have widths of 50%, and wide priors
have widths of 100%.

We first fix ε = 0.005 and compare the posterior distribu-
tions for the priors, shown in Fig. 2. Although we studied
the six priors shown in Table II, we only show the distribu-
tions for the Gaussian priors for ease of viewing. The solid
lines show the shape and range of the prior distributions,
and the histograms show the resulting posterior distributions.
For the real parameters, especially V and r [Figs. 2(a) and
2(b)], the posterior distributions are nearly identical, within
statistical fluctuations. This is not necessarily the case in the
imaginary terms of the potential, especially for the volume part.
For the volume depth, W in Fig. 2(g), the peaks and widths
of the three distributions shown are strikingly different. For
the Gaussian priors, systematic decreases in the depth lead to
increases in rw [Fig. 2(h)]. Even so, all of the parameter values
are reasonable. These differences in the minima lead to similar
χ2 distributions, also seen in Fig. 2(j).

These conclusions do not necessarily hold for the linear
priors (shown in more detail in the Appendix). The posterior
distributions for the real volume potential are similar to those
resulting from the Gaussian priors, but many of the imaginary
parameters have hard boundaries in the posterior distributions
due to the sharp cutoffs of the prior distributions. These pa-
rameter space cutoffs can significantly influence the resulting
95% confidence intervals. The parameters constrained by the
narrow linear prior, for example, do not reproduce the elastic-
scattering data. This, in part, leads to our use of Gaussian priors.

FIG. 4. Same as Fig. 2 for a fixed prior shape—wide Gaussian—
but varying ε, as given in the legend in (j).

Figure 3(a) then shows the comparison of the distribution
of elastic cross-section values calculated from these parameter
posteriors. The bands are constructed by calculating an angular
distribution from each posterior and then computing the 95%
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FIG. 5. Systematic study of the mean of the posterior distribution
as a function of the width of the prior distribution for neutron elastic
scattering on 90Zr at 24.0 MeV: the prior width along the x axis is
given as the percentage of the original parameter value from [38],
the posterior mean is given as a percentage of the prior center (solid
circles), and the error bars show the width of the posterior mean as a
percentage of the width of the prior.

confidence interval for each angle [as in Eq. (3)]. They are
nearly identical, except for minor fluctuations especially at the
first minimum and backwards angles. This is perhaps unsur-
prising given the similarities of the χ2 distributions, but it indi-
cates that parameters are not uniquely determined by the data.

A given set of optical potentials can produce consider-
ably different transfer cross section, even when they produce
identical elastic-scattering distributions (for example, [2]). We
thus investigate the transfer cross sections resulting from the
posteriors shown in Fig. 2. Given the computational costs of the
full calculation, we use only DWBA and simplify the process
by setting UAd = 2UAn, since the proton- and neutron-target
potentials are rather similar. Doing this, and defining the 90Zr-p
outgoing channel using [38], we calculate the resulting transfer
cross sections shown in Fig. 3(b). The transfer cross sections
show more pronounced differences than the elastic ones. In
particular, the narrow Gaussian prior produces a cross section
with a slightly reduced magnitude. We expect that if the prior
distribution is large enough, the effect of the shape of the prior
disappears entirely.

We can then fix the shape of the prior and examine the
effect of varying the scale ε. Even though ε = 0.005 gives
us near the ideal relation between the number of accepted and
rejected steps, we aim to verify that this adequately explores the
parameter space: too small a step for each parameter can result
in trapping the random walk in a local minimum near the initial
parametrization, instead of finding a more global minimum,
which then can produce an artificially narrow posterior. As-
suming the wide Gaussian prior, we repeated the calculations
for ε = 0.001, 0.002, 0.005, 0.01, and 0.05; the corresponding
posterior distributions are shown in Fig. 4. Our results show
that, on one hand, ε = 0.05 (gray) is too large and not able to
constrain the posterior distribution for the parameters, and on
the other hand, ε = 0.001 and ε = 0.002 result in extremely
narrow posterior distributions, indicating that these steps do
not allow enough exploration of the parameter space.

For ε = 0.005 and ε = 0.01, the right balance is provided:
we obtain nearly the same posterior widths for each parameter,
and close to identical χ2 distributions, as seen in Fig. 4(j) (over-
lapping green and blue histograms). The parameter posterior
distributions are reasonable, and, although they do result in
slightly different mean values for the parameters, the 95%
confidence intervals on the elastic-scattering cross sections
for these two ε choices are identical. Note that it is the cross
section that is the observable, not the potential; the individual
parameter posterior distributions are less important than the
combined effect of all of the parameters. Our choice is to use
ε = 0.005 throughout the rest of this work.

These trends in parameter shape and ε hold for the other
three reactions that were studied. In these cases, the posterior
distributions for the flat priors had sharp problematic cutoffs
which lead to obvious differences in the calculated cross
sections. For this reason, we discard the flat priors and only
use Gaussian priors for the remainder of this work.

B. Prior influence on the posterior

We further systematically study how the mean and width of
the posterior change with the width of the prior. To do this, we
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TABLE II. Summary of centers (xo) and widths (�xN , �xM , and �xW ) for the narrow, medium, and wide priors, and the resulting means
and widths for the narrow linear (NL), narrow Gaussian (NG), medium linear (ML), medium Gaussian (MG), wide linear (WL), and wide
Gaussian (WG) posterior distributions. These are given for 90Zr(n,n)90Zr at 24.0 MeV. Depths are given in MeV, and radii and diffusenesses
are given in fm.

x xo �xN �xM �xW xoWL �xWL xoML �xML xoNL �xNL xoWG �xWG xoMG �xMG xoNG �xNG

V 46.0 4.6 23.0 46.0 45.86 2.45 43.69 2.08 45.95 1.28 45.06 1.68 45.68 2.29 44.92 2.01
r 1.17 0.117 0.585 1.17 0.95 0.03 0.98 0.03 1.18 0.02 0.97 0.02 0.95 0.03 0.97 0.03
a 0.75 0.075 0.375 0.75 0.69 0.06 0.63 0.04 0.77 0.02 0.64 0.05 0.68 0.05 0.72 0.05
Ws 5.7 0.57 2.85 5.7 4.76 0.55 4.95 0.47 5.70 0.16 5.39 0.50 4.70 0.32 5.15 0.35
rs 1.26 0.126 0.63 1.26 1.06 0.07 1.03 0.05 1.27 0.03 1.01 0.05 1.05 0.05 1.09 0.06
as 0.58 0.058 0.29 0.58 0.61 0.04 0.48 0.03 0.58 0.02 0.52 0.06 0.52 0.05 0.52 0.03
W 3.7 0.37 1.85 3.7 2.15 0.22 3.00 0.17 3.66 0.10 1.34 0.35 2.64 0.40 3.39 0.28
rw 1.26 0.126 0.63 1.26 1.06 0.10 1.10 0.07 1.25 0.03 1.35 0.13 0.99 0.12 1.02 0.06
aw 0.58 0.058 0.29 0.58 0.57 0.07 0.68 0.04 0.58 0.02 0.59 0.07 0.52 0.07 0.57 0.05

again take the example of 90Zr(n,n)90Zr elastic scattering at
24.0 MeV and use a Gaussian prior for each of the parameters,
with a mean value of the starting parameter value from [38]
and a varying width, defined as a percentage of the mean value.
Figure 5 shows the means (solid circles) and widths (error
bars) of the resulting posterior distributions as a function of
the width of the prior distributions for each optical potential
parameter. Clearly, the mean of the posterior distribution for
each parameter stays essentially constant as the width of the
prior is increased.

However, the resulting posterior widths are significantly
narrower than the starting prior distributions—and this width
does not depend on the width of the prior. For the following
results, we take the width of the prior distribution to be the
same value as the original parameter (�x = xo) for each of the
optical model parameters that are allowed to vary. This keeps
the parameters within a physical range but does not overly
constrain them.

C. Transfer reactions

For the main part of this work, we studied five transfer
reactions, four neutron transfers, and one proton transfer, as
listed in Sec. III. In the next section, we show the example of
48Ca(d,p)49Ca in detail, first going through the ADWA and
then the DWBA calculations. Following that, we summarize
our findings of all five reactions, discussing specific details as
well as systematic trends.

1. Transfer using ADWA

We first calculate 48Ca(d,p)49Ca transfer (to the ground
state) using the adiabatic wave approximation (ADWA). The
incoming deuteron channel is constrained using neutron and
proton elastic scattering on 48Ca. The outgoing proton-49Ca
channel is constrained using proton-scattering data on 48Ca at
an energy in the center of mass that is approximately 2Ecm

d −
Q(d,p). This is appropriate because, for the nuclei considered
here, the differences in the nucleon optical potentials between
the A and the A + 1 systems are typically on the order of 1%
or less.

To complete the transfer reaction, we need to calculate the
posterior distributions for each of these elastic-scattering cases.

As discussed in the previous section, we use an independent
Gaussian prior for each parameter (xi) centered on the starting
parametrization (xi

0 for each parameter) from [38] and the
width is the same as the center value,

p(H ) ∝
Np∏
i=1

exp

(
−

(
xi − xi

0

)2

2
(
xi

0

)2

)
, (11)

where Np is the number of parameters that are being con-
strained.

In Figures 6–8, we show the prior (solid line) and posterior
(gray histogram) distributions for each of the variables that
were constrained by data (taking the experimental error bars
to be 10% of the data). These distributions were constructed
from 1600 accepted MCMC draws. Each of the posterior
distributions is centered around a physical value with a width
that is significantly narrower than the width of the prior. This
demonstrated that the data have important information content
pertaining to these parameters.

We note that Fig. 7 does not show a plot for aw, the imagi-
nary volume diffuseness. In this case, aw was not included as a
free parameter in the Monte Carlo simulation, but was instead
fixed at its initial value of 0.63 fm. When it was included as
a free parameter, it was not well constrained by the data; the
posterior distribution was completely flat and outside of the
range defined by the prior (as well as outside of the physical
range for this parameter). This was not uncommon for the
proton-scattering and deuteron-scattering data, as discussed
in Sec. V.

Figure 9 shows the 95% confidence intervals (gray) re-
sulting from these parameter posterior distributions. The data
are well reproduced by the Monte Carlo sampling under the
constraint of Bayes’ theorem, and the confidence intervals are
relatively narrow. The parameter sets that make up the posterior
distributions for the elastic-scattering channels can then be
used to calculate the transfer cross section. For this purpose,
we randomly draw three parameter sets, one from the incoming
neutron posterior, one from the incoming proton posterior, and
another from the outgoing proton posterior. These are then
combined to calculate the ADWA transfer cross sections. It
is important to remember that we use a fixed mean field to
produce the single particle bound state in the exit channel.
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FIG. 6. Posterior distributions for the optical model parameters
conditional on 48Ca(n,n) elastic scattering at 12.0 MeV. Gray (light
blue) histograms show the posterior assuming 10% (5%) error on
the experimental data. Overlaid solid line shows the Gaussian prior
distribution (magnitude is arbitrary).

To mimic the introduction of a spectroscopic factor into our
problem, we normalize the predicted angular distributions to

FIG. 7. Same as Fig. 6 for 48Ca(p,p) elastic scattering at
14.03 MeV.

the data at forward angles. The 95% confidence interval for this
calculation, after normalization, is shown in Fig. 10 (gray).

We can then systematically study how the reduction of the
experimental errors changes the resulting transfer calculation.
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FIG. 8. Same as Fig. 6 for 48Ca(p,p) elastic scattering at
25.0 MeV.

To do this, we rerun the Monte Carlo with the same prior
distributions but assuming 5% errors on the experimental data.
The resulting mean parameter values are approximately the
same but the widths are generally smaller, which can also

FIG. 9. The 95% confidence intervals for the elastic scattering
of (a) 48Ca(n,n) at 12.0 MeV, (b) 48Ca(p,p) at 14.08 MeV, and (c)
48Ca(p,p) at 25.0 MeV. Gray solid (light blue dashed) lines outline
the 95% intervals when 10% (5%) experimental errors were used.

be seen in Figs. 6–8 (blue histograms). The χ2 values are
larger when the experimental errors decrease; this is expected
since the χ2 is weighted by the now smaller error at each
angle. Figure 9 shows the comparison of the 95% confidence
intervals for the elastic-scattering cross sections using these
two errors (10% errors in gray and 5% errors in blue). As
one would expect, the cross section confidence intervals are
narrower when smaller error bars are used; to an extent, we can
better constrain our calculations when the data are measured
more precisely. Finally, Fig. 10 compares the 95% confidence
intervals for the transfer reactions using the two posterior
distributions. Reducing the error on the elastic cross-section
data by 50% reduces the uncertainty in the predicted transfer
cross sections by ≈30%. We come back to this issue in Sec. V.
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FIG. 10. The 95% confidence interval for 48Ca(d,p)49Ca(g.s.) at
24.0 MeV, compared to data at 19.3 MeV (extracted from [43]). Gray
solid (light blue dashed) regions show the intervals when 10% (5%)
experimental errors are used for the ADWA calculation.

2. Transfer using DWBA

We can perform the same study using the deuteron elastic-
scattering data to constrain the incoming channel (through
DWBA) instead of the incoming nucleon interactions (with
ADWA). The prior for the deuteron-target elastic scattering
also has the Gaussian form of Eq. (11) for each parameter
included in the fit, centered on the original optical potential
values, now from [39], with a width equal to the center
value. (The outgoing proton or neutron channels are defined
from the same posterior distributions as in the ADWA study.)
Similar posterior distributions are obtained (not shown), when
using 10% and 5% error bars on the data, both in the mean
values and widths; all of the parameter posteriors are centered
around physical values. Like the nucleon elastic scattering, for
deuteron elastic scattering the imaginary volume diffuseness,
aw, could not be constrained by the data and therefore was not
included in the fit. It is fixed at its original value from [39].

The 95% confidence intervals for the deuteron elastic
scattering are shown in Fig. 11. Again, we see that these
intervals are well constrained based on the data, although the
angular range covered by the data is significantly smaller than
that covered by the nucleon-scattering data. We then use the
deuteron elastic-scattering posterior and the outgoing proton
elastic-scattering posterior shown in Fig. 8 for the ADWA

FIG. 11. Same as Fig. 9 for 48Ca(d,d)48Ca at 23.2 MeV.

FIG. 12. Same as Fig. 10 for the DWBA calculation.

calculation (posteriors from Fig. 8) to perform the DWBA
calculation. Figure 12 shows the 48Ca(d,p)49Ca(g.s.) transfer
cross sections using the 10% (gray) and 5% (blue) errors, using
DWBA. Here we see almost no reduction in the width of the
transfer cross section at the peak when the smaller experimental
errors are included. The reduction is on the order of 10% and
only occurs at the peak.

3. Comparison between reaction models

We can now directly compare the two reaction models.
Figure 13 overlays the confidence bands obtained using ADWA
and DWBA, for both 10% and 5% experimental errors, all
normalized to the experimental data at forward angles. The
reaction models produce transfer cross sections that differ
slightly in their angular dependence, although they all peak
around the same angle—close to 5◦ (this is mainly due to the
same kinematic conditions and the same angular momentum
transfer in ADWA and DWBA). At the peak of the angular
distribution—where a spectroscopic factor would typically be
extracted—the DWBA calculations have larger uncertainties
than the ADWA calculations by 25–40 %.

FIG. 13. Comparison of angular distributions between ADWA
with 10% errors (gray solid lines), ADWA with 5% errors (light blue
dashed), DWBA with 10% errors (green dash dotted), and DWBA
with 5% errors (pink dotted) for 48Ca(d,p)49Ca(g.s.) at 24.0 MeV
(compared to data at 19.3 MeV).
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TABLE III. Overview of the uncertainty in the differential cross
section for each transfer reaction. Column 1 lists the transfer reaction,
and column 2 lists the reaction theory used (ADWA or DWBA) with 5
or 10 indicating the experimental errors used. The angle (θ , in degrees)
where the cross section peaks is listed in column 3, and the value of
the cross section at the peak (in mb/sr) is listed in column 4. The
spectroscopic factors are given in column 5 (for the reactions that have
been measured experimentally). Column 6 (7) lists the percentage
error at the peak assuming a 95% (68%) confidence interval.

Reaction Theory θ Peak∗ SF ε95 ε68

48Ca(d,p) ADWA10 6 34.09 1.068 35.76 16.47
48Ca(d,p) ADWA5 6 33.38 1.092 24.24 11.53
48Ca(d,p) DWBA10 3 41.56 1.017 47.93 22.57
48Ca(d,p) DWBA5 4 40.73 1.016 42.03 22.36
90Zr(d,n) ADWA10 31 2.16 44.44 17.59
90Zr(d,n) ADWA5 31 2.13 20.19 9.91
90Zr(d,n) DWBA10 31 3.04 38.82 21.52
90Zr(d,n) DWBA5 30 3.15 26.35 13.29
90Zr(d,p) ADWA10 14 16.63 0.740 47.62 21.95
90Zr(d,p) ADWA5 14 17.94 0.686 30.88 14.99
90Zr(d,p) DWBA10 16 17.09 0.720 58.86 29.02
90Zr(d,p) DWBA5 16 17.41 0.707 30.61 14.26
116Sn(d,p) ADWA10 1 4.64 121.77 48.31
116Sn(d,p) ADWA5 1 5.93 101.52 55.12
208Pb(d,p) ADWA10 11 13.32 37.84 18.95
208Pb(d,p) ADWA5 14 13.97 25.48 11.42
208Pb(d,p) DWBA10 9 7.44 72.72 43.84
208Pb(d,p) DWBA5 7 8.38 63.01 30.08

D. Summary of results

For all but one transfer reaction calculated for this work,
we follow the same procedure as in Sec. IV C and compile
the results in this section (the DWBA calculation was not
performed for 116Sn(d,p)117Sn due to a lack of (d,d) scattering
data at the incident energy). In Table III, we present the
widths of the confidence bands predicted for transfer reactions
calculated in this work. It lists the mean values, at the peak
of the angular distributions for the 95% confidence intervals
(column four), given a reaction model (ADWA or DWBA),
with the index representing the experimental error taken for
the elastic-scattering cross sections (5 and 10 for 5% errors
and 10% errors, respectively). Note that the peak values are
those corresponding to the 95% confidence intervals. These
values may change by 5–10 % at most when 68% confidence
intervals are calculated, but fall within the 95% intervals. Two
percentage uncertainty widths are listed in columns six and
seven and are defined as

εi = σ i
max − σ i

min

σ̄ i
× 100%, (12)

where i indicates which confidence interval is being calculated
[95% or 68%, as given by Eq. (3)], σ i

max (σ i
min) give the

maximum (minimum) values of the cross sections defined by
the i% confidence interval, and σ̄ i denotes the mean value
of the cross section at the peak within the i% confidence
interval. In principle, the 95% confidence intervals should be

TABLE IV. Overview of the reduction (or increase) factor be-
tween the 10% error calculations and the 5% error calculation for the
reaction model listed in column 2. This is done for both the 95% and
68% confidence intervals. See text for details.

Reaction Theory (�exp)95 (�exp)68

48Ca(d,p) ADWA 32.22 30.03
48Ca(d,p) DWBA 12.30 0.91
90Zr(d,n) ADWA 54.58 43.69
90Zr(d,n) DWBA 32.12 38.24
90Zr(d,p) ADWA 35.15 31.68
90Zr(d,p) DWBA 47.99 50.87
116Sn(d,p) ADWA 16.63 −14.10
208Pb(d,p) ADWA 32.65 39.71
208Pb(d,p) DWBA 13.35 31.39

about twice as wide at the 68% confidence intervals. When
this does not hold, we can make inferences about the tails of
the confidence intervals—whether or not they are asymmetric
around the mean or how far they extend from the mean
(equivalently, how peaked the distribution is). In Table III,
we see that ε68 ≈ 0.5ε95 for nearly every reaction, indicating
that the distributions are nearly symmetric and could be well
described as Gaussian.

To assess the gain of predictive power when increasing the
precision of the experimental data, we introduce

�exp = εi(ADWA10) − εi(ADWA5)

εi(ADWA10)
× 100%. (13)

In Table IV, we show this �exp factor, for each theory model.
Also of interest is the information gain when improving the

theoretical description of the reaction. As mentioned earlier,
ADWA is built on a three-body model for the reaction and con-
tains deuteron breakup to all orders, while the standard DWBA
calculations consist of the first term of a perturbative series
based on two-body multiple scattering. We thus introduce the
quantity

�th = εi(DWBA) − εi(ADWA)

εi(DWBA)
× 100%, (14)

which reflects the improvement in describing the data when
taking deuteron breakup explicitly. This is shown in Table V.
Because the DWBA calculation was not performed for 116Sn,
�th could not be calculated for this system.

Overall we find that reducing experimental errors and
improving the reaction theory reduces the uncertainty in the
prediction of the transfer cross section. In the next section,
we present a thorough discussion; however, we should un-
derline two atypical results. For 116Sn(d,p)117Sn, we find
that the width of the 68% confidence interval increases when
the experimental error is halved (see Table IV). This is due
to the nonsymmetric nature of the posterior distribution of
the transfer cross section. For the 68% confidence intervals,
there is no strong peak in the density of the cross-section
values at each angle, which results in the mean being defined
rather arbitrarily. The other unusual case is 90Zr(d,n)91Nb for
which there is an increase in the theoretical uncertainty for the
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TABLE V. Overview of the reduction (or increase) factor between
the DWBA calculations and the ADWA calculation for the percent
error on the experimental data listed in column 2. This is done for
both the 95% and 68% confidence intervals. See text for details.

Reaction Error (�th)95 (�th)68

48Ca(d,p) 10% 25.39 27.03
48Ca(d,p) 5% 42.33 48.43
90Zr(d,n) 10% −14.48 18.26
90Zr(d,n) 5% 23.38 25.43
90Zr(d,p) 10% 19.10 24.36
90Zr(d,p) 5% −0.88 −5.12
208Pb(d,p) 10% 47.96 56.77
208Pb(d,p) 5% 147.29 62.03

ADWA calculations compared to the DWBA calculations (see
Table V). It turns out that the deuteron optical potential of [39]
seems to be particularly well defined for 90Zr-d scattering,
especially compared to 48Ca and 208Pb. In [39], the authors
quote an overall χ2 of 4.03 for 90Zr over the range of energies
that were investigated (E < 183 MeV) which contrasts with
48Ca, χ2 = 123.58. This is the reason why in some particular
combination of confidence level and experimental error bar
precision, DWBA appears to perform slightly better.

V. DISCUSSION

The three main goals of our analysis are to (1) assess the
uncertainties in the transfer cross section, within the adiabatic
formalism, when constraining the nucleon-target optical po-
tentials with the relevant elastic scattering data, (2) understand
the effect of data precision on the resulting cross-section
uncertainties, and (3) systematically compare the two reaction
formalisms which introduce different approximations. These
are each discussed in this section.

A. Uncertainties from nucleon-target potentials

We can now examine the uncertainties from the nucleon-
target interactions. If we first focus on the uncertainties from
the 95% confidence intervals (column 6 of Table III) for the
ADWA calculations, we see that these range from 20% to
about 120%. Almost all of these are larger than the 10–30 %
that is naïvely expected to come from the parametrization of
the optical model. (We see that the uncertainties of the 95%
confidence intervals for the DWBA calculations are larger on
average; these differences are discussed more in Sec. V C.)

Table VI shows the theoretical uncertainty as defined in
Eq. (12)—at the peak of the transfer cross section—that
is introduced when only one or two of the nucleon-target
potential posterior distributions are included in the ADWA
transfer calculation. For nearly all of the calculations, the
largest single channel uncertainty is introduced by the outgoing
nucleon-target potential. This is an intriguing result that is
not yet fully understood. All of the scattering pairs [besides
116Sn(p,p) in the outgoing channel] have data out to 150◦ or
beyond, so we cannot attribute this result to the lack of angular

TABLE VI. Theoretical uncertainties, εi , using 10% (5%) exper-
imental errors, extracted at the peak of the cross section [column 3 (4)
for a given transfer reaction (column 1)]. The projectile in column 2
indicates which part of the potential was varied (while the remaining
nucleon-target potentials were fixed at the original parametrizations
from [38]). (Here, the error on the deuteron channel comes from
varying the incoming neutron and proton potentials simultaneously,
and ADquad comes from adding the errors from the nucleon incoming
and outgoing potentials in quadrature.) Column 5 shows the largest
angle at which the experimental data were measured.

Reaction Projectile ε10 ε5 θmax (deg)

48Ca(d,p) pin 22.90 11.82 158
48Ca(d,p) nin 15.82 7.96 143
48Ca(d,p) pout 26.70 17.37 170
48Ca(d,p) din 26.08 15.61
48Ca(d,p) ADquad 38.57 22.47
90Zr(d,n) pin 18.44 15.28 165
90Zr(d,n) nin 16.96 9.17 150
90Zr(d,n) nout 26.04 12.08 159
90Zr(d,n) din 28.72 17.17
90Zr(d,n) ADquad 36.14 21.53
90Zr(d,p) pin 17.53 12.81 165
90Zr(d,p) nin 13.78 8.92 150
90Zr(d,p) pout 38.24 19.96 154
90Zr(d,p) din 23.77 19.18
90Zr(d,p) ADquad 44.27 25.34
116Sn(d,p) pin 80.50 64.60 169
116Sn(d,p) nin 35.26 18.43 155
116Sn(d,p) pout 87.05 79.64 88
116Sn(d,p) din 88.65 64.16
116Sn(d,p) ADquad 123.70 104.19
208Pb(d,p) pin 16.42 7.76 165
208Pb(d,p) nin 22.35 12.92 154
208Pb(d,p) pout 33.00 21.41 168
208Pb(d,p) din 30.98 19.62
208Pb(d,p) ADquad 43.11 26.69

coverage.1 This result suggests a significant change in the way
deuteron-induced transfer reactions are currently measured.
Typically the reaction is measured in inverse kinematics with a
deuterated target. We propose that, in addition, a proton target is
used to capture the proton elastic with the beam energy adjusted
to match the relevant outgoing channel kinematic conditions.
This will minimize the uncertainty coming from the optical
potentials in the theoretical prediction.

Table VI also lists the total quadrature uncertainty from
the incoming and outgoing channels for the ADWA calcu-
lations, ADquad. We find that this quadrature uncertainty is
nearly identical to the uncertainties in Table III. The total
uncertainty calculated by including the uncertainties from all
potentials simultaneously is the same as adding in quadrature

1For the 116Sn case, the incoming and outgoing proton scattering
for 116Sn have nearly the same percentage error, but the data for the
proton in the incoming channel cover a significantly larger range.
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the uncertainties from each potential individually. We find the
same results for the quadrature uncertainties for DWBA.

B. Effects of the experimental error

In Figs. 10 and 12, we showed the comparison between
the uncertainty for the ADWA and DWBA calculations using
10% and 5% errors on the experimental data for the case
of 48Ca(d,p)49Ca(g.s.). In both cases, we see a reduction
in the width of the cross section at the first peak (where a
spectroscopic factor would be extracted), when smaller errors
are included. However, this reduction is not proportional to
the reduction in the experimental error: for a 50% reduction
of the experimental error, we only find about a 30% reduction
in the uncertainty of the resulting transfer cross section for
the ADWA calculation and a reduction of about 10% for the
DWBA calculation.

Since we used an exponentiated χ2 as our likelihood, one
might naïvely argue that a reduction in the experimental error
by 2 should just scale the likelihood and therefore just scale the
posterior distributions. However, this is not what is obtained
for our calculations. We also do not see a consistent scaling of
the widths of the parameter posterior distributions.

As we saw for the elastic nucleon-target and deuteron-target
cross sections used in the 48Ca(d,p)49Ca(g.s.), in all other
cases here studied, reducing the experimental error bars gives
rise to similar means but smaller widths for the posterior
distributions. This also has the effect of reducing the width
of the 95% confidence intervals for the elastic scattering
(similar to what is seen in Figs. 9 and 11). The reduction
in the width is not always drastic, but it is always present.
Further, we always see a reduction in the percentage error at
the peak of the cross section when the experimental errors are
halved (Table IV), except for the 68% confidence intervals
for 116Sn as discussed in Sec. IV D. This reduction ranges
from about 10% to 55%. Therefore, while tighter constraints
on the experimental data allow us to more precisely extract
information from the transfer cross section, the magnitude of
the improvement in the prediction is not trivially related to the
magnitude of improvement in the experimental measurement.

C. Comparison of ADWA and DWBA

In Table V, we showed the reduction in the uncertainties
for the transfer cross sections when going from a DWBA
description to ADWA. This is done for the two experimental
error bars considered and for both the 95% and 68% confidence
intervals. Except for those cases discussed earlier, there is a
significant reduction in the percentage error, at the peak, when
improving the physics of the model. On average the width of
the 95% confidence band is ≈40% for ADWA, and ≈55% for
DWBA when 10% error bars are included in the experiment.
If instead 5% error bars are considered, then the average
uncertainty for the 95% confidence band is ≈25% for ADWA
and ≈40% for DWBA. This result confirms expectations,
especially because the ADWA method has been shown to
reproduce the exact solution of the three-body problem for
the energies of interest in this work [44]. As shown in Fig. 13,
our ADWA angular distributions appear more in line with the
experimental angular distribution but DWBA cannot be ruled

out due to the model uncertainties. Although the ADWA and
DWBA calculations have different peak shapes (data at more
forward angles could distinguish between the calculations),
the calculations at backwards angles do not provide the same
differentiation.

The fifth column of Table III lists the spectroscopic fac-
tors for 48Ca(d,p) and 90Zr(d,p) (which were the only two
reactions for which (d,p) data were available, from [43] and
[45], respectively). The spectroscopic factors were calculated
by normalizing the mean theoretical cross section at the peak
of the experimental angular distribution or the forward-most
measured data point. For each reaction, the spectroscopic
factors between ADWA and DWBA differ by only a few
percent, which is significantly smaller than the uncertainty
introduced by the optical potentials. The differences in the
spectroscopic factors alone would not be enough to distinguish
between the two models, especially considering the relatively
large uncertainties that are introduced by the free parameters
within the potential model.

One should keep in mind that, as discussed earlier in
Sec. V A, these uncertainties are only due to the optical
potential parametrizations, and the results may depend on the
specifics of each set of data. Ideally, we would like to have the
same angular coverage for all relevant elastic scattering and
transfer data. Since ADWA and DWBA often predict different
transfer angular distributions, such a study could enable model
exclusion.

VI. CONCLUSIONS AND FUTURE WORK

We have used Bayesian methods to construct 95% confi-
dence intervals for five transfer reactions and relevant elastic
scattering in the range A = 48–208 with energies from 10
to 25 MeV/nucleon. The aim of the study is to quantify the
uncertainties coming from the parametrization of the optical
model potentials and to begin to investigate the uncertain-
ties coming from differences in the reaction model imple-
mented. Nucleon-target and deuteron-target elastic-scattering
data were used to constrain the parameters in the potential
and create posterior distributions for each parameter. These
posterior distributions were used to predict proton and neutron
transfer cross sections, taking for the reaction formalism either
the adiabatic wave approximation or the distorted-wave Born
approximation. The experimental errors for each data set were
defined systematically to be a fixed percentage for all angles
and data sets: we consider both 10% and 5% experimental
errors. This enables a rigorous study on their impact in the
confidence intervals of the theoretically predicted observables.

Overall, we find about 20–120 % error being introduced to
the transfer angular distributions using data to constrain optical
model parameters. The uncertainties from each two-body
scattering reaction essentially add in quadrature to produce
the overall uncertainty when the potentials of all scattering
pairs are varied simultaneously within the constraints of
their posterior distributions. The outgoing nucleon-(A + 1)
potential introduces the largest uncertainty in the five cases
studied here. Reducing the experimental errors in the data
significantly reduces the uncertainty in the constrained elastic
and predicted transfer cross sections; however, this effect is
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not directly proportional to the reduction factor of experimental
error bars. Finally, constraining the nucleon-target interactions

FIG. 14. Comparison of the posterior distributions (histograms)
resulting from various prior distributions (corresponding solid lines)
for a wide linear (WL), medium linear (ML), and narrow linear (NL)
as defined in Table II for 90Zr(n,n)90Zr at 24.0 MeV.

and calculating a transfer cross section using ADWA generally
introduces less uncertainty than constraining the deuteron-
target interaction and predicting the transfer through DWBA.
We expect that ADWA would have less uncertainty as it
explicitly takes the breakup of the deuteron into account.

Even though we have constrained each of the incoming and
outgoing potentials with data and have included these in the
overall uncertainties, there are still other uncertain elements
in the theory, including the mean field potential binding the
nucleon-target system in the final state and the np interaction
binding the deuteron in the initial state. These uncertainties
should also be quantified in the future.

This work focused on the uncertainties due to the
parametrization of the potentials. Given that the reactions here
considered are many-body complex scattering problems, for
which we use few-body methods, there is the larger issue of
model simplifications. The ultimate goal is to estimate the
uncertainties that arise from the model simplifications without
knowing the exact solution, as well as rigorously comparing
models to understand the information content and to what ex-
tent the increased complexity is justified by the evidence. The
Bayesian reaction framework we have implemented provides
a way forward in this investigation.
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APPENDIX: LINEAR PRIORS

Although we discussed the linear priors in the main text,
they were not shown in detail. Therefore, in Fig. 14, we show
a comparison of the posterior distributions resulting from the
linear priors listed in Table II, considering again 90Zr(n,n)90Zr

FIG. 15. 95% confidence intervals of the elastic-scattering angu-
lar distributions for 90Zr(n,n)90Zr at 24.0 MeV using the posterior
distributions from Fig. 14.
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at 24.0 MeV. Contrary to the Gaussian priors of Sec. IV A,
in the case of the linear priors, the posterior distributions
sharply terminate at the boundaries of the prior for nearly
all of the variables, particularly for the narrow linear (NL)
prior. Although this is not seen in the medium and wide priors
for the real volume parameters, there is a significant effect on
the posterior distributions for the imaginary terms. This has a

large impact on the resulting 95% confidence intervals for the
elastic-scattering angular distributions, as shown in Fig. 15.
Despite the stark differences in the posterior distributions
for the medium and wide linear priors, the resulting angular
distributions are strikingly similar. The same is not true for
the angular distribution resulting from the narrow prior, which
does not even reproduce the experimental data.
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