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Four-body extension of the continuum-discretized coupled-channels method
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I develop an extension of the continuum-discretized coupled-channels (CDCC) method to reactions where
both nuclei present a low breakup threshold. This leads to a four-body model, where the only inputs are the
interactions describing the colliding nuclei, and the four optical potentials between the fragments. Once these
potentials are chosen, the model does not contain any additional parameter. First I briefly discuss the general
formalism, and emphasize the need for dealing with large coupled-channel systems. The method is tested with
existing benchmarks on 4α bound states with the Ali-Bodmer potential. Then I apply the four-body CDCC to the
11Be + d system, where I consider the 10Be(0+,2+) + n configuration for 11Be. I show that breakup channels are
crucial to reproduce the elastic cross section, but that core excitation plays a weak role. The 7Li + d system is
investigated with an α + t cluster model for 7Li. I show that breakup channels significantly improve the agreement
with the experimental cross section, but an additional imaginary term, simulating missing transfer channels, is
necessary. The full CDCC results can be interpreted by equivalent potentials. For both systems, the real part is
weakly affected by breakup channels, but the imaginary part is strongly modified. I suggest that the present wave
functions could be used in future DWBA calculations.
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I. INTRODUCTION

The continuum-discretized coupled-channels (CDCC)
method was first developed in the 1970s [1]. It was realized
that elastic cross sections for deuteron-induced reactions could
not be described by standard optical potentials. A significant
progress was made possible by introducing breakup states of
the deuteron. This lead to the idea of a discretized continuum
which was subsequently used by many authors (see, for
example, Refs. [2–4] for reviews).

For many years, CDCC calculations involved three-body
systems. Typical examples are deuteron + nucleus reactions,
where the deuteron is described by a p + n structure. For more
than 20 years, the three-body CDCC method was successfully
applied to reactions involving weakly bound nuclei, such as
11Be, which can be seen as a 10Be + n system. The CDCC
theory represents a natural framework for reactions involving
exotic nuclei. The main property of exotic nuclei is their low
breakup threshold, and couplings to the continuum are quite
important. More recently, the CDCC method was extended to
reactions involving three-body projectiles, such as 6He [5], 9Be
[6], or 11Li [7]. Going from two-body to three-body projectiles
represents a strong increase in the complexity of numerical
calculations: The three-body continuum involves larger level
densities, and the calculation of the coupling potentials is more
time consuming.

Until now, most scattering calculations use the assumptions
that the target remains in its ground state. This is certainly a fair
approximation for heavy targets, but is more questionable for
light targets. A typical example is the deuteron, which is used
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as a target for the investigation of exotic nuclei by stripping
reactions (see, for example, Ref. [8]). If the projectile also
presents a two-body structure, current versions of the CDCC
method are no longer sufficient. In this work, I present a new
extension of CDCC, where the breakup of both colliding nuclei
is included. I assume a two-body structure for the projectile and
for the target, which leads to a four-body model.

The aim of the CDCC method is essentially to investigate
reactions. However, this framework is also able to describe
bound states. I use this property to test the model with the 4α
system, which was studied in the literature [9,10] by more
specific few-body methods. This application not only provides
a numerical test of the model, but also allows one to analyze
the convergence of 4α bound-state energies.

A typical application of the four-body model is the 11Be + d
reaction, which was experimentally studied recently [11]. In
this reaction, 11Be and the deuteron present a low breakup
threshold, and four-body breakup effects are expected to be
important. First results were presented in Ref. [12], and are
extended here by including core excitation of 10Be. Another
natural application of a four-body model is the 7Li + d
reaction, because 7Li is known to have an α + t cluster
structure.

The paper is organized as follows. In Sec. II, I briefly present
the model, by emphasizing specific aspects of the four-body
calculations. Section III is devoted to the 4α system, where
bound states are computed. In Secs. IV and V, I present the
11Be + d and 7Li + d cross sections, respectively. As CDCC
calculations involve many channels, it is useful to have equiva-
lent, single-channel potentials. Such potentials can be derived
approximately, and give a more intuitive interpretation of the
full calculations; they are presented in Sec. VI. Conclusions
and outlook are given in Sec. VII.
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FIG. 1. Cluster configuration and coordinates used in the four-
body model.

II. THE CDCC FOUR-BODY MODEL

A. General presentation

The goal of the present work is to extend the CDCC
formalism to systems involving two nuclei with a low breakup
threshold. This situation is typical of deuteron-induced reac-
tions on exotic nuclei. As the deuteron cannot be considered
as an inert system, a four-body model is necessary if the exotic
nucleus (such as 11Be, 8B, or 19C) also presents a low separation
energy. Further extensions to three-body projectiles have been
considered [5–7], but with structureless targets.

Let me consider the four-body system of Fig. 1. The
coordinates rrr1 and rrr2 describe the internal motion of the
colliding nuclei, whereas RRR is associated with the relative
motion. Although other coordinate choices are possible for
four-body systems [13], those adopted here are well suited to
scattering problems. The total Hamiltonian is given by

H = TR + H1(rrr1) + H2(rrr2) + V (RRR,rrr1,rrr2), (1)

where TR is the relative kinetic energy and potential V is
defined from four optical potentials as

V (RRR,rrr1,rrr2) =
2∑

i=1

2∑
j=1

V 0
ij (RRR,rrr1,rrr2). (2)

As usual in CDCC calculations, interaction V 0
ij is chosen to

optimize the scattering properties of the i + j subsystem. For
nucleon + target systems, several compilations are available
in the literature [14,15]. Nucleus-nucleus potentials are some-
times known from experiment (such as 10Be + 64Zn [16], for
example), or are estimated from folding procedures (such as
d + 10Be [11], for example).

In Eq. (1), H1 and H2 represent the internal Hamiltonian of
the colliding nuclei, and are given by

Hi(rrri) = ti + vi(rrri), (3)

where ti is the two-body kinetic energy, and vi(rrri) a two-
body (real) potential chosen to reproduce important properties
(energies, radii, etc.) of the nucleus. Neglecting the tensor
force, potential vi(rrri) is defined as

vi(rrri) = VN (ri) + VC(ri) + ��� · sss V�s(ri), (4)

where VN , VC , and V�s are nuclear, Coulomb and spin-orbit
terms, respectively. In many CDCC calculations, core exci-
tations are neglected, and the form factors are radial (typical

forms are Gaussian or Woods-Saxon potentials). It was shown,
however, that core excitation may be important in nuclei such
as 11Be [17] or 19C [18]. This extension of CDCC is known
as the XCDCC method [19]. Owing to the deformation, the
radius where the potential is evaluated is modified by a shift
[20] as

V (r) → V (r − δ(θ )), (5)

with the multipole expansion,

δ(θ ) =
∑
λ>0

δλY
0
λ (θ,0). (6)

In general this expansion is limited to λ = 2, i.e., to quadrupole
deformations.

In the presence of deformation, the two-body potentials are
expanded in multipoles as

V (rrr) =
∑

λ

(2λ + 1)vλ(r)Pλ(cos θ ), (7)

where the radial components,

vλ(r) = 1

2

∫ π

0
V (rrr)Pλ(cos θ )d(cos θ ), (8)

are evaluated numerically. These definitions are valid for the
nuclear as well as for the Coulomb terms.

B. Two-body wave functions

The first step in all CDCC calculations is to solve the
Schrödinger equation (3) associated with the colliding nuclei,

Hi �
jπ
i,k = E

jπ
i,k �

jπ
i,k , (9)

where (jπ ) are the spin and parity, and k is the excitation level
in nucleus i. The two-body wave function of nucleus i is then
factorized as

�
jπ
k (rrr) =

∑
I0�0j0

u
jπ
k,I0�0j0

(r)ϕjπ
k,I0�0j0

(
r ). (10)

This summation involves the spin of the core I0, the relative
angular momentum �0, and its coupling to the spin s0 of the
second fragment (see Fig. 1). For the sake of clarity, I drop
index i and use labels c = (j,π,k) and γ = (I0,�0,j0). The
angular function ϕc

γ is given by

ϕc
γ (
r ) = [�I0 ⊗ [Y�0 (
r ) ⊗ �s0 ]j0 ]j , (11)

where �I0 and �s0 are spinors associated with the two frag-
ments. Two options are possible for the radial functions uc

γ (r):
Either they are obtained from a diagonalization of Hamiltonian
(3), or they are defined from “bins.” Both techniques are known
to provide equivalent results for the scattering process [21].

In the first alternative the radial functions are expanded over
a set of N basis functions fn(r) as

uc
γ (r) =

N∑
n=1

dc
γnfn(r), (12)
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where coefficients dc
γn are obtained from the eigenvalue prob-

lem, ∑
γ ′n′

〈
fnϕ

c
γ

∣∣Hi − Ec
∣∣fn′ϕc

γ ′
〉
dc

γ ′n′ = 0. (13)

This system must be solved for each jπ considered in the
nucleus. Energies Ec (defined from the breakup threshold)
represent physical states (Ec < 0), or approximations of con-
tinuum states (Ec > 0), also referred to as pseudostates. A brief
discussion of the resolution of (13) with Lagrange functions
[22] is presented in Appendix A.

C. Nucleus-nucleus scattering

The next step in the CDCC formalism is to solve the four-
body Schrödinger equation at the scattering energy E,

H�JMπ
ω = E�JMπ

ω , (14)

where the Hamiltonian H is given by Eq. (1), and where ω is
the entrance channel. The wave function is expanded as

�JMπ
ω =

∑
c1c2LI

ϕJMπ
c1c2LI (
R,rrr1,rrr2) gJπ

c1c2LI (ω)(R), (15)

where the channel function is defined by

ϕJMπ
α = [[

�
c1
1 (rrr1) ⊗ �

c2
2 (rrr2)

]I ⊗ YL(
R)
]JM

. (16)

In this definition, I is the channel spin, L is the relative angular
moment, and I use α = (c1c2LI ). The L values are limited
by angular momentum couplings, and by the condition on
the parity π = π1π2(−1)L. The summation over c1 and c2

is limited by a truncation energy Emax and by a truncation
angular momentum Jmax (these limits may be different for both
nuclei). As usual in CDCC calculations, numerical tests must
be performed to ensure the convergence of the cross sections.

In Eq. (15) the long-range behavior of the radial functions
is given by

gJπ
α(ω) −→ 1√

vα

(
δαωIα(kαR) − UJπ

αω Oα(kαR)
)
, (17)

where Iα(x) and Oα(x) are the incoming and outgoing
Coulomb functions, vα is the relative velocity, and UUUJπ is the
scattering matrix. I assume here that all channels are open; a
generalization to closed channels can be found in Refs. [23,24].
Functions gJπ are obtained from the standard coupled-channel
system,[

− h̄2

2μ

(
d2

dR2
− L(L + 1)

R2

)
+ E

c1
1 + E

c2
2 − E

]
gJπ

α(ω)

+
∑
α′

V Jπ
αα′ g

Jπ
α′(ω) = 0, (18)

where μ is the reduced mass, and where the coupling potentials
are defined from matrix elements of potential (2) as

V Jπ
αα′ (R) = 〈

ϕJMπ
α

∣∣∑
ij

V 0
ij

∣∣ϕJMπ
α′

〉
. (19)

These matrix elements involve integrals over rrr1,rrr2, and 
R ,
which means eight-dimensional integrals. The integrals over

R are performed analytically. For the integration over rrr1 and

rrr2, the angular parts are obtained from numerical quadratures,
and the radial parts are greatly simplified by the use of Lagrange
functions. Details on the calculations of the coupling potentials
are given in Appendix B.

The main issue in the present four-body model is not the
calculation of the coupling potentials (19). Although this can
be time-consuming, the main challenge of the model is to
solve the coupled-channel system (18) with a large number
of channels. In standard CDCC calculations, only one of the
colliding nuclei may be broken up. Although the number of
pseudostates or bins can be quite large, the other colliding
nucleus remains in its ground state. The present model goes
beyond this limitation, as both nuclei may break up. In practice,
this means that the number of channels is the product of the
numbers of pseudostates in both nuclei. This extension is
necessary in some conditions, such as in reactions involving a
deuteron and an exotic nucleus, but it raises the problem of an
extremely large number of channels (typically up ∼2000).

I use the R-matrix theory to solve system (18) and to
determine the scattering matrix (17). Associated with Lagrange
basis functions, the R-matrix model is an efficient tool for
scattering problems. The radial wave functions are expanded
as

gJπ
α(ω) =

Nf∑
m=1

DJπ
α(ω),m Fm(R), (20)

where Fm(R) are Nf Lagrange functions associated with
Legendre polynomials. General references can be found in
Refs. [25,26], and more specific applications in nuclear physics
can be found in Refs. [23,24].

III. TEST WITH THE 4α SYSTEM

The present model essentially aims at investigating nucleus-
nucleus scattering, with both nuclei presenting a cluster struc-
ture. However, basis functions (15) can also be used to study
bound states of a four-body system. Although the model is not
optimized for this application, bound-state calculations can be
compared with existing benchmarks in the literature.

As an application to bound-state calculations, I consider
the 4α system, which was investigated in different methods
[9,10]. The comparison therefore provides a strong test of the
present coupling potentials (19). The α + α potential is the
�-independent Ali-Bodmer potential [27], defined as

V N
α+α(r) = v1 exp(−(r/r1)2) + v2 exp(−(r/r2)2), (21)

with v1 = 500 MeV, r1 = 0.7 fm, v2 = −130 MeV, and r2 =
2.105 fm. According to Refs. [9,10], I use h̄2/mα =
10.4465 MeV fm2. In a first step, the Coulomb interaction is
neglected.

The energy of the 4α system is shown in Fig. 2 as a function
of the truncation energy in 8Be, Emax, and of the truncation
angular momentum �max. With this potential, the 2α and 3α
binding energies are −1.37 and −5.12 MeV, respectively [28].
For J = 0+, the calculation predicts two bound states. In
each case, the convergence with �max is slow. Using only
�max = 0 provides a poor approximation. At least �max = 4 is
necessary. Also, pseudostates up to Emax ≈ 30 MeV need to be

064607-3



P. DESCOUVEMONT PHYSICAL REVIEW C 97, 064607 (2018)

-12

-10

-8

-6

-4

-2

0

0 20 40 60 80

2

46

2
46

-10

-8

-6

-4

-2

0

0 20 40 60 80

0

2

2

4

4

6

6

0

(MeV)

Be  + Be  

 

FIG. 2. Energy of the 4α system with the Ali-Bodmer potential
[27] for J = 0+ (upper panel) and J = 2+ (lower panel), by neglect-
ing the Coulomb potential. The labels indicate �max, the maximum
angular momentum in the α + α system. The 8Be + 8Be and α + 12C
thresholds are shown on the right of the figure.

included to be close to the exact energy. At convergence, I find
E0+ = −11.23 MeV. This value is an excellent agreement with
the result of Timofeyuk [10] who uses hyperspherical coordi-
nates. Suzuki and Takahashi [9] use the Stochastic Variational
Method with Jacobi coordinates and find E0+ = −11.17 MeV.
This value, however, was recently revised to −11.23 [29]. I find
a second eigenvalue at E0+ = −7.71 MeV. The convergence
for J = 2+ is quite similar to the behavior of J = 0+. I could
not reach the same precision because of computer memory
limitations. The eigenvalue is E2+ ≈ −8.3 MeV

In a second step, I include the Coulomb α − α potential,

V C
α+α(r) = 4e2

r
erf

(
r

rC

)
, (22)

with rC = 1.663 fm. The results are presented in Fig. 3. As
it is well known for 12C [28], the Ali-Bodmer potential does
not provide a realistic description of the 3α and 4α systems.
The experimental ground-state energy of 16O is −14.44 MeV.
As for 12C, the potential strongly underestimates the binding
energy. However, its simplicity offers an excellent benchmark
for four-body calculations.

IV. APPLICATION TO 11Be + d SCATTERING

A. Conditions of the calculations

Data on 11Be + d elastic scattering and breakup have been
available recently at a 11Be beam energy E/A = 26.9 MeV
[11], and first CDCC results were presented in Ref. [12].
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FIG. 3. See caption of Fig. 2 for J = 0+ and by including the
Coulomb α + α potential (22).

The 11Be + d system is an ideal candidate for the four-body
CDCC method. Both colliding nuclei present a low separation
energy (0.50 and 2.22 MeV, respectively). In d+nucleus and
11Be+nucleus scattering, breakup effects of the deuteron and
of 11Be are known to be important.

In the present work, I complement the results of Ref. [12]
by including 10Be core excitation. For the 10Be + n system, I
use two different potentials: (i) as in Ref. [12] the potential
of Ref. [30] which neglects 10Be excitation; (ii) the set-I
potential of Ref. [31] which includes the 10Be(2+) + n channel.
The latter potential is characterized by a deformation length
δ2 = 1.66 fm, and involves the 2+ first excited state at Ex =
3.37 MeV. In these conditions, the 10Be(2+) + n component
is 15% in the ground state, and 22% in the first excited state.
Both potentials reproduce the experimental energies of the
1/2+ ground state and of the 1/2− excited state. Potential (1)
overestimates the B(E1,1/2− → 1/2+) value (0.23 e2.fm2),
whereas potential (2) provides 0.14 e2 fm2, in better agreement
with experiment (0.102(2) and 0.098(4) e2 fm2; see Ref. [32]).
For the average distance between 10Be and the neutron, they
provide

√
〈r2〉 = 6.70 fm and 6.19 fm, respectively. These val-

ues are similar, and close to the experimental value deduced by
laser spectroscopy (

√
〈r2〉 = 7 fm [33]). For the p + n system,

I use the Minnesota interaction [34], which reproduces the
deuteron binding energy, and low-energy scattering properties.

For the 10Be + n and p + n bases, I use Gauss-Laguerre
functions with a typical scale factor h = 0.4 fm. The number N
of basis functions is typically N = 20. For 10Be + n, I include
angular momenta j = 1/2±,3/2±,5/2+ and j = 0+,2+ are
considered for p + n. Pseudostates up to 20 MeV are included.
To compute the cross sections, I use a maximum angular
momentum Jmax = 71/2 which was adopted in Ref. [12]. For
the R-matrix conditions, I use a channel radius a = 25 fm
with Nf = 50 Lagrange functions. Various tests have been
performed to check the stability of the results against these
different parameters.

The model is complemented by four optical potentials
between the fragments. For 10Be+nucleon, I use the Koning-
Delaroche parametrization [15], and the n + n and n + p
potentials are taken as the Minnesota interaction. It was shown
in Ref. [12] that the choice of the 10Be+nucleon optical
potential has a weak influence on the 11Be + d cross sections
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FIG. 4. 11Be + p elastic scattering (a) and breakup (b) cross
sections at a 11Be energy E = 26.9A MeV (the elastic cross section
is divided by the Rutherford cross section). The solid and dashed
lines are obtained with and without core excitation, respectively. The
experimental data are taken from Ref. [35].

(less than 5% in the considered angular range, which is much
smaller than breakup effects).

B. 11Be + p elastic scattering and breakup

The consistency of the four-body model can be assessed
with the 11Be + p subsystem. Data and a CDCC analysis are
given in Ref. [35] at the same incident energyE = 26.9A MeV,
which corresponds to Ec.m. = 24.7 MeV.

The elastic cross section is presented in Fig. 4, with the data
of Ref. [35]. I use a truncation energy Emax = 10 MeV; using
higher values has a weak effect on the cross section. Figure 4(a)
illustrates two effects: the role of the 11Be breakup, and the role
of core excitation. As pointed out in Ref. [35], calculations
with or without core excitation are fairly similar. The role of
11Be breakup, although weak, is more important. An excellent
agreement with the data can be obtained when the 11Be breakup
is taken into account. Data at larger angles would be welcome
to further test the quality of the model.

In Fig. 4(b), I present the breakup cross section. According
to Ref. [35] which detects events from 0.5 to 3 MeV energy
between 10Be and n, pseudostates in this energy window
are used to determine the CDCC breakup cross section. As
for elastic scattering, the role of core excitation is weak,

0

10
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30

40

50

60

0 30 60 90

no breakup

with breakup

FIG. 5. 11Be + d elastic cross section (divided by the Rutherford
cross section) at E(11Be) = 26.9A MeV, with the single-channel
approximation, and with all breakup channels. The solid lines are
obtained with core excitation, and the dashed line with the 10Be(0+) +
n configuration only. Tha data are taken from Ref. [11].

and calculations with both potentials underestimate the data.
Similar results were obtained in Ref. [35].

C. 11Be + d elastic scattering and breakup

The recent data of Chen et al. [11] at a 11Be laboratory en-
ergy of Elab = 26.9A MeV correspond to Ec.m. = 45.5 MeV.
The four-body CDCC elastic cross section is presented in
Fig. 5. As already mentioned in Ref. [12], the breakup compo-
nent of the wave function is crucial to reproduce the amplitude
of the cross section. With the full CDCC calculation, the
minimum near θ ≈ 20◦ is well reproduced. The single-channel
calculation, involving only the ground states of 11Be and of
the deuteron, overestimates the data by a factor two at the
minimum. Including core excitation of 10Be slightly enhances
the cross section for θ > 30◦. This goes in the right direction
but the calculation is still 10%–20% lower than experiment.

The convergence with respect to the CDCC truncation
limits was partly discussed in Ref. [12]. In Fig. 6, I present
a more detailed analysis, with the influence of �max and of
Emax. For deuteron breakup [Figs. 6(a) and 6(b)], �max = 2
provides an excellent convergence, as well as Emax = 20 MeV.
In 11Be [Figs. 6(c) and 6(d)], the difference between �max = 2
and �max = 3 is negligible and convergence is reached for
Emax = 20 MeV.

Notice that the full calculation involves a very large channel
number. With the present numerical conditions, the number of
deuteron states is 15, and for 11Be, I have 20 and 38 states
for the 10Be(0+) + n and 10Be(0+,2+) + n configurations,
respectively. This means that the number of channels reaches
values around 600. The size of the coupled-channel system
(18) is still larger because I have several channel spins I and
several angular momenta L for a given physical channel. The
dimension of system (18) is therefore of the order of ∼3000.
Such large systems can be solved by the R-matrix method,
but they are extremely demanding in terms of computer time
and memory. Iterative methods such as those presented in
Ref. [36] would allow one to speed up the calculation, but
are not applicable here because they assume small channel
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FIG. 6. Convergence of the 11Be + d elastic cross section as a function of the truncation angular momentum �max in the deuteron (a) and in
11Be (c), and of the maximum pseudostate energy Emax (b), (d). In some cases, the curves are superimposed, and a double label is used.

couplings to ensure the convergence. System (18) must be
solved for each value of Jπ , which makes the full calculation
of the cross section very long. Dealing with a very large system
is a challenge for future CDCC calculations.

In Fig. 7, I analyze the elastic scattering matrix |UJπ
11 | at

Ec.m. = 45.5 MeV. I present results for orbital momenta L =
J − 1/2; the alternative L = J + 1/2 is very similar. Four
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gs+gs

BU+gs

gs+BU

BU+BU

|

FIG. 7. Amplitude of the scattering matrix |UJπ
11 | for L = J −

1/2, and for different conditions of calculation (see text). Labels
“gs” and “BU” refer to the ground state and to breakup channels,
respectively.

calculations are presented: single-channel, mutual breakup,
and breakup in 11Be or in the deuteron. The general trend is a
reduction of the scattering matrix when breakup channels are
introduced. Including either 11Be or deuteron breakup only has
a similar effect, as confirmed by the cross sections shown in
Ref. [12].

In Fig. 8, I display breakup cross sections corresponding
to events in two energy ranges: Ex = 0.5−3 MeV, and Ex =
3−5.5 MeV. In the CDCC formalism, these cross sections
are obtained by summing partial cross sections associated
with pseudostates in these energy ranges. In the lower energy
range, the agreement with the data is fair, but the calculation
underestimates the experimental cross sections in the range
Ex = 3−5.5 MeV. The data present a maximum near θ = 30◦
which cannot be reproduced by theory. As for elastic scattering,
the role of core excitation is weak.

V. 7Li + d ELASTIC SCATTERING

Although 7Li is not a weakly bound nucleus, it presents a
dominant α + t structure, and the 7Li + d system is therefore
a good candidate for a four-body model. Data have been
obtained, for example, in Ref. [37] at a deuteron energy
Elab = 25 MeV, which corresponds to Ec.m. = 19.44 MeV.
This system is quite interesting in a theoretical point of view,
because the four optical potentials between the fragments (α,t
and p,n) are all real at low energies. Absorption is simulated
by the breakup of 7Li and of the deuteron. However, DWBA
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FIG. 8. 11Be + d breakup cross sections with core excitation
(solid lines) and without core excitation (dashed lines). The data are
taken from Ref. [11].

calculations [37] suggest that the 7Li(d,t)6Li, and probably
7Li(d,p)8Li, transfer channels play a role at large angles.
The four-body model is therefore not expected to provide an
excellent description of the cross section in a wide angular
range. Compared to DWBA analyses, however, the main
advantage of the present model is that there is no parameter
fitting. Therefore, the predictive power is much larger than in
DWBA calculations, where many parameters must be adjusted.

The 7Li nucleus is described with the α + t potential of
Ref. [38] which contains central and spin-orbit components.
This potential reproduces fairly well energies and electromag-
netic properties of low-lying states. For the deuteron potential,
I adopt the Minnesota force [34], as for 11Be + d scattering.

The model also involves four optical potentials. The α + p
and α + n potentials are taken from Ref. [39] and present a
Woods-Saxon shape,

VN (r) = V0

1 + exp((r − R0)/a0)
, (23)

with R0 = 2.38 fm, a0 = 0.25 fm, and V0 = −41.8 MeV for
α + n, and −43 MeV for α + p. I neglect the weak energy de-
pendence of the parameters. I also neglect the spin-orbit term,
which is a necessary approximation in CDCC calculations,
where the optical parameters between the fragments should be
� independent.

For the t + n potential, I use the nuclear part of the mirror
3He + p potential fitted at low energies [40]. It corresponds to
V0 = −36.2 MeV, R0 = 2.15 fm and a0 = 0.144 fm. Again I
neglect the noncentral terms. The t + p potential was adjusted

0

1000

2000

3000

4000

5000

0 30 60 90 120 150 180

= 12 MeV

FIG. 9. Ratio to the Rutherford cross section for t + p elastic
scattering at Ep = 12 MeV (see text). The data are taken from
Ref. [42].

by fine-tuning the potentials given in Ref. [41]. Parameters
V0 = −28 MeV, R0 = 2.10 fm, and a0 = 0.70 fm provide the
t + p elastic cross section shown in Fig. 9 for Ep = 12 MeV,
which approximately corresponds to Ed/2. These optical po-
tentials are of course necessary inputs of the model. However,
the sensitivity of the 7Li + d cross sections is somewhat weak.
Small changes in the potentials do not significantly modify the
cross sections (by less than a few percents, which is hardly
visible at the scale of the figure, and much less than other
uncertainties associated with the model).

The 7Li + d elastic cross section at Ed = 25 MeV is shown
in Fig. 10 with the data of Ref. [37]. It is computed with a
maximum angular momentum Jmax = 41/2 and R-matrix pa-
rameters a = 25 fm and Nf = 50. At small angles, all calcula-
tions reproduce the data, which are dominated by the Coulomb
interaction. Strong differences, however, are observed for
θ > 30◦. Without any breakup channel, the model fails to
reproduce the minimum near θ � 35◦, and overestimates the
data by 2 orders of magnitude at large angles. Introducing

0 30 60 90 120 150 180

 = 25 MeV

1

102

103

104

10

10-1

breakup

= 0.2= 0.1

no breakup

FIG. 10. Ratio to the Rutherford cross section for 7Li + d elastic
scattering at Ed = 25 MeV with different conditions of calculation
(see text). The dashed lines are obtained by adding the imaginary
potential (25). The data are taken from Ref. [37].
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breakup channels improves the agreement between theory and
experiment. The behavior of the cross section up to 60◦ is
nicely reproduced when 7Li and deuteron breakup channels
are introduced simultaneously. At large angles, however, the
CDCC calculation still overestimates the data. Calculations
have been performed by increasing the model space, but this
has a minor effect on the theoretical curve.

The disagreement at large angles is consistent with the
conclusion of Ref. [37] which suggests that the 7Li(d,t)6Li, i.e.,
the α transfer from 7Li to 6Li, is important in this angular range.
To simulate this effect, missing in the present calculation, I have
introduced a phenomenological imaginary part in the coupling
potentials (19). This is not intended to provide a fit of the
data, but rather to qualitatively assess the role of an additional
imaginary potential. I therefore modify the coupling potentials
(19) as

V Jπ
αα′ (R) −→ V Jπ

αα′ (R) + iWJπ
αα′ (R), (24)

and I choose the simple definition,

WJπ
αα′ (R) = NI V Jπ

αα′ (R), (25)

which means that I assume the proportionality between the real
and imaginary components. This approximation is often used
as a first guess of the imaginary potential.

In Fig. 10, I present the calculations obtained with NI = 0.1
and NI = 0.2 (dashed lines). Clearly, this goes in the right
direction. Except around θ = 150◦ where some overestimation
remains, the general agreement with the data is significantly
improved with NI = 0.2. Of course there is no a priori
justification of the choice NI = 0.2. However, this additional
imaginary part supports the suggestion that transfer channels
such as 7Li(d,t)6Li play an important role.

The present four-body model, which does not involve any
parameter fit (except, of course, in the optical potentials which
are determined from independent data), represents a first step
in the analysis of systems like 7Li + d. Even if it overestimates
the data at large angles, the inclusion of breakup channels in
7Li and in the deuteron is fundamental.

VI. EQUIVALENT POTENTIALS

As CDCC calculations often involve many channels, it
is desirable to determine equivalent potentials, which repro-
duce as closely as possible the CDCC cross sections. This
problem was addressed in several papers (see, for example,
Refs. [43–45]).

The formalism for scattering between spin zero nuclei can
be found in Ref. [43], for example. I generalize here the
theoretical framework when the spins are different from zero.
In that case, even elastic scattering involves scattering matrices
with dimension larger than one.

Let us denote as 
 the entrance channel in (14), i.e., the
values c1,c2 of the colliding nuclei. Equation (18) can be
written in a compact form as

(T − E)gα(ω) +
∑
α′∈


Vαα′gα′(ω) +
∑
α′ /∈


Vαα′gα′(ω) = 0, (26)

where I drop spin and parity indices. Index ω contains the (L,I )
values for the entrance channel 
. The number of ω values is

denoted as Nω. Equation (26) therefore represents Nω systems,
each of them involving N equations. Formally this system is
equivalent to the smaller system,

(T − E)gβ(ω) +
∑
β ′∈


V
eq
ββ ′ gβ ′(ω) = 0, (27)

where the equivalent potential VVV eq is now a matrix of size Nω.
Identifying Eqs. (26) and (27) provides

V
eq
ββ ′ = Vββ ′ + V

pol
ββ ′ , (28)

where the polarization potential V
pol
ββ ′ is given by the system,

∑
β ′∈


V
pol
ββ ′ gβ ′(ω) =

∑
β ′′ /∈


Vββ ′′ gβ ′′(ω). (29)

The wave functions gβ(ω) are easily determined by the R-matrix
method. Then the polarization potential is obtained from (29)
by matrix inversion. Equation (29) is an extension of the
simpler spin-zero system [43].

Of course, all potentials (V,V eq,V pol) depend on spin and
parity. To provide a spin-independent equivalent potential, an
average is performed [43] as

V eq(R) =
∑

JπL V
eq,Jπ
L,L′ (R) ωJπ

L (R)∑
JπL ωJπ

L (R)
, (30)

where the weight factor ωJπ
L (R) involves the scattering matrix

and the wave function as

ωJπ
L (R) = (2L + 1)

(
1 − ∣∣UJπ

11

∣∣2)∣∣gL
L(R)

∣∣2
. (31)

Again, Eqs. (30) and (31) are direct generalizations of simpler
systems involving spin-zero nuclei. Equation (30) provides
an equivalent single channel, and spin-independent, potential.
It simulates the role of the breakup channels. However, it is
approximative only, and the validity of this potential should
be checked by comparing the cross section with the original
CDCC cross section.

I present in Fig. 11 the equivalent potentials (30) for the
11Be + d system. The real part is weakly modified by the
breakup channels. Only at short distances R � 2 fm, the real
potential is affected. The situation is different for the imaginary
component. Breakup channels modify the depth by a factor of
two. At large distances, the imaginary potentials behave as ∼
exp(−R/a) with a ≈ 0.84 fm for the single-channel potential,
and a ≈ 0.97 fm for the full calculation. The effect of breakup
channels is therefore to modify the imaginary part of the
potential: The depth is larger, as well as the diffuseness of
the potential. Figure 11(b) is a test of the potential. I compare
the full CDCC calculations (dashed lines) with cross sections
using the optical potential (30) (solid lines). The agreement
is quite reasonable, which means that the optical potential of
Fig. 11(a) can be considered as a good approximation of the
CDCC results.

The equivalent potentials of the 7Li + d system are pre-
sented in Fig. 12. I consider three conditions: (1) the single-
channel calculation; (2) the full calculation without additional
imaginary part (NI = 0); in that case the potential is real
because the four optical potentials are real; (3) the full cal-
culation using the imaginary term (27) with NI = 0.2. As for
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FIG. 11. (a) 11Be + d equivalent potentials (30). (b) Elastic cross
sections (divided by the Rutherford cross sections) with potential (30)
(solid lines) and with the CDCC calculation (dashed lines). The single-
channel curves are in red, and the full calculations in black.

11Be + d, the main effect of the breakup channels is to modify
the imaginary component. At large distances, the asymptotic
form of the imaginary potential varies as ∼exp(−R/a) with
a ≈ 0.61 fm for conditions (2), and a ≈ 0.81 fm for conditions
(3) [as mentioned before, the imaginary potential vanishes in
conditions (1)]. The diffusenesses are smaller than in 11Be + d
because the 7Li nucleus is more compact than 11Be.

VII. CONCLUSION

The present work is a natural extension of the CDCC method
to reactions involving two nuclei with low breakup thresholds.
This situation is often met in deuteron-induced reactions on
exotic nuclei. A typical example is 11Be + d, where 11Be is
bound by 0.5 MeV only. A challenge for this approach is
to deal with large channel numbers. Including pseudostates
in both nuclei leads to calculations with many channels. To
solve the coupled-channel system, and to derive the scattering
matrices, I use the R-matrix formalism [23] associated with
Lagrange functions as a basis [22]. This method provides
accurate solutions, even for large systems and for closed
channels. An important reduction of the computer times is
obtained by using a propagation technique, where the radial
interval [0,a] is divided in intervals involving smaller numbers
of basis functions (see Ref. [24] for details).
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FIG. 12. See caption of Fig. 11 for the 7Li + d system. Results
with the imaginary potential (25) (using NI = 0.2) are also shown.
Notice that the imaginary potential for the single-channel calculation
is exactly zero.

I have first presented a test calculation on the 4α system. The
comparison with other calculations available in the literature
provides a strong test of the coupling potentials. I have shown
that bound-state calculations require large angular momenta
and pseudostate energies in the α + α system.

The first results on 11Be + d obtained in [12] were com-
plemented by the introduction of core excitation in 10Be.
As already observed in 11Be + p [35], core excitation has
a weak effect on the elastic scattering and breakup cross
sections. In both conditions, the binding energy and the rms
radius of the ground state are similar. Most likely, elastic
scattering is more sensitive to these properties than to the
details of the wave functions. In contrast, breakup channels are
fundamental to accurately reproduce the elastic scattering data.
A single-channel approach overestimates the data by about
30%. It would be interesting to have data at larger angles and
at different energies to further test the precision of the model.

The 7Li + d reaction is another good candidate for a four-
body model. I have shown that single-channel calculations
fail to reproduce experiment. When breakup channels are
introduced, the data up to θ ≈ 60◦ can be nicely reproduced.
However, transfer channels such as 7Li(d,t)6Li, are missing in
the model. As an exploratory study, I introduced an additional
imaginary part in the potential, and I showed that a fair
agreement with experiment can be obtained.
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The effect of breakup channels can be seen on the equivalent
potentials. For 11Be + d as well as for 7Li + d, the main
effect is to increase the imaginary part of the potential. This
is consistent with the picture of a stronger absorption from
breakup channels.

The main advantage of the present model is its predictive
power. Optical potentials between the fragments are known in
most cases. Then, the cross sections are computed without any
parameter fitting. A possible extension of the model would
be to use the wave functions in DWBA analyses. Nucleon
transfer (d,p) or (d,n) reactions are often used to investigate
the structure of exotic nuclei. Such calculations represent a
challenge for future scattering studies.
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APPENDIX A: TWO-BODY MATRIX ELEMENTS

In this Appendix, I discuss the matrix elements (13) in-
volved in two-body systems. For the radial basis I use Lagrange
functions [22] defined from orthogonal polynomials. A set of
N functions fn(r) is given by

fn(r) = 1√
h

Fn(r/h),

Fn(u) = (−1)n
u

un

(un)1/2 LN (u)

u − un

exp(−u/2), (A1)

where LN (u) is the Laguerre polynomial of order N and un its
roots. In this definition, h is a scaling parameter which can be
adapted to the typical dimensions of the system. At the Gauss
approximation, functions (A1) are orthogonal,

〈fn|fn′ 〉 ≈ δnn′ , (A2)

and the matrix elements of the kinetic energy are known
analytically for various types of Lagrange meshes.

Let me discuss the matrix elements of potentials (7) by using
the addition theorem,

Pλ(cos θ ) = 4π (−1)λλ̂−1[Yλ(
) ⊗ Yλ(
0)]0, (A3)

where λ̂ = (2λ + 1)1/2, and where 
 and 
0 are the angles
associated with the relative coordinate, and with the internal
coordinate of the deformed nucleus, respectively. Then, a
matrix element of potential (7) between basis functions (11)
can be factorized as

〈
fnϕ

c
γ

∣∣V ∣∣fn′ϕc′
γ ′

〉 = 4π
∑

λ

Aλ
γ c,γ ′c′

∫
fn(r)vλ(r)fn′(r)dr.

(A4)

Again, the use of Lagrange functions is very efficient to
compute the radial part. At the Gauss approximation, the

integral reads∫
fn(r)vλ(r)fn′(r)dr ≈ vλ(hun)δnn′ . (A5)

In Eq. (A4), some angular-momentum algebra provides

Aλ
γc,γ ′c′ = (−1)I

′
0+j0+j Î0ĵ0

{
I0 j0 j

j ′
0 I ′

0 λ

}
C(I0,λ,I ′

0)

×C(�0,λ,�′
0)F (�0,s0,j0,�

′
0,s

′
0,j

′
0,λ), (A6)

where I use the notations,

C(�1,�2,�3) =
[
(2�2 + 1)(2�3 + 1)

4π (2�1 + 1)

]1/2

〈�2 0 �3 0|�10〉, (A7)

and

F (�0,s0,j0,�
′
0,s

′
0,j

′
0,λ)

= δs0s
′
0
(−1)�0+s0+j ′

0+λ�̂0ĵ
′
0

{
j0 �0 s0

�′
0 j ′

0 λ

}
. (A8)

Let me consider the matrix elements of the electric operator of
order λ, defined as

Mλμ(rrr) = eZeffr
λY

μ
λ (
r ), (A9)

where the effective charge is

Zeff = Z1

(
−A2

A

)λ

+ Z2

(
A1

A

)λ

. (A10)

A reduced matrix elements between basis function (11) is given
by

〈
fnϕ

c
γ

∥∥Mλ
∥∥fn′ϕc′

γ ′
〉 = eZeffB

λ
γc,γ ′c′

∫
fn(r)rλfn′ (r)dr,

(A11)

where the radial matrix element is, at the Gauss approximation,∫
fn(r)rλfn′ (r)dr ≈ (hun)λδnn′ . (A12)

The angular part is given by

Bλ
γc,γ ′c′ = (−1)I0+j0−j+I ′

0+j ′
0−j ′

C(�0,λ,�′
0)

×F (�0,s0,j0,�
′
0,s

′
0,j

′
0,λ)F (j0,I0,j,j

′
0,I

′
0,j

′,λ),

(A13)

which involves coefficients defined in (A7) and (A8).

APPENDIX B: CALCULATION OF THE
COUPLING POTENTIALS

In this Appendix, I provide some technical details about
the calculation of the coupling potentials (19). In the first step,
each fragment-fragment optical potential V 0

ij (RRR + αrrr1 + βr2r2r2)
of Eq. (2) is expanded in multipoles as

V 0
ij (RRR + αrrr1 + βr2r2r2) =

∑
λλ1λ2

(−1)λ
[
Yλ

λ1λ2
(
1,
2) ⊗ Yλ(
R)

]0

×Vλλ1λ2 (R,r1,r2), (B1)
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where α and β are constants, and where

Y
λμ
λ1λ2

(
1,
2) = [
Yλ1 (
1) ⊗ Yλ2 (
2)

]λμ
. (B2)

If I choose the z axis along RRR, Eq. (B1) becomes

V 0
ij (RRR+αrrr1+βr2r2r2) = 1√

4π

∑
λλ1λ2

Yλ0
λ1λ2

(
1,
2)Vλλ1λ2 (R,r1,r2).

(B3)

Inverting this definition provides the multipole components of
the potential,

Vλλ1λ2 (R,r1,r2) =
√

4π

∫ (
Yλ0

λ1λ2
(
1,
2)

)∗
V 0

ij (RRR + αrrr1

+βr2r2r2)d
1d
2. (B4)

A simple calculation gives

Vλλ1λ2 (R,r1,r2) = (4π )3/2
∑
μ�0

(2 − δμ0)〈λ1 μλ2 − μ|λ 0〉

×
∫

Y
μ
λ1

(θ1,0) Y
−μ
λ2

(θ2,0) cos(μϕ)

×V 0
ij (RRR + αrrr1 + βr2r2r2) d(cos θ1) d(cos θ2)dϕ,

(B5)

where ϕ is associated with the angle between rrr1 and rrr2, and
varies in the interval [0,π ]. In this definition, λ + λ1 + λ2

must be even. These integrals involve three quadratures which
are performed numerically. With expansion (B1), the matrix
element (19) can be written as

V Jπ
αα′ (R) = (−1)I

′+L+J Î L̂
∑
λλ1λ2

λ̂−1

{
I L J

L′ I ′ λ

}
C(L,λ,L′)

×
∑

γ1γ2γ
′
1γ

′
2

IR(R; λ,λ1,λ2,j1,j2,j
′
1,j

′
2,γ1,γ2,γ

′
1,γ

′
2)

×Iθ (λ,λ1,λ2,j1,j2,j
′
1,j

′
2,γ1,γ2,γ

′
1,γ

′
2), (B6)

where I use the general definition (10) for the two-body wave
function. The radial term IR is given by

IR(R) =
∫

uj1
γ1

(r1)uj2
γ2

(r2)Vλλ1λ2 (R,r1,r2)u
j ′

1

γ ′
1
(r1)u

j ′
2

γ ′
2
(r2)dr1dr2,

(B7)

where I ignore indices of parity and of excitation level. These
quadratures are simple with Lagrange functions [22].

The angular component in (B6) is the matrix element,

Iθ = 〈[
ϕj1

γ1
⊗ ϕj2

γ2

]I∥∥[
Yλ1 (
1) ⊗ Yλ2 (
2)

]λ∥∥[
ϕ

j ′
1

γ ′
1
⊗ ϕ

j ′
2

γ ′
2

]I ′ 〉
,

(B8)

and reads

Iθ = ĵ1ĵ2λ̂Î ′

⎧⎪⎨
⎪⎩

j1 j2 I

λ1 λ2 λ

j ′
1 j ′

2 I ′

⎫⎪⎬
⎪⎭

〈
ϕj1

γ1

∥∥Yλ1

∥∥ϕ
j ′

1

γ ′
1

〉〈
ϕj2

γ2

∥∥Yλ2

∥∥ϕ
j ′

2

γ ′
2

〉
.

(B9)

Each matrix element is then given by〈
ϕj

γ

∥∥Yλ

∥∥ϕ
j ′
γ ′

〉
= 〈[

�I0 ⊗ [
Y�0 ⊗ �s0

]j0
]j∥∥Yλ

∥∥[
�I ′

0
⊗ [

Y�′
0
⊗ �s ′

0

]j ′
0
]j ′ 〉

,

(B10)

and can be written as

〈ϕj
γ ‖Yλ‖ϕj ′

γ ′ 〉 = δI0I
′
0
δs0s

′
0
F (j0,I0,j,j

′
0,I

′
0,j

′,λ)

×F (�0,s0,j0,�
′
0,s

′
0,j

′
0,λ)C(�0,λ,�′

0), (B11)

where I have used definitions (A6) and (A7). The calculation
of the coupling potentials (19) can therefore be divided in
several steps, each of which being fairly simple. Of course,
these expressions strongly simplify in the standard case with no
core excitation (I0 = I ′

0 = 0). Global tests can be performed on
the Coulomb potential because, at large distances, the multi-
pole expansion (B1) is known analytically. Then, the coupling
Coulomb potentials are defined from matrix elements of the
multipole operators in nuclei 1 and 2.

[1] G. H. Rawitscher, Phys. Rev. C 9, 2210 (1974).
[2] M. Kamimura, M. Yahiro, Y. Iseri, S. Sakuragi, H. Kameyama,

and M. Kawai, Prog. Theor. Phys. Suppl. 89, 1 (1986).
[3] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher,

and M. Yahiro, Phys. Rep. 154, 125 (1987).
[4] M. Yahiro, K. Ogata, T. Matsumoto, and K. Minomo, Prog.

Theor. Exp. Phys. 2012, 01A206 (2012).
[5] T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S.

Chiba, and M. Yahiro, Phys. Rev. C 70, 061601 (2004).
[6] P. Descouvemont, T. Druet, L. F. Canto, and M. S. Hussein,

Phys. Rev. C 91, 024606 (2015).
[7] J. P. Fernández-García, M. Cubero, L. Acosta, M. Alcorta, M.

A. G. Alvarez, M. J. G. Borge, L. Buchmann, C. A. Diget, H.
A. Falou, B. Fulton, H. O. U. Fynbo, D. Galaviz, J. Gómez-
Camacho, R. Kanungo, J. A. Lay, M. Madurga, I. Martel, A.
M. Moro, I. Mukha, T. Nilsson, M. Rodríguez-Gallardo, A.

M. Sánchez-Benítez, A. Shotter, O. Tengblad, and P. Walden,
Phys. Rev. C 92, 044608 (2015).

[8] R. Kanungo, A. Gallant, M. Uchida, C. Andreoiu, R. Austin,
D. Bandyopadhyay, G. Ball, J. Becker, A. Boston, H. Boston,
B. Brown, L. Buchmann, S. Colosimo, R. Clark, D. Cline, D.
Cross, H. Dare, B. Davids, T. Drake, M. Djongolov, P. Finlay,
N. Galinski, P. Garrett, A. Garnsworthy, K. Green, S. Grist,
G. Hackman, L. Harkness, A. Hayes, D. Howell, A. Hurst, H.
Jeppesen, K. Leach, A. Macchiavelli, D. Oxley, C. Pearson, B.
Pietras, A. Phillips, S. Rigby, C. Ruiz, G. Ruprecht, F. Sarazin,
M. Schumaker, A. Shotter, C. Sumitharachchi, C. Svensson, I.
Tanihata, S. Triambak, C. Unsworth, S. Williams, P. Walden, J.
Wong, and C. Wu, Phys. Lett. B 682, 391 (2010).

[9] Y. Suzuki and M. Takahashi, Phys. Rev. C 65, 064318
(2002).

[10] N. K. Timofeyuk, Phys. Rev. C 78, 054314 (2008).

064607-11

https://doi.org/10.1103/PhysRevC.9.2210
https://doi.org/10.1103/PhysRevC.9.2210
https://doi.org/10.1103/PhysRevC.9.2210
https://doi.org/10.1103/PhysRevC.9.2210
https://doi.org/10.1143/PTPS.89.1
https://doi.org/10.1143/PTPS.89.1
https://doi.org/10.1143/PTPS.89.1
https://doi.org/10.1143/PTPS.89.1
https://doi.org/10.1016/0370-1573(87)90094-9
https://doi.org/10.1016/0370-1573(87)90094-9
https://doi.org/10.1016/0370-1573(87)90094-9
https://doi.org/10.1016/0370-1573(87)90094-9
https://doi.org/10.1093/ptep/pts008
https://doi.org/10.1093/ptep/pts008
https://doi.org/10.1093/ptep/pts008
https://doi.org/10.1093/ptep/pts008
https://doi.org/10.1103/PhysRevC.70.061601
https://doi.org/10.1103/PhysRevC.70.061601
https://doi.org/10.1103/PhysRevC.70.061601
https://doi.org/10.1103/PhysRevC.70.061601
https://doi.org/10.1103/PhysRevC.91.024606
https://doi.org/10.1103/PhysRevC.91.024606
https://doi.org/10.1103/PhysRevC.91.024606
https://doi.org/10.1103/PhysRevC.91.024606
https://doi.org/10.1103/PhysRevC.92.044608
https://doi.org/10.1103/PhysRevC.92.044608
https://doi.org/10.1103/PhysRevC.92.044608
https://doi.org/10.1103/PhysRevC.92.044608
https://doi.org/10.1016/j.physletb.2009.11.025
https://doi.org/10.1016/j.physletb.2009.11.025
https://doi.org/10.1016/j.physletb.2009.11.025
https://doi.org/10.1016/j.physletb.2009.11.025
https://doi.org/10.1103/PhysRevC.65.064318
https://doi.org/10.1103/PhysRevC.65.064318
https://doi.org/10.1103/PhysRevC.65.064318
https://doi.org/10.1103/PhysRevC.65.064318
https://doi.org/10.1103/PhysRevC.78.054314
https://doi.org/10.1103/PhysRevC.78.054314
https://doi.org/10.1103/PhysRevC.78.054314
https://doi.org/10.1103/PhysRevC.78.054314


P. DESCOUVEMONT PHYSICAL REVIEW C 97, 064607 (2018)

[11] J. Chen, J. L. Lou, Y. L. Ye, J. Rangel, A. M. Moro, D. Y. Pang, Z.
H. Li, Y. C. Ge, Q. T. Li, J. Li, W. Jiang, Y. L. Sun, H. L. Zang, Y.
Zhang, N. Aoi, E. Ideguchi, H. J. Ong, J. Lee, J. Wu, H. N. Liu,
C. Wen, Y. Ayyad, K. Hatanaka, T. D. Tran, T. Yamamoto, M.
Tanaka, T. Suzuki, and T. T. Nguyen, Phys. Rev. C 94, 064620
(2016).

[12] P. Descouvemont, Phys. Lett. B 772, 1 (2017).
[13] Y. Ogawa, K. Arai, Y. Suzuki, and K. Varga, Nucl. Phys. A 673,

122 (2000).
[14] R. L. Varner, W. J. Thompson, T. L. McAbee, E. J. Ludwig, and

T. B. Clegg, Phys. Rep. 201, 57 (1991).
[15] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231

(2003).
[16] A. Di Pietro, V. Scuderi, A. M. Moro, L. Acosta, F. Amorini,

M. J. G. Borge, P. Figuera, M. Fisichella, L. M. Fraile, J.
Gomez-Camacho, H. Jeppesen, M. Lattuada, I. Martel, M. Milin,
A. Musumarra, M. Papa, M. G. Pellegriti, F. Perez-Bernal, R.
Raabe, G. Randisi, F. Rizzo, G. Scalia, O. Tengblad, D. Torresi,
A. M. Vidal, D. Voulot, F. Wenander, and M. Zadro, Phys. Rev.
C 85, 054607 (2012).

[17] R. de Diego, R. Crespo, and A. M. Moro, Phys. Rev. C 95,
044611 (2017).

[18] J. A. Lay, R. de Diego, R. Crespo, A. M. Moro, J. M. Arias, and
R. C. Johnson, Phys. Rev. C 94, 021602 (2016).

[19] N. C. Summers, F. M. Nunes, and I. J. Thompson, Phys. Rev. C
74, 014606 (2006).

[20] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
[21] Y. Sakuragi, M. Yahiro, and M. Kamimura, Prog. Theor. Phys.

Suppl. 89, 136 (1986).
[22] D. Baye, Phys. Rep. 565, 1 (2015).
[23] P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 036301

(2010).
[24] P. Descouvemont, Comput. Phys. Commun. 200, 199 (2016).
[25] A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
[26] P. Burke, R-Matrix Theory of Atomic Collisions. Application to

Atomic, Molecular and Optical Processes, Springer Series on
Atomic, Optical, and Plasma Physics, Vol. 61 (Springer, Berlin,
Heidelberg, 2011).

[27] S. Ali and A. R. Bodmer, Nucl. Phys. 80, 99 (1966).
[28] E. M. Tursunov, D. Baye, and P. Descouvemont, Nucl. Phys. A

723, 365 (2003).
[29] W. Horiuchi, private communication.
[30] P. Capel, G. Goldstein, and D. Baye, Phys. Rev. C 70, 064605

(2004).
[31] N. C. Summers, S. D. Pain, N. A. Orr, W. N. Catford, J.-C.

Angélique, N. I. Ashwood, V. Bouchat, N. M. Clarke, N. Curtis,

M. Freer, B. R. Fulton, F. Hanappe, M. Labiche, J. L. Lecouey,
R. C. Lemmon, D. Mahboub, A. Ninane, G. Normand, F. M.
Nunes, N. Soić, L. Stuttge, C. N. Timis, I. J. Thompson, J. S.
Winfield, and V. Ziman, Phys. Lett. B 650, 124 (2007).

[32] E. Kwan, C. Y. Wu, N. C. Summers, G. Hackman, T. E. Drake, C.
Andreoiu, R. Ashley, G. C. Ball, P. C. Bender, A. J. Boston, H. C.
Boston, A. Chester, A. Close, D. Cline, D. S. Cross, R. Dunlop,
A. Finlay, A. B. Garnsworthy, A. B. Hayes, A. T. Laffoley, T.
Nano, P. Navrátil, C. J. Pearson, J. Pore, S. Quaglioni, C. E.
Svensson, K. Starosta, I. J. Thompson, P. Voss, S. J. Williams,
and Z. Wang, Phys. Lett. B 732, 210 (2014).

[33] W. Nörtershäuser, D. Tiedemann, M. Žáková, Z. Andjelkovic,
K. Blaum, M. L. Bissell, R. Cazan, G. W. F. Drake, C. Geppert,
M. Kowalska, J. Krämer, A. Krieger, R. Neugart, R. Sánchez, F.
Schmidt-Kaler, Z.-C. Yan, D. T. Yordanov, and C. Zimmermann,
Phys. Rev. Lett. 102, 062503 (2009).

[34] D. R. Thompson, M. LeMere, and Y. C. Tang, Nucl. Phys. A
286, 53 (1977).

[35] J. Chen, J. L. Lou, Y. L. Ye, Z. H. Li, Y. C. Ge, Q. T. Li, J. Li,
W. Jiang, Y. L. Sun, H. L. Zang, N. Aoi, E. Ideguchi, H. J. Ong,
Y. Ayyad, K. Hatanaka, D. T. Tran, T. Yamamoto, M. Tanaka, T.
Suzuki, N. T. Tho, J. Rangel, A. M. Moro, D. Y. Pang, J. Lee, J.
Wu, H. N. Liu, and C. Wen, Phys. Rev. C 93, 034623 (2016).

[36] M. Rhoades-Brown, M. H. Macfarlane, and S. C. Pieper,
Phys. Rev. C 21, 2417 (1980).

[37] N. Burtebayev, J. T. Burtebayeva, A. Duisebayev, Z. K. Ker-
imkulov, M. Nassurlla, T. Zholdybayev, S. V. Artemov, A. A.
Karakhodzhayev, U. S. Salikhbayev, S. B. Sakuta, S. Kliczewski,
E. Piasecki, K. Rusek, R. Siudak, A. Trzcinska, M. Wolinska-
Cichocka, and A. Amar, Acta Phys. Pol. B 46, 1037 (2015).

[38] B. Buck and A. C. Merchant, J. Phys. G 14, L211 (1988).
[39] S. Ali, A. A. Z. Ahmad, and N. Ferdous, Rev. Mod. Phys. 57,

923 (1985).
[40] H. S. Sherif, Phys. Rev. C 19, 1649 (1979).
[41] A. Pakou, F. Cappuzzello, N. Keeley, L. Acosta, C. Agodi, X.

Aslanoglou, S. Calabrese, D. Carbone, M. Cavallaro, A. Foti, G.
Marquínez-Durán, I. Martel, M. Mazzocco, C. Parascandolo, D.
Pierroutsakou, K. Rusek, O. Sgouros, V. Soukeras, E. Strano,
V. A. B. Zagatto, and K. Zerva, Phys. Rev. C 96, 034615
(2017).

[42] R. Kankowsky, J. C. Fritz, K. Kilian, A. Neufert, and D. Fick,
Nucl. Phys. A 263, 29 (1976).

[43] I. Thompson, M. Nagarajan, J. Lilley, and M. Smithson,
Nucl. Phys. A 505, 84 (1989).

[44] R. S. Mackintosh and N. Keeley, Phys. Rev. C 70, 024604 (2004).
[45] J. Lubian and F. M. Nunes, J. Phys. G 34, 513 (2007).

064607-12

https://doi.org/10.1103/PhysRevC.94.064620
https://doi.org/10.1103/PhysRevC.94.064620
https://doi.org/10.1103/PhysRevC.94.064620
https://doi.org/10.1103/PhysRevC.94.064620
https://doi.org/10.1016/j.physletb.2017.06.024
https://doi.org/10.1016/j.physletb.2017.06.024
https://doi.org/10.1016/j.physletb.2017.06.024
https://doi.org/10.1016/j.physletb.2017.06.024
https://doi.org/10.1016/S0375-9474(00)00133-0
https://doi.org/10.1016/S0375-9474(00)00133-0
https://doi.org/10.1016/S0375-9474(00)00133-0
https://doi.org/10.1016/S0375-9474(00)00133-0
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1103/PhysRevC.85.054607
https://doi.org/10.1103/PhysRevC.85.054607
https://doi.org/10.1103/PhysRevC.85.054607
https://doi.org/10.1103/PhysRevC.85.054607
https://doi.org/10.1103/PhysRevC.95.044611
https://doi.org/10.1103/PhysRevC.95.044611
https://doi.org/10.1103/PhysRevC.95.044611
https://doi.org/10.1103/PhysRevC.95.044611
https://doi.org/10.1103/PhysRevC.94.021602
https://doi.org/10.1103/PhysRevC.94.021602
https://doi.org/10.1103/PhysRevC.94.021602
https://doi.org/10.1103/PhysRevC.94.021602
https://doi.org/10.1103/PhysRevC.74.014606
https://doi.org/10.1103/PhysRevC.74.014606
https://doi.org/10.1103/PhysRevC.74.014606
https://doi.org/10.1103/PhysRevC.74.014606
https://doi.org/10.1016/0167-7977(88)90005-6
https://doi.org/10.1016/0167-7977(88)90005-6
https://doi.org/10.1016/0167-7977(88)90005-6
https://doi.org/10.1016/0167-7977(88)90005-6
https://doi.org/10.1143/PTPS.89.136
https://doi.org/10.1143/PTPS.89.136
https://doi.org/10.1143/PTPS.89.136
https://doi.org/10.1143/PTPS.89.136
https://doi.org/10.1016/j.physrep.2014.11.006
https://doi.org/10.1016/j.physrep.2014.11.006
https://doi.org/10.1016/j.physrep.2014.11.006
https://doi.org/10.1016/j.physrep.2014.11.006
https://doi.org/10.1088/0034-4885/73/3/036301
https://doi.org/10.1088/0034-4885/73/3/036301
https://doi.org/10.1088/0034-4885/73/3/036301
https://doi.org/10.1088/0034-4885/73/3/036301
https://doi.org/10.1016/j.cpc.2015.10.015
https://doi.org/10.1016/j.cpc.2015.10.015
https://doi.org/10.1016/j.cpc.2015.10.015
https://doi.org/10.1016/j.cpc.2015.10.015
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1016/0029-5582(66)90829-7
https://doi.org/10.1016/0029-5582(66)90829-7
https://doi.org/10.1016/0029-5582(66)90829-7
https://doi.org/10.1016/0029-5582(66)90829-7
https://doi.org/10.1016/S0375-9474(03)01323-X
https://doi.org/10.1016/S0375-9474(03)01323-X
https://doi.org/10.1016/S0375-9474(03)01323-X
https://doi.org/10.1016/S0375-9474(03)01323-X
https://doi.org/10.1103/PhysRevC.70.064605
https://doi.org/10.1103/PhysRevC.70.064605
https://doi.org/10.1103/PhysRevC.70.064605
https://doi.org/10.1103/PhysRevC.70.064605
https://doi.org/10.1016/j.physletb.2007.05.003
https://doi.org/10.1016/j.physletb.2007.05.003
https://doi.org/10.1016/j.physletb.2007.05.003
https://doi.org/10.1016/j.physletb.2007.05.003
https://doi.org/10.1016/j.physletb.2014.03.049
https://doi.org/10.1016/j.physletb.2014.03.049
https://doi.org/10.1016/j.physletb.2014.03.049
https://doi.org/10.1016/j.physletb.2014.03.049
https://doi.org/10.1103/PhysRevLett.102.062503
https://doi.org/10.1103/PhysRevLett.102.062503
https://doi.org/10.1103/PhysRevLett.102.062503
https://doi.org/10.1103/PhysRevLett.102.062503
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1103/PhysRevC.93.034623
https://doi.org/10.1103/PhysRevC.93.034623
https://doi.org/10.1103/PhysRevC.93.034623
https://doi.org/10.1103/PhysRevC.93.034623
https://doi.org/10.1103/PhysRevC.21.2417
https://doi.org/10.1103/PhysRevC.21.2417
https://doi.org/10.1103/PhysRevC.21.2417
https://doi.org/10.1103/PhysRevC.21.2417
https://doi.org/10.5506/APhysPolB.46.1037
https://doi.org/10.5506/APhysPolB.46.1037
https://doi.org/10.5506/APhysPolB.46.1037
https://doi.org/10.5506/APhysPolB.46.1037
https://doi.org/10.1088/0305-4616/14/10/002
https://doi.org/10.1088/0305-4616/14/10/002
https://doi.org/10.1088/0305-4616/14/10/002
https://doi.org/10.1088/0305-4616/14/10/002
https://doi.org/10.1103/RevModPhys.57.923
https://doi.org/10.1103/RevModPhys.57.923
https://doi.org/10.1103/RevModPhys.57.923
https://doi.org/10.1103/RevModPhys.57.923
https://doi.org/10.1103/PhysRevC.19.1649
https://doi.org/10.1103/PhysRevC.19.1649
https://doi.org/10.1103/PhysRevC.19.1649
https://doi.org/10.1103/PhysRevC.19.1649
https://doi.org/10.1103/PhysRevC.96.034615
https://doi.org/10.1103/PhysRevC.96.034615
https://doi.org/10.1103/PhysRevC.96.034615
https://doi.org/10.1103/PhysRevC.96.034615
https://doi.org/10.1016/0375-9474(76)90181-0
https://doi.org/10.1016/0375-9474(76)90181-0
https://doi.org/10.1016/0375-9474(76)90181-0
https://doi.org/10.1016/0375-9474(76)90181-0
https://doi.org/10.1016/0375-9474(89)90417-X
https://doi.org/10.1016/0375-9474(89)90417-X
https://doi.org/10.1016/0375-9474(89)90417-X
https://doi.org/10.1016/0375-9474(89)90417-X
https://doi.org/10.1103/PhysRevC.70.024604
https://doi.org/10.1103/PhysRevC.70.024604
https://doi.org/10.1103/PhysRevC.70.024604
https://doi.org/10.1103/PhysRevC.70.024604
https://doi.org/10.1088/0954-3899/34/3/009
https://doi.org/10.1088/0954-3899/34/3/009
https://doi.org/10.1088/0954-3899/34/3/009
https://doi.org/10.1088/0954-3899/34/3/009



