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Two- and three-cluster decays of light nuclei within a hyperspherical harmonics approach
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We consider a set of three-cluster systems (4He, 7Li, 7Be, 8Be, 10Be) within a microscopic model which
involves hyperspherical harmonics to represent intercluster motion. We selected three-cluster systems which
have at least one binary channel. Our aim is to study whether hyperspherical harmonics are able, and under
what conditions, to describe two-body channel(s) (nondemocratic motion) or if they are suitable for describing
the three-cluster continuum only (democratic motion). It is demonstrated that a rather restricted number of
hyperspherical harmonics allows us to describe bound states and scattering states in the two-body continuum for
a three-cluster system.
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I. INTRODUCTION

The hyperspherical harmonics (HH) method is a powerful
tool for solving many-body problems in different branches
of quantum physics, namely atomic, molecular, and nuclear
physics. In the orthodox realization of the method, a many-
body problem is reduced to a finite or an infinite set of coupled
channel problems, representing the many-body Schrödinger
equation as a set of coupled one-dimensional differential equa-
tions. Efficiency of the method has been repeatedly demon-
strated by numerous investigations of few-body problems.
Besides, this method has been constantly advanced by creating
a more reliable and universal technique for description of the
discrete and continuous spectra of many-body systems.

One of the directions in the development of the HH method
is to use a full set of oscillator functions, which are labeled by
quantum numbers of the hyperspherical harmonics method.
We will call them hyperspherical oscillator functions.

In the present paper, we study different channels of decay
of three-cluster systems and the ability of the hyperspherical
oscillator functions to describe democratic and nondemocratic
decay channels. In the literature (see, for instance, Refs. [1–3])
a democratic decay is a synonym for three-body decay or full
disintegration of a three-body system. This type of the decay
is also called “true” [4] or “truly” [5] three-body scattering. In
contrast to the democratic decay, a nondemocratic decay refers
to a decay of a compound system into two fragments provided
that one of the fragments is represented by a bound state
of a two-body subsystem. In what follows we will consider
only the dominant three-body configurations of light atomic
nuclei. Note that an oscillator basis is a conventional set of
functions which are involved in many nuclear models, such as
the traditional many-body shell model, the resonating group
method, the ab initio no-core shell model, and many others.
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One of the advantages of the basis of hyperspherical
oscillator functions is that it allows one to circumvent the
problems enforced by the Pauli principle. The basis simplifies
numerical solving of coupled channel differential equations by
reducing them to an algebraic matrix form.

Let us consider the following nuclei and appropriate (dom-
inant) three-cluster configurations (3CC), as well as binary
decay channels (2CC) (see Table I). In Table I we indicated only
those two-cluster decay channels of the three-cluster systems
which have a bound state in the corresponding two-cluster
subsystem. For instance, for 7Li we take into account channels
α + t and 6Li + n, and we omit channel 5He + d because there
are no bound states in the 5He subsystem. In other words,
we disregard those binary channels whose threshold energy
exceeds the three-cluster threshold. In Table I we also made
references to our papers where the corresponding nucleus has
been investigated.

We are going to study the eigenspectrum of a microscopic
Hamiltonian of the above-mentioned three-cluster systems. For
this purpose we will construct matrix elements of the Hamil-
tonian between many-particle oscillator functions. Diagonal-
ization of the matrix yields eigenvalues and the corresponding
eigenfunctions. Some of the obtained eigenvalues represent
bound states of the compound system; however, the largest
part of the eigenvalues are discretized states in the two- or
three-cluster continuum. The number of the eigenvalues and
their density in the energy range in question depend on the
number of oscillator functions involved in calculation and
naturally on the properties of the nucleus under consideration.

To formulate more clearly our aim, let us consider the
experimental spectrum of 7Li (see Ref. [9]), one of the nuclei
we plan to investigate. In Fig. 1 we display not only the
well-known bound and resonance states in 7Li, but also the
energy of the lowest two-body decay thresholds (4He + 3H
and 6Li + n) and one three-body decay threshold (α + d + n).
Within the present paper we will study if the hyperspherical
harmonics are able to reproduce the bound states of 7Li,
which have the dominant two-cluster structure 4He + 3H, and
how many hyperspherical harmonic have to be involved in
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TABLE I. List of nuclei, their dominant three-cluster configura-
tions, and dominant two-body decay channels.

Nucleus 3CC 2CC 1 2CC 2 2CC 3 Paper

4He d + p + n 3H + p 3He + n d + d
7Li α + d + n α + t 6Li + n [6]
7Be α + d + p α + 3He 6Li + p [7]
8Be α + 3H + p 7Li + p α + α
10Be α + α + 2n 6He + α 8Be + 2n [8]

calculations to achieve this goal. It is also very interesting
to examine whether hyperspherical harmonics allow one to
study a continuous spectrum between 4He + 3H and 6Li + n
thresholds, and also between two-body 6Li + n and three-body
α + d + n thresholds. If so, then what is the required number
of hyperspherical harmonics to solve this problem?

The problems we are going to tackle in this paper have been
addressed in other ways in [10–13] within the so-called the
hyperspherical adiabatic approximation. This approximation
works perfectly for a system of three structureless particles
and allows one to determine correctly effective potentials for
a three-body system and the energies of two- and three-body
decay thresholds. However, this approximation is not suitable
for three interacting clusters, as the Pauli principle generates
nonlocal and energy-dependent potentials.

The method that we employ was formulated in Ref. [14]. It
was successfully applied to the study of bound and resonance
states of the Borromean nuclei (such as 6He, 9Be, 12C) and
resonance states of nuclei with prominent three-cluster features
(such as 5H, 6Be, 9B). All these nuclei were considered as
three-cluster systems. The present paper may be considered
as a step forward in creating a unified microscopic model for
describing both binary and three-cluster channels.

In this paper we will study wave functions of the deeply-
and weakly-bound states with respect to two- and three-cluster
thresholds. For the weakly bound states, we will demonstrate
that a binary structure is revealed in the three-cluster wave
function of the pseudobound states whose energy is close to
the corresponding binary decay threshold. Despite the fact that
to obtain convergent results for the energies of resonance states
lying between the lowest binary decay threshold and three-
cluster decay threshold of a three-cluster system one needs a

FIG. 1. Experimental spectrum of 7Li.

large basis of hyperspherical harmonics, it is possible to see
the evidence of two-cluster structure in the three-cluster wave
function of a pseudobound state, but with a rather restricted set
of hyperspherical harmonics.

This article is organized as follows. In Sec. II we present
a brief review of a microscopic three-cluster model which
exploits the hyperspherical harmonics. For this model we will
use an abbreviation AMHHB which means the algebraic model
of three-cluster systems involved the hyperspherical harmonics
basis. The focus of this section is the asymptotic form of three-
cluster wave functions describing two- and three-cluster decay
of a compound system. In Sec. III, we analyze convergence of
the spectrum of three-cluster systems and study peculiarities of
wave functions of bound and pseudobound states in different
asymptotic regimes. Brief conclusions are presented in Sec. IV.

II. METHOD

First of all we need to introduce coordinates which deter-
mine relative position of clusters in coordinate space. The most
suitable variables we believe are the Jacobi vectors x and y. One
can introduce three different sets (or different trees) of Jacobi
vectors. Within the Faddeev formalism for three particles or
within coupled channel formalism for three clusters, one has
to use all three sets of Jacobi vectors. In what follows we stick
to one tree of the Jacobi vectors. We will discuss latter why
only one set of the Jacobi vectors is sufficient for our purposes
in the hyperspherical harmonics formalism.

We start the model formulation with an explicit form of
wave function for a system consisting of three s clusters:

�E,LML
= Â{

�1(A1)�2(A2)�3(A3)ψE,LML
(x,y)

}
. (1)

This is a traditional form of a wave function of the resonating
group method for systems, when at least one cluster consists
of two or more nucleons. The internal structure of clusters
(α = 1,2,3) is described by the antisymmetric and transla-
tionally invariant wave functions �α(Aα). Function �α(Aα)
is a wave function of the many-particle shell model with the
most compact configuration of nucleons. These functions are
selected in such a way as to provide in the most economical
manner a fairly good description of the main internal properties
(bound-state energy, cluster size) of each cluster. The antisym-
metrization operator Âmakes antisymmetric the wave function
of the compound three-cluster system, which is of paramount
importance for the energy region under consideration. Since all
functions �α(Aα) are fixed, to calculate a spectrum and wave
functions of the compound system one has to determine a wave
function of intercluster motion ψLML

(x,y). This function is also
translationally invariant and depends on two Jacobi vectors x
and y, locating relative positions of clusters in the space. By
using angular orbital momentum reduction, we represent this
function as an infinite series,

ψE,LML
(x,y) ⇒

∑
λ,l

ψE;λ,l;L(x,y){Yλ(̂x)Yl (̂ y)}LML
, (2)

where x̂ and ŷ are unit vectors, and λ and l are the partial
angular momenta associated with vectors x and y respectively.

Note that the form of Eq. (1) implies that the total orbital
momentum L is a good quantum number. It also means that
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in what follows we disregard the noncentral components of
nucleon-nucleon interaction (for the sake of simplicity).

A. Hyperspherical coordinates and basis

Wave functions of intercluster motion ψλ,l;L(x,y) obey an
infinite set of the two-dimension (in terms of variables x and
y) integro-differential equations. To solve such equations we
make use of the hyperspherical coordinates and hyperspherical
harmonics. There are several schemes for introducing hyper-
spherical coordinates or, more exactly, hyperspherical angles
�5, as hyperspherical radius is determined uniquely. Each
choice of the hyperspherical angles invokes a certain set of
five quantum numbers enumerating hyperspherical harmonics.
Different sets of the hyperspherical angles, however, have three
common quantum numbers: the hypermomentum K , the total
orbital momentum L, and its projection ML on the z axis.

We make use of the hyperspherical harmonics in the form
suggested by Zernike and Brinkman in Ref. [15], because this
form is very simple, it does not involve bulky calculations,
and the quantum numbers have clear physical meaning. To
introduce the Zernike-Brinkman hyperspherical harmonics, we
need to determine the hyperspherical coordinates. Instead of
six variables x and y or x, y, and two unit vectors x̂ and ŷ, we
introduce a hyperspherical radius

ρ =
√

x2 + y2 (3)

and a hyperspherical angle

θ = arctan

(
x

y

)
.

At a given value of ρ, this angle determines relative length of
the vectors x and y:

x = ρ cos θ, y = ρ sin θ, θ ∈ [0,π/2]. (4)

For small values of θ , the length of vector y is close to zero, and
vector x has maximal value x ≈ ρ. When the hyperspherical
angle θ is close to π/2, the length of vector x is very small and
vector y is at its maximum.

The represented set of the hyperspherical angles is a
very popular scheme of using hyperspherical coordinates for
investigating three-body [16–18], and three-cluster systems
[14,19–21].

In new coordinates

ψE,LML
⇒

∑
c

φE,c(ρ)Yc(�5), (5)

where Yc(�5) stands for the product

Yc(�5) = χ
(λ,l)
K (θ ){Yλ(̂x)Yl (̂ y)}LML

(6)

and represents a hyperspherical harmonic for a three-cluster
channel

c = {K,λ,l,L}. (7)

The hyperspherical harmonic Yc(�5) is a function of five
angular variables θ,θ1,φ1,θ2,φ2. Definitions of all components
of the hyperspherical harmonic Yc(�5) can be found, for in-
stance, in Ref. [14]. Being a complete basis, the hyperspherical
harmonics account for any shape of the three-cluster triangle

and its orientation. Thus they account for all possible modes
of relative motion of three interacting clusters.

As for the hyperradial wave functions φE,c(ρ), they obey a
system of differential equations with local effective potentials
for three structureless particles, or a set of integro-differential
equations with nonlocal effective potentials for three clusters.
The latter can be represented as∑

c̃

[
δc,̃cT̂KφE,c(ρ) +

∫
dρ̃ρ̃5Vc,̃c(ρ,ρ̃)φE,̃c(ρ̃)

]

= E
∑

c̃

∫
dρ̃ρ̃5Nc,̃c(ρ,ρ̃)φE,̃c(ρ̃), (8)

where Nc,̃c(ρ,ρ̃) is a norm kernel and

T̂K = − h̄2

2m

[
∂2

∂ρ2
+ 5

ρ

∂

∂ρ
− K(K + 4)

ρ2

]
. (9)

As one can see, the Pauli principle leads to appearance of the
energy-dependent part in the effective potential [the right-hand
side of Eqs. (8). To simplify solving the set of equations (8),
we invoke a full set of oscillator functions to expand the sought
wave function

ψE,LML
=

∑
nρ,c

CE;nρ,c|nρ,c〉.

This reduces the set of integro-differential equations (8) to an
algebraic form, i.e., to the system of linear algebraic equations∑

ñρ ,̃c

[〈nρ,c|Hc,̃c |̃nρ,̃c〉 − E〈nρ,c|Nc,̃c |̃nρ,̃c〉]CE ;̃nρ ,̃c = 0,

(10)

where Hc,̃c is a Hamiltonian kernel:

Hc,̃c = Hc,̃c(ρ,ρ̃) = δc,̃cT̂Kδ(ρ − ρ̃) + Vc,̃c(ρ,ρ̃).

Oscillator functions for three-cluster configuration are de-
termined as

|nρ,c〉 = |nρ,K; λ,l; L〉 = RnρK (ρ,b)Yc(�5), (11)

where Rnρ,K (ρ,b) is an oscillator function,

Rnρ,K (ρ,b) = (−1)nρNnρ,KrK exp

{
−1

2
r2

}
LK+3

nρ
(r2),

r = ρ/b, Nnρ,K = b−3

√
2�(nρ + 1)

�(nρ + K + 3)
, (12)

and b is an oscillator length.
The system of equations (10) can be solved numerically

by imposing restrictions on the number of hyperradial ex-
citations nρ and on the number of hyperspherical channels
c1,c2, . . . ,cNch

. The diagonalization procedure may be used to
determine energies and wave functions of the bound states.
However, the proper boundary conditions have to be imple-
mented to calculate elements of the scattering S matrix and
corresponding functions of continuous spectrum. Boundary
conditions or asymptotic behavior of wave functions for demo-
cratic and nondemocratic decay of a compound three-cluster
system will be considered in Sec. II C.
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Wave function (11) belongs to the oscillator shell with the
number of oscillator quanta Nos = 2nρ + K . It is convenient
to numerate the oscillator shells by Nsh (= 0,1,2, . . .), which
we determine as

Nos = 2nρ + K = 2Nsh + Kmin,

where Kmin = L for normal parity states π = (−1)L and
Kmin = L + 1 for abnormal parity states π = (−1)L+1. Thus
we account for oscillator shells starting from a “vac-
uum” shell (Nsh = 0) with minimal value of the hyper-
momentum Kmin compatible with a given total orbital
momentum L.

It is worth noticing that Eq. (10) contains the norm
kernel matrix ‖〈nρ,c|Nc,̃c |̃nρ,̃c〉‖, which is also called the
matrix of the antisymmetrization operator. Appearance of
this matrix in the equation means that the oscillator basis
functions (11) are not orthonormal due to the Pauli princi-
ple. Moreover, these functions may be linearly dependent,
which leads to appearance of the Pauli forbidden states. This
problem has been addressed several times; see, for example,
Refs. [22,23].

Existence of the Pauli forbidden states requires the sys-
tem of equations (10) to be solved in two steps. In the
first step, one needs to diagonalize the norm kernel ma-
trix ‖〈nρ,c|Nc,̃c |̃nρ,̃c〉‖. This matrix has a block structure.
Matrix ‖〈nρ,c|Nc,̃c |̃nρ,̃c〉‖ has a very large number of zero
matrix elements. Nonvanishing matrix elements of this ma-
trix are overlaps of basis functions of the same oscillator
shell. This statement can be expressed as the following
condition:

2nρ + K = 2ñρ + K̃

Such block structure of the overlap matrix significantly sim-
plifies calculations of its eigenstates �Nsh,α (α = 1,2, . . .) and
corresponding eigenfunctions ONsh,α

nρ,c . These eigenfunctions
form an orthogonal matrix which transform the original basis
functions |nρ,c〉 to a new set of functions

|Nsh,α〉 =
∑

nρ,c∈Nsh

ONsh,α
nρ,c |nρ,c〉.

We check whether a particular eigenvalue �Nsh,α equals zero.
If so, this eigenvalue is the Pauli forbidden state and has to be
eliminated from our Hilbert space. Otherwise, this eigenstate
belongs to the part of the total three-cluster Hilbert space
spanned by the Pauli allowed states. The first stage of solving
a set of Eqs. (10) is completed by constructing the normalized
Pauli allowed states |Nsh,ca〉 = |Nsh,α〉/√�Nsh,α , where index
ca numerates the Pauli allowed states on the oscillator shell Nsh.

In the second step, one needs to transform the matrix of the
Hamiltonian from the original basis of functions |nρ,c〉 to the
basis of the normalized Pauli allowed states |Nsh,ca〉.

For numerical solution of Eq. (10) one has to construct
matrix elements of a microscopic Hamiltonian with a se-
lected nucleon-nucleon potential and the norm kernel ma-
trix. We do not dwell on this problem since the appropriate
method of constructing such matrices was formulated in
Ref. [14].

B. Strategy of investigation

To achieve the goals formulated above we carry out our
investigations in the following steps:

(1) We calculate matrix elements of a Hamiltonian between
three-cluster oscillator functions

(2) By solving an eigenvalue problem, we obtain the
spectrum of bound and pseudobound states, and the
corresponding wave functions in discrete representa-
tion.

(3) To study the nature of the obtained solutions, we
construct correlation functions and calculate the weight
of different oscillator shells in wave functions of bound
and pseudobound states

(4) Finally, we analyze the structure of the wave functions
in discrete and coordinate representations and study
their asymptotic behavior.

Some remarks should be made to explain and justify this
strategy. First, such a way of investigating a three-cluster
system allows us to avoid the application of the neces-
sary boundary conditions which leads to very bulky and
time-consuming calculations. The diagonalization procedure
enables us in a rather simple way to obtain wave func-
tions of bound and scattering states in the internal region
where effects of cluster-cluster interaction are very strong.
By increasing the number of oscillator functions we obtain
a more correct description of the bound states, gradually
approaching the exact value of the energy and the correct
shape of a wave function, mainly improving its asymptotic
tail.

Meanwhile, we have a different situation for continuous
spectrum states. The extension of the oscillator basis allows
one to scan the continuous spectrum and to study the internal
part of wave functions for different energies of the spectrum.
The internal part of wave functions represents the exact wave
function with a specific “boundary condition.” This will be
later discussed in more detail. Concluding, we note that the
digonalization procedure of a huge but restricted Hamiltonian
matrix is very often used to study spectra of light nuclei with
the ab initio no-core shell model.

C. Asymptotic behavior of the wave functions

Let us consider an asymptotic behavior of wave function (1).
It is more appropriate to introduce an analog of the Faddeev
amplitudes ψ

(α)
L (xα,yα),

�E,LML
=

3∑
α=1

Â{
�1(A1)�2(A2)�3(A3)ψ (α)

E,LML
(xα,yα)

}
=

3∑
α=1

∑
λα,lα

Â{
�1(A1)�2(A2)�3(A3)

× ψ
(α)
E,λα,lα ;L(xα,yα){Yλα

(̂xα)Ylα (̂ yα)}LML

}
, (13)

to study the asymptotic properties of three-cluster systems.
In Eq. (13), xα is the Jacobi vector, determining the distance
between β and γ clusters, while yα is a Jacobi vector linking
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the αth cluster with the center of mass of the β and γ
clusters:

xα =
√

AβAγ

Aβ + Aγ

(Rβ − Rγ ), (14)

yα =
√

Aα(Aβ + Aγ )

Aα + Aβ + Aγ

[
Rα − AβRβ + Aγ Rγ

Aβ + Aγ

]
,

Rσ = 1

Aσ

∑
i∈Aσ

ri . (15)

The indexes α, β, and γ form a cyclic permutation of 1, 2,
and 3.

In general, there are four different asymptotic regions in
a three-cluster system. The asymptotic properties of three-
body functions in these regions are thoroughly discussed in
Refs. [24–26]. We follow notations of Ref. [25] (see pages
134–136) and denote these asymptotic regions as �α (α =
1,2,3) and �0. In the asymptotic regions �α the distance
between clusters with indexes β and γ is much smaller than
the distance of the third cluster (with index α) to the center of
mass of clusters β and γ (|xα| � |yα|). This region describes
scattering of a cluster with index α on a bound state of clusters
β and γ . The asymptotic region �0 describes the situation
when all clusters are well separated, i.e., when intercluster
distances |xα| 	 a (α = 1,2,3) are larger then the radius a of
a short-range interaction.

Consider the asymptotic region �α . In this region, the
Faddeev amplitude ψ

(α)
E,L(xα,yα) has the following “two-body”

asymptotic form:

ψ
(α)
E,λα,lα ;L(xα,yα) ≈

∑
λα,lα

gλα,Eα
(xα)

[
δc0,c ψ

(−)
kα,lα

(kαyα)

− Sc0,c ψ
(+)
kα,lα

(kαyα)
]

(16)

for scattering states (when the total energy E � Eα) and

ψ
(α)
E,λα,lα ;L(xα,yα)

≈
∑
λα,lα

Ac0,cgλα,Eα
(xα)W−ηα,lα+1/2(2kαyα)

≈
∑
λα,lα

Ac0,cgλα,Eα
(xα)

1

(καyα)ηα+1 exp {−καyα} (17)

for bound states (when the total energy E < Eα). Here
ψ

(−)
kα,lα

(kαyα) and ψ
(+)
kα,lα

(kαyα) are incoming and outgoing
waves, respectively, determined in terms of the well-known
regular Flα (kαyα; ηα) and irregular Glα (kαyα; ηα) Coulomb
functions:

ψ
(±)
kα,lα

(kαyα) = [
Glα (kαyα; ηα) ± Flα (kαyα; ηα)

]
/yα

≈ yα→∞ exp

{
± i

(
kαyα − lα

π

2
− ηα ln(2kαyα)

+ σlα

)}
/yα, (18)

and W−ηα,lα+1/2(2kαyα) is the Whittaker function. In Eqs. (16)
and (17), index c = {λα,Eα,lα} enumerates the current channel,

c0 indicates the incoming channel, Eα and gλα,Eα
(xα) denote

energy of the two-cluster bound state and its wave function,
and

kα =
√

2m(E − Eα)

h̄2 , κα =
√

2m|E − Eα|
h̄2 , (19)

ηα = Zα(Zβ + Zγ )e2

√|E − Eα|

√
Aα(Aβ + Aγ )

A

m

h̄2 . (20)

Let us turn our attention to the asymptotic region �0. We
present an asymptotic form only for neutral clusters (or by
neglecting the Coulomb interaction in asymptotic region). In
this case an asymptotic form of the three-cluster wave function
is well and unambiguously established. For a bound state of
the three-cluster system the wave function ψ

(α)
E,λα,lα ;L(xα,yα) is

ψ
(α)
E,λα,lα ;L(xα,yα) = ψ

(α)
λα,lα ;L(ρ,θα) ≈ exp {−κ0 ρ}/ρ5/2,

(21)

and for a scattering state (full disintegration or breakup)

ψ
(α)
E,λα,lα ;L(xα,yα) = ψ

(α)
λα,lα ;L(ρ,θα)

≈ Ac0,c(θα) exp {ik0 ρ}/ρ5/2, (22)

where Ac0,c(θα) is a breakup amplitude and

k0 =
√

2m(E − E0)

h̄2 , κ0 =
√

2m|E − E0|
h̄2 ;

E0 is the three-cluster threshold energy.
As we see, the hyperspherical coordinates are involved

to express an asymptotic form of wave functions for the
democratic decay of a three-cluster system or its bound state
[see Eqs. (21) and (22)]. They can be also used to express
an asymptotic behavior of three-cluster wave functions in all
asymptotic regions by using relations (4).

So far, we have discussed the asymptotic behavior of
three-cluster wave functions for different scenarios of two-
and three-body decays in coordinate representations. Similar
relations can be written in a discrete representation by using
the correspondence between the expansion coefficients and the
wave functions in coordinate space.

Let us assume that we arranged all binary channels in such
an order that E1 < E2 < E3. We also assume that all energies
are measured from the three-cluster threshold and thus E0 = 0.
With such definitions, an asymptotic part of bound-state wave
functions will be mainly represented by the wave function
from Eq. of the first channel (17). Contributions of other
binary channels and the three-cluster channel depend on how
far this state is from the corresponding decay threshold as
well. The larger is the difference |E − Eσ | (σ = 0,1,2,3), the
smaller is the contribution of the corresponding channel to the
asymptotic part of the bound-state wave function. It is obvious
that to obtain the deeply bound state (with respect to the
three-cluster threshold), a very small number of hyperspherical
harmonics is required. For a weakly bound state, a large
number of hyperspherical harmonics should be involved to
reach a necessary precision for the energy of this state. The
wave function of a continuous spectrum state with energy
E1 < E < E2 is expected to be mainly represented by the
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wave function of the first channel of the form (16). When the
energy of this state approaches the energy of the second binary
channels, it is natural to expect a substantial contribution of
the second closed channel. A more intriguing situation can
be observed for continuous spectrum states when two binary
channels are open, i.e., for the states with energy E2 < E < E3.
The wave function of such state can be represented either by
the first or by the second channels, or by a combination of
both channels. More complicated situations can be observed
for continuous spectrum states when all binary channels are
open (E3 < E < 0).

D. Oscillator basis

Note that the first two steps in the strategy mentioned in
Sec. II B are common for many microscopic and semimi-
croscopic model calculations, since many models used a
square-integrable basis to obtain information about bound
and scattering states. The oscillator basis is the most used
one among others. Two main merits of this basis make it
popular. First, these basis functions are orthonormal: they do
not create any problem with overfullness or linear dependence
of basis functions. Second, due to the specific properties of
oscillator functions, there is a simple relationship between
expansion coefficients and an original wave function. It makes
more transparent the physical interpretation of the obtained
results.

Now we consider other two advantages of the basis which
will be exploited in what follows. First, the oscillator basis
allows one to implement correct boundary conditions in a dis-
crete oscillator representation [27,28]. Second, diagonalization
of a matrix of a microscopic Hamiltonian, constructed with
the oscillator basis, reveals eigenfunctions with clear physical
properties. To explain the second advantage of the oscillator
basis we consider a single-channel approximation for a two-
cluster or two-body system. Suppose we construct the matrix
elements of Hamiltonian Ĥ between oscillator functions |n〉
and |m〉. By diagonalizing matrix ‖〈n|Ĥ |m〉‖ with dimension
N × N , we obtain eigenvalues Eν (ν = 0,1,2, . . . ,N − 1)
and the corresponding eigenfunctions {C(ν)

n }. Eigenvalues Eα

represent bound states if Eν < 0, and pseudobound states
for positive energy Eν > 0. It was shown in Refs. [29–31],
that pseudobound states are the states of continuous spectrum
states selected from an infinite set through the diagonalization
procedure by the condition C

(ν)
N+1 = 0. In other words, these

states have a node at a given point. This condition can be also
used to determine phase shifts at these discrete points. An
interesting feature of the pseudobound states is that without
imposing any boundary condition one can obtain a set of
discrete or selected states in the two-cluster continuum. A very
important feature of the pseudo-bound states is that the wave
function of a pseudo-bound state coincides (within a factor)
with the properly normalized wave function of the continuous
spectrum with the same energy.

To confirm the aforementioned properties of wave func-
tions in the oscillator representation, we show the following
illustration. In Fig. 2 we display eigenfunctions of the two-
cluster α + t Hamiltonian for the 3/2− state in 7Li. These

FIG. 2. Six eigenfunctions of the 3/2− state in 7Li obtained in the
two-cluster α + t approximation.

functions are determined with 100 oscillator functions. The
first eigenfunction describes the 7Li ground state; the other
five functions represent states of the two-cluster continuum.
One can see explicitly that the wave functions of these states
indeed have a node at the end of an interval n = N + 1. The
same is true for the ground state; however, it is not so evident
in Fig. 2. We do not dwell on the details of such calculations,
as they can be found, for instance, in Ref. [8].

To prove briefly that eigenstates of a two-cluster Hamilto-
nian have clear physical meaning, we consider wave functions
of four 3/2− pseudobound states in 7Li. These state are
obtained with different numbers N of oscillator functions.
We selected and displayed in Fig. 3 those pseudobound states
which have approximately the same energy. Thus one can ex-
pect that wave functions of these states have the same structure
(shape). Indeed, we see that the selected wave functions have
maxima and nodes at the same points of the discrete space.

FIG. 3. Wave functions of the 3/2− pseudobound states in 7Li =
α + t obtained for approximately the same energy and with different
numbers of oscillator functions.
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FIG. 4. The exact wave function of the 3/2− state of 7Li = α + t

with energy E = 2.186 MeV compared with the renormalized wave
function of the pseudobound state, obtained for the same energy and
with 100 oscillator functions.

They differ only by the normalization condition

N∑
n=0

∣∣C(ν)
n

∣∣2 = 1

and represent the corresponding state in different oscillator
spaces 0 � ν � N (N = 39,100,188,301). In Fig. 3 we indi-
cate the number of the displayed eigenstate ν and its energy
Eν . If we normalize four wave functions in the same fashion
(for instance, as the wave function with the minimal value of
oscillator functions N = 39), we will obtain four quite close
wave functions in the interval 0 � ν � 39, three quite
close functions in the interval 0 � ν � 100, and two
quite close wave functions in the interval 0 � ν � 188. Note
that these wave functions, obtained with the diagonalization
procedure, coincide within a simple normalization factor with
the exact wave function of the continuous spectrum state
obtained for the same energy and with the corresponding
boundary conditions. This is demonstrated in Fig. 4, where
we display the exact wave function, obtained for the energy
E = 2.186 MeV by imposing the correct boundary condition,
and the renormalized wave function, determined for the same
energy with 100 oscillator functions. One can see that both
exact and approximate functions coincide in the range 0 �
n � 100. It is important to note that the exact wave function
is determined in the whole oscillator space (0 � n < ∞) and
normalized by the condition

∞∑
n=0

C(E)∗
n C

(Ẽ)
n = δ(E − Ẽ).

To this end, yet another visual confirmation that the diago-
nalization procedure reveals states with clear physical meaning
is presented in Ref. [31]. Figure 1 (p. 714) of Ref. [31]
demonstrates an approximation of the wave function of the
continuum spectrum by expansion in the discrete basis with dif-
ferent numbers of basis functions. The above-mentioned figure

clearly shows that the larger is the number of basis functions
involved, the larger is the region of good approximation of the
exact wave function by partial sum. However, the behavior of
the wave function in the inner region is well reproduced even
with a rather restricted set of basis functions.

Thereby, the wave functions obtained by the diagonalization
of the Hamiltonian have the same physical meaning as the
wave functions obtained with the proper boundary conditions.
The only difference is that the former are known only up to a
finite point of coordinate space, while the latter are known in
the whole region.

We will not dwell on this subject, as more details on J -
matrix methods can be found in the book of articles [32].

It is also important to note that the methods which use
the oscillator basis are similar to the well-known R-matrix
model of nuclear reactions. In these methods eigenvalues Eν

and eigenfunctions {C(ν)
n } are important blocks for construction

of the elements of the scattering matrix and wave functions of
single- and many-channel systems for an arbitrary value of
the energy E. The explicit formulas relating elements of the S
matrix with eigenvalues Eν and eigenfunctions {C(ν)

n } can be
found in Refs. [29,33]. In Refs. [34,35], these formulas were
extended to the case of many-channel systems described with
the hyperspherical basis. Besides, investigations of eigenvalues
Eν and eigenfunctions {C(ν)

n } can be considered as a simple case
of the complex scaling method (see basic definitions of the
method and its recent progress in applications to many-cluster
systems in Refs. [36,37]), when the rotational angle equals
zero.

III. RESULTS AND DISCUSSION

We involve the Minnesota potential (MP) [38,39] as a
nucleon-nucleon potential in our calculations. We use a com-
mon oscillator length for all clusters. Its value is selected
to minimize the energy of the three-cluster threshold. To
construct a wave function of two-cluster relative motion and to
determine the energy of a two-cluster bound state, we employ
the oscillator basis. Details of two-cluster calculations can be
found in Ref. [8]. We make use of 50 oscillator functions to
calculate the ground-state energies of two-cluster systems. This
number of functions provides the correct value of bound-state
energies and their parameters (for instance, rms proton and
mass radii, and so on).

In Table II we show input parameters of our calculations.
They include oscillator length b and exchange parameters u of
the selected NN potential.

TABLE II. Input parameters of calculations for each nucleus.

Nucleus 3CC b (fm) u

4He d + (p + n) 1.489 0.9600
7Li α + d + n 1.311 0.9255
7Be α + d + p 1.311 0.9255
8Be α +3 H + p 1.311 0.9560
10Be α + α + 2n 1.356 0.9570
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FIG. 5. Spectrum of the 3/2− states in 7Li as a function of Nsh

and Kmax. Dashed line: Kmax = 7; dot-dashed line: Kmax = 9; dot-
dot-dashed line: Kmax = 11; and solid line: Kmax = 13.

As in Refs. [40–43], in the present paper we will vary
the hyperspherical momentum in the range L � K � Kmax,
where Kmax = 14 for the positive parity states and Kmax = 13
for the negative parity states. The number of oscillator shells
involved in our calculations runs from zero to Nsh, max = 70.
These values of Kmax and Nsh, max, as was shown in Refs. [40–
43], provided fairly good descriptions of bound states and
resonance states generated by a three-cluster continuum.

A. 7Li and 7Be

Consider evolution of the 7Li spectrum when we involve
more and more hyperspherical harmonics. We consider the
3/2− state in both nuclei. This state is mainly represented by the
total orbital momentum L = 1. We restrict ourselves to only
the value of the total spin S = 1/2, and neglect contribution of
a negative parity state with total orbital momentum L = 2. For
the total orbital momentum L = 1, we have only odd values of
the hypermomentum, K = 1,3,5 . . .. Thus we represent results
with K = 1, K = 3, and so on up to Kmax = 13.

Dependence of energy of the 3/2− states in 7Li on quantum
number Nsh is displayed in Fig. 5. Here we presented trajecto-
ries of eigenvalues for 7Li calculated with the hyperspherical
harmonics Kmax = 7, Kmax = 9, Kmax = 11, and Kmax = 13.
Figure 5 demonstrates rather fast convergence of the 7Li
ground-state energy. For the sake of convenience in Fig. 5 we
connected all discrete points by lines; however, the results are
relevant only for discrete values of Nsh. Thus we need only a
restricted number of hyperspherical harmonics (Kmax = 7) and
a small number of hyperradial excitations (or oscillator shells
Nsh � 30) to obtain the bound state in 7Li, i.e., an eigenstate
of the three-cluster compound system which lies below the
lowest two-cluster threshold 4He + 3H. The first eigenvalue
for all values of Kmax “scans” the two-cluster continuous
spectrum with small values of Nsh (�5) and thus represents
continuous spectrum states in the 6Li + n channel and in
the 4He + 3H channel. The second eigenvalue of the three-
cluster Hamiltonian for 7 � Kmax � 13 is able to describe

FIG. 6. Wave functions of the 3/2− states in 7Li as a function of
Nsh. These function are presented in the oscillator representation and
calculated with Kmax = 13.

continuous spectrum states in the three-cluster continuum and
in the binary channels continuum. The larger is the number
of hyperspherical harmonics involved in the calculations, the
larger is the region of the two-cluster 4He + 3H continuum that
can be achieved with these basis functions.

It is important to note that the spectra of 7Li and other nuclei,
which will be considered bellow, are obtained by solving the
generalized eigenvalue problem represented by Eq. (10). By
solving this problem we obtain those states of the compound
system which obey the “boundary conditions”

Cnρ, max+1,c = 0, (23)

which are similar to the two-cluster case, considered above.
This is demonstrated in Fig. 6, where we display three wave
functions of the 3/2− states in 7Li calculated with Kmax = 13.
For each value of Nsh � 7, there are 56 channels which are
involved in construction of all the functions. As we can see,
the expansion coefficients tend to zero as Nsh approaches its
maximal value. We conjecture some important conclusions
from this figure. First, we involve a large number of channels
c; however, only a few of them dominate in the wave functions
of bound and pseudobound states. This result is in agreement
with the previous results of the model for the wave functions
of the three-cluster continuum (see Refs. [40–43]). In the
latter case, such a conclusion was formulated by analyzing

064605-8



TWO- AND THREE-CLUSTER DECAYS OF LIGHT NUCLEI … PHYSICAL REVIEW C 97, 064605 (2018)

FIG. 7. Comparison of wave functions obtained with the different
numbers of oscillator functions but with approximately the same
energy.

the asymptotic part of the wave functions. Second, there is
an apparent similarity between the wave functions of two-
and three-cluster models, which, for example, exhibits in the
number of nodes and in the shape of the wave functions.

Figure 7 demonstrates that wave functions with the same
energy but obtained with the different numbers of oscillator
functions are similar to each other in the range of smaller
values of Nsh and differ only by a normalization factor. These
wave functions represent 3/2− states of 7Li and are calculated
with Kmax = 13. Note that 982 oscillator functions participate
in the construction of the first wave function (upper panel),
while 3614 oscillator functions are involved in the expansion
of the second wave function (lower panel). It is noteworthy that
using oscillator functions up to Nsh, max allows us to describe
and to analyze wave functions and intercluster distance in the
range 0 � ρ � b

√
4Nsh, max + 2L + 6. This inequality reflects

a very important feature of oscillator functions. As it is easy
to see, the second wave function repeats the behavior of the
first wave function in the range 0 � Nsh � 22, and represents
a new part of the wave function for larger values of Nsh:
22 < Nsh � 69.

Figures 6 and 7 demonstrate very interesting properties of
wave functions in the oscillator representation. A large number
of hyperspherical channels (Nch = 58 with Kmax = 13) are
involved to calculate the bound and pseudobound states for
Jπ = 3/2− in 7Li. However, as one can see in Figs. 6 and
7, there is one dominant channel and a few other channels
which give noticeable contribution to the wave functions of
these states. A large number of channels have very small or
negligible contribution to the displayed wave functions.

FIG. 8. Spectrum of the 7/2− states in 7Li as a function of Nsh

calculated with Kmax = 9 (dash-dot-dot lines), Kmax = 11 (dash-dot
lines), and Kmax = 13 (solid lines). The dotted line indicates the
position of the 7/2− resonance state in 7Li calculated with an
alternative microscopical method (see text for details).

In Figure 8 we display trajectories of eigenenergies of
7Li for the 7/2− state. These trajectories are calculated with
Kmax = 9, Kmax = 11, and Kmax = 13. One can see that the
lowest eigenstates have plateaus at energies E = −3.91 MeV
(Kmax = 11), E = −3.99 MeV (Kmax = 11), and E = −4.05
MeV (Kmax = 13). These energies are practically stable when
we change Nsh from 45 to 70. Such plateaus may indicate
that there are narrow resonance states at these energies. This
is a very simple but reliable way to locate the position of
a narrow resonance state which is used in the stabilization
method [44]. To be sure, we made use of an alternative method
to calculate the energy and width of the resonance state in
the two-body continuum. We refer to this method as AMGOB
(algebraic model for scattering which involves Gaussian and
oscillator basis to describe relative motion of three clusters);
it imposes proper boundary conditions for scattering of the
third cluster on a bound state of a two-cluster subsystem.
This method was formulated in Ref. [7] and applied to study
bound and resonance states in 7Be. Investigation of discrete
and continuous spectra in 7Li within the AMGOB method
was carried out in Ref. [6]. We adopted this model to study
resonance states in 7Li with the same input parameters that
are used in the AMHHB model. Results of these calculations
are shown in Fig. 8 by a dashed line indicating the energy of
the 7/2− resonance state. We observe a very good agreement
between these two methods. Thus our method (AMHHB),
even with a rather restricted basis of hyperspherical functions,
correctly predicts the position of the 7/2− resonance state.
It is worth emphasizing that the stabilization method works
perfectly only for narrow resonance states. This the case for
the 7/2− resonance state as its total width is equal to 167 keV.

To understand the essence of the method used and to
determine the impact of Kmax and Nsh on the obtained results,
we consider the geometry of the three-cluster system α +
d + n in the 7/2− states of 7Li. As was demonstrated, three
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FIG. 9. Phase shift of the α + t scattering calculated within the
AMGOB and AMHHB methods. Details are in the text.

approximations with Kmax = 9, Kmax = 11, and Kmax = 13
give very close energies of the lowest 7/2− states. In these
cases one can see explicitly and unambiguously the role
Kmax and Nsh in the description of three-cluster nuclei with
hyperspherical harmonics. We analyzed wave functions and
the density distributions of the resonance states obtained with
Kmax = 9, Kmax = 11, and Kmax = 13. It is deduced from
this analysis that by increasing the number of channels from
Kmax = 9 to Kmax = 13 we slightly improve the description
of the t = d + n subsystem composing the 3H nucleus. When
we increase Nsh from minimal to maximal value, we allow a
three-cluster system to have larger distance between all clusters
or between the third cluster and a compact (i.e., bound) state
of a two-cluster subsystem.

In Fig. 9 we compare phase shifts of elastic α + t scattering
in the state Jπ = 3/2− calculated within AMGOB [6], which
represents here the exact phase shift, and evaluated within
the present model (AMHHB). We use the approximate way,
which follows from Eq. (23) and involves asymptotic behavior
of wave function represented by Eq. (16). This approximate
way is described in more detail in Ref. [30]. To make such
evaluations, one needs to know the energy (with respect to the
lowest two-cluster threshold) obtained with diagonalization,
the number of oscillator shells involved in calculations, and
the expansion coefficients for regular and irregular solutions
of the asymptotic Hamiltonian. As we see, the approximate
phase shifts calculated with AMHHB are close to the “exact’
phase shift. We selected only a few points to demonstrate the
ability of such a simple method of phase shift calculations.
Unfortunately, the approximate method allows us to calculate
phase shift at discrete points and not for all desired energies.
Thus one has to implement proper boundary conditions to
calculate phase shifts or elements of the S matrix at any energy
with acceptable precision. This will be a subject of our next
papers.

From the presented figures and from the analysis of wave
functions of the states in the two-body continuum we conjec-
ture that as more channels of the hyperspherical harmonics

FIG. 10. The correlations functions for the first excited state
(upper part) and for the second excited state (lower part) in 7Li.

(or larger values of Kmax) are involved, the more precise is the
description of two-cluster bound states. By increasing Nsh with
a fixed value of Kmax, we allow the third cluster to move far
away from the bound two-cluster subsystem.

We can determine the most probable shape of the triangle
of a three-cluster system by considering wave functions of
the ground and excited states in the coordinate or oscillator
representations.

Let us consider the correlation functions, which we define
as

DEν
(xα,yα) =

∑
λα,lα

∣∣ψ (α)
Eν ;λα,lα ;L(xα,yα)

∣∣2
x2

αy2
α.

For an adequate physical interpretation of the correlation
function, we introduce sα,rα distances between clusters instead
of the Jacobi coordinates xα,yα:

sα =
√

Aβ + Aγ

AβAγ

xα, rα =
√

Aα + Aβ + Aγ

Aα

(
Aβ + Aγ

) yα.

We will show correlation functions DEν
(sα,rα) for bound

and pseudobound states. We will also display sections of
the correlation functions DEν

(sα,rα, max) and DEν
(sα, max,rα),

where (sα, max,rα, max) is a point in the two-dimensional plane
(sα,rα) determining a principal maximum of the correlation
function for an eigenstate of the three-cluster Hamiltonian
with energy Eν . Coordinates (sα,rα) of the principal and
local maxima of the correlation function determine maximal
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FIG. 11. The correlation functions for the first and second excited
states in 7Li obtained for the second Jacobi tree.

probability of finding a three-cluster system at this point, thus
we will call them the dominant distances between clusters
and we will refer to the quantity sα as the dominant size of
a two-cluster subsystem.

The contour plots of the correlation functions for the first
and second excited states in 7Li are presented in Fig. 10.
This figure is constructed for the first Jacobi tree, where s1

determines the distance between neutron and deuteron while
vector r1 represents the distance between an α particle and
the 3H nucleus. It is important to recall that both states belong
to the 4He + 3H continuum. One may notice that the as the
energy of the excited state increases, more oscillations of
the correlation functions are observed along the distance r1

within the presented range. One may also see that the larger
is the distance between an α particle and 3H, the larger is the
dominant size of 3H or, in other words, the larger is the distance
between the deuteron and neutron composing the nucleus
3H. Such behavior of the correlation functions indicates the
polarizability of 3H as a two-cluster subsystem when the
distance between 3H and the α particle is changed. These
results are in accordance with the results of Refs. [6,7], where
the cluster polarizabilities of two-cluster subsystems in 7Be and
7Li were investigated with a model designed to study effects
of cluster polarization on the structure of bound and resonance
states in compound systems.

In the second Jacobi tree with the dominant two-cluster con-
figuration n +6 Li, we obtain a rather different view (Fig. 11)
of the correlations functions for the same excited states in 7Li.

FIG. 12. Parts of the correlation functions for the J π = 3/2−

ground and excited states of 7Li.

In this representation, the size of 6Li and distance between the
neutron and 6Li nucleus are very large. This is consistent with
Fig. 10, where the dominant distance between deuteron and
neutron is small, but the dominant distances between neutron
and α particle and between deuteron and α particle are very
large.

In Fig. 12 we display sections DEν
(sα,rα, max) and

DEν
(sα, max,rα) of the correlation functions for the lowest

states of 7Li with total angular momentum Jπ = 3/2−. The
lower part of Fig. 12 shows that nucleus 3H, composed of
a deuteron and a neutron, is confined in states E0, E1, and
E2. With increasing energy, the distance between deuteron
and neutron is increased from 3 to 5.5 fm. As in Fig. 10,
such behavior of wave functions of 3H in E0, E1, and E2

states more explicitly shows a polarization of the 3H cluster
when it interacts with an α particle. The upper part of Fig. 12
demonstrates that 7Li is a compact object in its ground state,
since the dominant distance between clusters 3H and 4He is
approximately 3 fm. Wave functions and correlation functions
of the excited states E1 and E2 have an oscillatory behavior
along coordinate r1, determining the distance between clusters
3H and 4He. As one can see in Fig. 5, these states belong to
the 3H + 4He continuous spectrum.

The behavior of the presented correlations functions is
totally in agreement with the asymptotic forms of three-cluster
wave functions discussed above, in Eqs. (16)–(21). Indeed,
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FIG. 13. Spectrum of 0+ states in 8Be as a function of Nsh,
calculated with Kmax = 0 (upper part) and Kmax = 14 (lower part of
the figure).

for the bound state we observe the exponential tails of the
correlation functions along the vectors sα and rα , while for
the states in the two-body continuum the exponential tail is
observed along the vector sα and the oscillating tail is seen
along the vector rα . These conclusions are correct not only for
7Li but also for all other nuclei considered in this paper.

Concluding this section, we note that we have carried
out similar investigations for the mirror nucleus 7Be as a
three-cluster configuration, 7Be = α + d + p. The Coulomb
interaction, which is stronger in 7Be, slightly changes the
energy of the two-cluster threshold 4He + 3He and reduces
the energy of the 7Be ground state with respect to two- and
three-cluster thresholds. Therefore, all results and conclusions
deduced for the 7Li nucleus are valid for the mirror nucleus.
Due to lack of room in the present paper, we will not dwell on
the results for 7Be.

B. 8Be = 4He + 3H + p

Now we consider spectrum and wave functions of the 0+
state in 8Be. With the three-cluster configuration 4He + 3H +
p we have the binary channels 4He + 4He and 7Li + p. We
do not consider the binary channel 5Li + 3H as its threshold
energy exceeds the three-cluster threshold. The energy of
0+ states in 8Be, calculated with only one hyperspherical
harmonic K = 0 and with Kmax = 14, as a function of Nsh

is displayed in Fig. 13. The first and important result is that

FIG. 14. Spectrum of the 0+ state in 4He calculated with
Kmax = 14.

only one hyperspherical harmonic (K = 0) is able to produce
one state in the 4He + 4He continuum and one state above the
7Li + p threshold but below the three-cluster 4He + 3H + p
threshold. Besides, the “ground” 0+ state appears in the two-
cluster 4He + 4He continuum starting with Nsh = 2, while
the first excited state needs more than Nsh = 30 oscillator
shells to appear in the 7Li + p continuum. It is interesting
to note (see the lower part of Fig. 13) that hyperspherical
harmonics with Kmax = 14 generate one bound state (below
the 4He + 4He threshold) and four states in the two-cluster
4He + 4He continuum and also two states in the 7Li + p
continuum. Thus this number of hyperspherical harmonics
(i.e., all harmonics with 0 � K � 14 or 36 channels) is able
to describe some states of elastic 4He + 4He and 7Li + p
scattering and the reaction 4He + 4He ⇐⇒ 7Li + p at two
discrete energy points. It should be stressed that these results
are obtained without imposing boundary conditions.

C. 4He = d + p + n

We consider 4He as a three-cluster configuration 4He =
d + p + n. This configuration allows us to take into account all
binary channels of 4He, namely, 3H + p, 3He + n, and d + d.
Besides, this configuration allows us to describe more correctly

TABLE III. Energies of the ground and the lowest excited 0+

states in 10Be. Dominant two-body channels and their threshold
energies Eth are also presented.

Two-cluster threshold E (MeV)

−9.162
−2.197

6He + α Eth = −1.745
−0.343

8Be + 2n Eth = −0.023
0.561
1.162
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FIG. 15. Spectrum of the 0+ states in 10Be as a function of Nsh

and Kmax. Dotted lines correspond to Kmax = 6, dashed lines denote
Kmax = 10, and solid lines stand for Kmax = 14.

the internal structure of clusters 3H and 3He, which are treated
as two-cluster systems d + n and d + p, respectively. The
trajectories of eigenstates of 4He are displayed in Fig. 14.
They are obtained with Kmax = 14. These eigenstates scan
continuous spectrum above the 3H + p, 3He + n, and d + d

FIG. 16. The correlation functions for the ground state in 10Be in
different Jacobi trees.

FIG. 17. The correlation functions for the first excited state (lower
part) and for the second excited state (upper part) in 10Be.

thresholds. We do not display the ground state of 4He which
lies 20 MeV below the 3H + p thresholds. Being deeply
bound, the ground states require a very small number of
hyperspherical harmonics and a very restricted number of
hyperradial excitations.

D. 10Be

Let us consider spectrum of 10Be, provided that 10Be
is treated as a α + α + 2n three-cluster configuration, and
analyze what is the most probable geometry of this three-
cluster structure. In Table III we show the ground and the first
excited 0+ states in 10Be. The results are obtained with the
MP. In Ref. [8] the exchange parameter u of the potential was
selected so as to reproduce the energy of the 10Be ground state
with respect to the binary threshold 6He + α. We use the same
value of this parameter. With this value of the parameter u we
obtained the relative position of the threshold energies of the
binary 6He + α and 8Be + 2n channels indicated in Table III.

As can be seen from Table III, the ground state and the first
excited 0+ state are below the lowest binary decay threshold
of 10Be. The second excited state lies between 6He + α and
8Be + 2n thresholds, while the rest of the states belong to the
three-cluster continuum.

The spectrum of the 0+ states in 10Be as a function of
the number of oscillator shells and the maximum value of
hypermomentum involved in the calculations are plotted in
Fig. 15. As is evident from Fig. 15, to reproduce the energy
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FIG. 18. The correlation functions for the third excited state
(lower part) and for the fourth excited state (upper part) in 10Be.

of the ground state it is sufficient to invoke basis functions
with Nsh = 20 and Kmax = 6. For increasing energy of the
state, larger values of the number of oscillator shells and hy-
permomentum should be used to reach convergence. However,
the third excited state with energy E = 0.56 MeV above the
three-cluster decay threshold of 10Be somewhat differs from
the other states presented in Fig. 15. Hyperharmonics with
Kmax � 10 slightly contribute to the energy of this state as
opposed to the neighboring excited states.

Figures 16, 17, and 18 display contour plots of the cor-
relation functions for the ground and excited states in 10Be
tabulated in Table III. Referring to Fig. 16, we can conclude
that 10Be in its ground state is a system of three equally
spaced clusters (two α particles and a dineutron). The other
four excited states, contrastingly, have prominent 8Be + 2n
structure, as is clear from Figs. 17 and 18. The 6He + α
configuration reveals itself only at higher energies.

Sections of the correlation functions presented in Figs. 16,
17, and 18 are shown in Fig. 19. As may be inferred from
Fig. 19, in three low-lying states of 10Be the 8Be subsystem
is rather compact compared to the distance between 8Be
and a dineutron. The first state above the three-cluster decay
threshold is characterized by a somewhat more dilute 8Be
subsystem, but the 8Be + 2n configuration still dominates in
this state.

We did not consider in detail the convergence that the
present model provides for the bound states in the selected
nuclei. However, some conclusions can be made from Fig. 5,

FIG. 19. Parts of the correlation functions for the J π = 0+ ground
and excited states of 10Be.

where we display the spectrum of the 3/2− states in 7Li calcu-
lated with different values of Kmax and Nsh. To demonstrate that
the present model provides us with a satisfactory description of
the bound states, in Fig. 20 we show the ground-state energies
of 7Li and 7Be and the energies of the ground and first excited
0+ states in 10Be. We compare results of the present model with
the corresponding results of the AMGOB model mentioned
above. The AMGOB model involves a little larger part of
the total Hilbert space to describe the discrete and continuous
spectrum of a three-cluster system, which is reduced to a set
of binary channels. In Refs. [6–8] the AMGOB model was
applied to study nuclei 7Li, 7Be, and 10Be with the same
input parameters that we use in the present model. Therefore,
we will consider results of the model as “exact.” In Fig. 20
we also display by dashed lines both the three-cluster and
the lowest two-cluster thresholds. We can see that all ground
states are deeply bound states with respect to the three-cluster
threshold; however, their convergence strongly depends on
how far these states lie with respect to the lowest two-cluster
channel. The latter, as we pointed above, determines the shape
of the asymptotic part of the bound-state wave function. As
one could expect, the Coulomb interaction reduces the bound-
state energy in 7Be (comparing to 7Li) and slows down the
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FIG. 20. Energies of the 3/2− ground states in 7Li and 7Be, and
the ground and first excited 0+ states in 10Be calculated within the
present model (solid line) and within the AMGOB model (dash-dotted
line).

convergence of this state. In conclusion, the presented results
show that our model is able to reproduce the bound-state energy
of the considered nuclei with a satisfactory precision.

IV. CONCLUSION

Within a microscopic three-cluster model we have consid-
ered spectra of a set of light nuclei: 4He, 7Li, 7Be, 8Be, and
10Be. We selected nuclei that have a dominant three-cluster
channel and one or more two-body channels below the three-
cluster decay threshold. We considered three kinds of nuclei.
Two of these nuclei are deeply bound (4He and 10Be), as their
ground states lie below −8 MeV with respect to the lowest
two-cluster threshold. Two other nuclei (7Li and 7Be) are
weekly bound, since their binding energies do not exceed

−2.6 MeV. The last nucleus 8Be has no bound states. A full
set of the antisymmetric three-cluster oscillator functions was
constructed. These functions were labeled by the quantum
numbers of the hyperspherical harmonics method. Matrix ele-
ments of a Hamiltonian, consisting of central nucleon-nucleon
forces and the Coulomb potential, between the oscillator
functions were constructed and eigenvalues and corresponding
eigenfunctions were calculated. We analyzed dependence of
the eigenvalues on the number of oscillator functions involved
in calculations. It was demonstrated that some of the eigenval-
ues are discrete states in the two-cluster continuum. Analysis of
the wave functions in coordinate and oscillator representations
showed that these functions have a correct asymptotic behavior
peculiar to the two-cluster continuous spectrum.

The main result of the present investigations is that it is pos-
sible to see the evidence of two-cluster structure in the three-
cluster wave function of a pseudobound state, but with a rather
restricted set of hyperspherical harmonics and hyperradial
excitations as well. It was demonstrated that the eigenstates of
the three-cluster Hamiltonian have correct asymptotic behavior
both for bound states below the two-cluster threshold and
states in the two-cluster continuum. Analysis of the correlation
functions in different Jacobi trees reveals polarizability of
two-cluster bound states when the distance between the third
cluster and two-cluster subsystem is relatively small.

ACKNOWLEDGMENTS

This work was supported in part by the Program of Funda-
mental Research of the Physics and Astronomy Department
of the National Academy of Sciences of Ukraine (Project
No. 0117U000239) and by the Ministry of Education and
Science of the Republic of Kazakhstan, Research Grant No.
IPS 3106/GF4.

[1] F. Aguila and M. G. Doncel, Nuovo Cimento A 59, 283
(1980).

[2] O. V. Bochkarev, L. V. Chulkov, A. A. Korsheninnikov, E. A.
Kuz’min, I. G. Mukha, and G. B. Yankov, Nucl. Phys. A 505,
215 (1989).

[3] R. J. Charity, K. Mercurio, L. G. Sobotka, J. M. Elson, M.
Famiano, A. Banu, C. Fu, L. Trache, and R. E. Tribble, Phys.
Rev. C 75, 051304 (2007).

[4] R. I. Jibuti and R. Y. Keserashvili, Czech. J. Phys. 30, 1090
(1980).

[5] E. Gerjuoy, Philos. Trans. R. Soc. London A 270, 197 (1971).
[6] A. V. Nesterov, V. S. Vasilevsky, and T. P. Kovalenko, Phys. At.

Nucl. 72, 1450 (2009).
[7] V. S. Vasilevsky, F. Arickx, J. Broeckhove, and T. P. Kovalenko,

Nucl. Phys. A 824, 37 (2009).
[8] Y. A. Lashko, G. F. Filippov, and V. S. Vasilevsky, Nucl. Phys.

A 958, 78 (2017).
[9] D. R. Tilley, C. M. Cheves, J. L. Godwin, G. M. Hale, H. M.

Hofmann, J. H. Kelley, C. G. Sheu, and H. R. Weller, Nucl. Phys.
A 708, 3 (2002).

[10] T. K. Das, H. T. Coelho, and M. Fabre de la Ripelle, Phys. Rev.
C 26, 2288 (1982).

[11] J. L. Ballot, M. Fabre de la Ripelle, and J. S. Levinger, Phys.
Rev. C 26, 2301 (1982).

[12] E. Nielsen, D. V. Fedorov, A. S. Jensen, and E. Garrido, Phys.
Rep. 347, 373 (2001).

[13] K. M. Daily, A. Kievsky, and C. H. Greene, Few-Body Syst. 56,
753 (2015).

[14] V. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove,
Phys. Rev. C 63, 034606 (2001).

[15] F. Zernike and H. C. Brinkman, Proc. Kon. Acad. Wetensch.
Amsterdam 38, 161 (1935).

[16] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J.
Thompson, and J. S. Vaagen, Phys. Rep. 231, 151 (1993).

[17] M. Viviani, A. Kievsky, and S. Rosati, Few-Body Sys. 30, 39
(2001).

[18] C. R. Chen, J. L. Friar, and G. L. Payne, Few-Body Sys. 31, 13
(2001).,

[19] V. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove,
Phys. Rev. C 63, 034607 (2001).

064605-15

https://doi.org/10.1007/BF02816665
https://doi.org/10.1007/BF02816665
https://doi.org/10.1007/BF02816665
https://doi.org/10.1007/BF02816665
https://doi.org/10.1016/0375-9474(89)90371-0
https://doi.org/10.1016/0375-9474(89)90371-0
https://doi.org/10.1016/0375-9474(89)90371-0
https://doi.org/10.1016/0375-9474(89)90371-0
https://doi.org/10.1103/PhysRevC.75.051304
https://doi.org/10.1103/PhysRevC.75.051304
https://doi.org/10.1103/PhysRevC.75.051304
https://doi.org/10.1103/PhysRevC.75.051304
https://doi.org/10.1007/BF01604470
https://doi.org/10.1007/BF01604470
https://doi.org/10.1007/BF01604470
https://doi.org/10.1007/BF01604470
https://doi.org/10.1098/rsta.1971.0075
https://doi.org/10.1098/rsta.1971.0075
https://doi.org/10.1098/rsta.1971.0075
https://doi.org/10.1098/rsta.1971.0075
https://doi.org/10.1134/S1063778809090051
https://doi.org/10.1134/S1063778809090051
https://doi.org/10.1134/S1063778809090051
https://doi.org/10.1134/S1063778809090051
https://doi.org/10.1016/j.nuclphysa.2009.03.011
https://doi.org/10.1016/j.nuclphysa.2009.03.011
https://doi.org/10.1016/j.nuclphysa.2009.03.011
https://doi.org/10.1016/j.nuclphysa.2009.03.011
https://doi.org/10.1016/j.nuclphysa.2016.11.004
https://doi.org/10.1016/j.nuclphysa.2016.11.004
https://doi.org/10.1016/j.nuclphysa.2016.11.004
https://doi.org/10.1016/j.nuclphysa.2016.11.004
https://doi.org/10.1016/S0375-9474(02)00597-3
https://doi.org/10.1016/S0375-9474(02)00597-3
https://doi.org/10.1016/S0375-9474(02)00597-3
https://doi.org/10.1016/S0375-9474(02)00597-3
https://doi.org/10.1103/PhysRevC.26.2288
https://doi.org/10.1103/PhysRevC.26.2288
https://doi.org/10.1103/PhysRevC.26.2288
https://doi.org/10.1103/PhysRevC.26.2288
https://doi.org/10.1103/PhysRevC.26.2301
https://doi.org/10.1103/PhysRevC.26.2301
https://doi.org/10.1103/PhysRevC.26.2301
https://doi.org/10.1103/PhysRevC.26.2301
https://doi.org/10.1016/S0370-1573(00)00107-1
https://doi.org/10.1016/S0370-1573(00)00107-1
https://doi.org/10.1016/S0370-1573(00)00107-1
https://doi.org/10.1016/S0370-1573(00)00107-1
https://doi.org/10.1007/s00601-015-1012-x
https://doi.org/10.1007/s00601-015-1012-x
https://doi.org/10.1007/s00601-015-1012-x
https://doi.org/10.1007/s00601-015-1012-x
https://doi.org/10.1103/PhysRevC.63.034606
https://doi.org/10.1103/PhysRevC.63.034606
https://doi.org/10.1103/PhysRevC.63.034606
https://doi.org/10.1103/PhysRevC.63.034606
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1007/s006010170017
https://doi.org/10.1007/s006010170017
https://doi.org/10.1007/s006010170017
https://doi.org/10.1007/s006010170017
https://doi.org/10.1007/s006010170002
https://doi.org/10.1007/s006010170002
https://doi.org/10.1007/s006010170002
https://doi.org/10.1007/s006010170002
https://doi.org/10.1103/PhysRevC.63.034607
https://doi.org/10.1103/PhysRevC.63.034607
https://doi.org/10.1103/PhysRevC.63.034607
https://doi.org/10.1103/PhysRevC.63.034607


V. S. VASILEVSKY, YU. A. LASHKO, AND G. F. FILIPPOV PHYSICAL REVIEW C 97, 064605 (2018)

[20] A. V. Nesterov, F. Arickx, J. Broeckhove, and V. S. Vasilevsky,
Phys. Part. Nucl. 41, 716 (2010).

[21] S. Korennov and P. Descouvemont, Nucl. Phys. A 740, 249
(2004).

[22] V. S. Vasilevsky, A. V. Nesterov, F. Arickx, and P. van Leuven,
Yad. Fiz. 60, 413 (1997) [Phys. Atomic Nuclei 60, 343 (1997)].

[23] V. S. Vasilevsky, A. V. Nesterov, and O. F. Chernov, Phys. At.
Nucl. 64, 1409 (2001).

[24] S. P. Merkuriev, C. Gignoux, and A. Laverne, Ann. Phys. (N.Y.)
99, 30 (1976).

[25] L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory
for Several Particle Systems (Kluwer, Dordrecht, 1993).

[26] J. L. Friar and G. L. Payne, in Coulomb Interactions in Nuclear
and Atomic Few-Body Collisions, edited by F. S. Levin and
D. A. Micha (Plenum, New York, 1996), pp. 97–168.

[27] G. F. Filippov and I. P. Okhrimenko, Yad. Fiz. 32, 932 (1980)
[Sov. J. Nucl. Phys. 32, 480 (1980)].

[28] G. F. Filippov, Yad. Fiz. 33, 928 (1981) [Sov. J. Nucl. Phys. 33,
488 (1981)].

[29] E. J. Heller and H. A. Yamani, Phys. Rev. A 9, 1201 (1974).
[30] G. F. Filippov, L. L. Chopovsky, and V. S. Vasilevsky, Yad. Fiz.

37, 839 (1981) [Sov. J. Nucl. Phys. 37, 500 (1983)].
[31] G. F. Filippov and Yu. A. Lashko, Fiz. Elem. Chastits At. Yadra

36, 1373 (2005) [Phys. Part. Nuclei 36, 714 (2005)].

[32] The J -Matrix Method. Developments and Applications, edited
by A. D. Alhaidari, H. A. Yamani, E. J. Heller, and M. S.
Abdelmonem (Springer, Dordrecht, 2008).

[33] H. A. Yamani and L. Fishman, J. Math. Phys. 16, 410 (1975).
[34] T. Y. Mikhelashvili, A. M. Shirokov, and Y. F. Smirnov, J. Phys.

G Nucl. Phys. 16, 1241 (1990).
[35] S. A. Zaitsev, Y. F. Smirnov, and A. M. Shirokov, Theor. Math.

Phys. 117, 1291 (1998).
[36] T. Myo, Y. Kikuchi, H. Masui, and K. Katō, Progr. Part. Nucl.

Phys. 79, 1 (2014).
[37] H. Horiuchi, K. Ikeda, and K. Katō, Progr. Theor. Phys. Suppl.

192, 1 (2012).
[38] D. R. Thompson, M. LeMere, and Y. C. Tang, Nucl. Phys. A

286, 53 (1977).
[39] I. Reichstein and Y. C. Tang, Nucl. Phys. A 158, 529 (1970).
[40] V. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove,

Phys. Rev. C 63, 064604 (2001).
[41] J. Broeckhove, F. Arickx, P. Hellinckx, V. S. Vasilevsky, and

A. V. Nesterov, J. Phys. G Nucl. Phys. 34, 1955 (2007).
[42] V. Vasilevsky, F. Arickx, W. Vanroose, and J. Broeckhove, Phys.

Rev. C 85, 034318 (2012).
[43] V. S. Vasilevsky, K. Katō, and N. Z. Takibayev, Phys. Rev. C 96,

034322 (2017).
[44] A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109 (1970).

064605-16

https://doi.org/10.1134/S1063779610050047
https://doi.org/10.1134/S1063779610050047
https://doi.org/10.1134/S1063779610050047
https://doi.org/10.1134/S1063779610050047
https://doi.org/10.1016/j.nuclphysa.2004.05.013
https://doi.org/10.1016/j.nuclphysa.2004.05.013
https://doi.org/10.1016/j.nuclphysa.2004.05.013
https://doi.org/10.1016/j.nuclphysa.2004.05.013
https://doi.org/10.1134/1.1398932
https://doi.org/10.1134/1.1398932
https://doi.org/10.1134/1.1398932
https://doi.org/10.1134/1.1398932
https://doi.org/10.1016/0003-4916(76)90083-X
https://doi.org/10.1016/0003-4916(76)90083-X
https://doi.org/10.1016/0003-4916(76)90083-X
https://doi.org/10.1016/0003-4916(76)90083-X
https://doi.org/10.1103/PhysRevA.9.1201
https://doi.org/10.1103/PhysRevA.9.1201
https://doi.org/10.1103/PhysRevA.9.1201
https://doi.org/10.1103/PhysRevA.9.1201
https://doi.org/10.1063/1.522516
https://doi.org/10.1063/1.522516
https://doi.org/10.1063/1.522516
https://doi.org/10.1063/1.522516
https://doi.org/10.1088/0954-3899/16/8/020
https://doi.org/10.1088/0954-3899/16/8/020
https://doi.org/10.1088/0954-3899/16/8/020
https://doi.org/10.1088/0954-3899/16/8/020
https://doi.org/10.1007/BF02557169
https://doi.org/10.1007/BF02557169
https://doi.org/10.1007/BF02557169
https://doi.org/10.1007/BF02557169
https://doi.org/10.1016/j.ppnp.2014.08.001
https://doi.org/10.1016/j.ppnp.2014.08.001
https://doi.org/10.1016/j.ppnp.2014.08.001
https://doi.org/10.1016/j.ppnp.2014.08.001
https://doi.org/10.1143/PTPS.192.1
https://doi.org/10.1143/PTPS.192.1
https://doi.org/10.1143/PTPS.192.1
https://doi.org/10.1143/PTPS.192.1
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1016/0375-9474(70)90201-0
https://doi.org/10.1016/0375-9474(70)90201-0
https://doi.org/10.1016/0375-9474(70)90201-0
https://doi.org/10.1016/0375-9474(70)90201-0
https://doi.org/10.1103/PhysRevC.63.064604
https://doi.org/10.1103/PhysRevC.63.064604
https://doi.org/10.1103/PhysRevC.63.064604
https://doi.org/10.1103/PhysRevC.63.064604
https://doi.org/10.1088/0954-3899/34/9/008
https://doi.org/10.1088/0954-3899/34/9/008
https://doi.org/10.1088/0954-3899/34/9/008
https://doi.org/10.1088/0954-3899/34/9/008
https://doi.org/10.1103/PhysRevC.85.034318
https://doi.org/10.1103/PhysRevC.85.034318
https://doi.org/10.1103/PhysRevC.85.034318
https://doi.org/10.1103/PhysRevC.85.034318
https://doi.org/10.1103/PhysRevC.96.034322
https://doi.org/10.1103/PhysRevC.96.034322
https://doi.org/10.1103/PhysRevC.96.034322
https://doi.org/10.1103/PhysRevC.96.034322
https://doi.org/10.1103/PhysRevA.1.1109
https://doi.org/10.1103/PhysRevA.1.1109
https://doi.org/10.1103/PhysRevA.1.1109
https://doi.org/10.1103/PhysRevA.1.1109



