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Pairing properties from random distributions of single-particle energy levels

M. A. Al Mamun,* C. Constantinou,† and M. Prakash‡
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA

(Received 25 May 2017; revised manuscript received 6 December 2017; published 29 June 2018)

Exploiting the similarity between the bunched single-particle energy levels of nuclei and of random distributions
around the Fermi surface, pairing properties of the latter are calculated to establish statistically based bounds
on the basic characteristics of the pairing phenomenon. When the most probable values for the pairing gaps
germane to the BCS formalism are used to calculate thermodynamic quantities, we find that while the ratio of
the critical temperature Tc to the zero-temperature pairing gap is close to its BCS Fermi gas value, the ratio of
the superfluid to the normal phase specific heats at Tc differs significantly from its Fermi gas counterpart. The
largest deviations occur when a few levels lie closely on either side of the Fermi energy but other levels are far
away from it. The influence of thermal fluctuations, expected to be large for systems of finite number of particles,
were also investigated using a semiclassical treatment of fluctuations. When the average pairing gaps along with
those differing by one standard deviation are used, the characteristic discontinuity of the specific heat at Tc in the
BCS formalism was transformed to a shoulderlike structure indicating the suppression of a second-order phase
transition as experimentally observed in nanoparticles and several nuclei. Contrasting semiclassical and quantum
treatments of fluctuations for the random spacing model is currently underway.
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I. INTRODUCTION

The pairing phenomenon is ubiquitous in systems of
fermions interacting through attractive interactions. The de-
velopment of the theory for electron pairing in solids by
Bardeen-Cooper-Schriffer (BCS) [1,2] was soon followed by
the realization that pairing of neutrons and protons in nuclei led
to gaps in their excitation energies [3]. Pairing also manifests
itself in the binding energies of nuclei, even-even nuclei being
slightly more bound than odd-even or odd-odd nuclei [4]. Level
densities of excited nuclei [5,6], their dynamical properties
such as rotational inertia [7] and large amplitude motion in
fissioning nuclei are also influenced by pairing [8]. Tunneling
probabilities in spontaneously fissioning nuclei are enhanced
owing to pairing and thermal neutrons induce fission of odd-A
nuclei, e.g., 235

92 U vs 238
92 U. Pairing energies in nuclei receive

contributions from sources besides BCS pairing as nuclear
sizes are much smaller than the coherence length of the pairing
field [9]. The odd-even staggering is caused by a combination
of effects such as the pairwise filling of orbitals, two- and
three-body interactions, the bunching of single-particle levels
near the Fermi energy, and the softness of nuclei to quadrupolar
interactions. The global description of pairing in nuclei is
based on the Hartree-Fock-Bogoliubov (HFB) scheme and its
extensions [8,10]. The attractive interactions between nucleons
in the spin S = 0 and S = 1 channels are primarily responsible
for pairing in nuclei. For accounts of recent developments in
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novel superfluids and superconductors in the condensed matter,
nuclear, and stellar environments, see Ref. [11].

Through measurements of nuclear level densities ρ ≡
ρ(Ex) at closely spaced excitation energies Ex , several at-
tempts have been made to establish pairing correlations in
nuclei [12–15]. The critical temperature Tc at which the pairing
gaps �(T ) vanish in systems of very large number of particles
is a characteristic of a second-order phase transition. Tc will
be hard to pin down in nuclei as they are comprised of
small numbers of particles owing to significant fluctuations
in the order parameter �(T ), but distinct signatures can
likely remain. The experimental procedure adopted has been
to examine the behavior of the specific heat at constant
volume CV vs Ex (or vs T ) inferred from ρ using CV ∝
(d ln ρ/d ln Ex)(d ln Ex/d ln T ), and looking for a smooth, but
nonmonotonic structure in CV at a critical excitation energy
Ex,c (or remnant of a critical temperature Tc), which signals a
crossover from the fully paired to the normal phase. The moder-
ate success achieved thus far is due to issues associated with the
normalization of level densities close to the neutron separation
energy [16]. From an experimental perspective, excitation
energies are well known, but not the temperature T (unlike
in condensed matter experiments), which requires the help of
theoretical models in which the relationship between Ex vs T
is unambiguous, albeit model dependent. (Tc should be under-
stood as referring to the temperature around which a nonmono-
tonic structure in CV vs T is present.) Additional complications
arise for T � Tc due to the role of collective effects, which in-
fluence the magnitude of ρ. Notwithstanding these difficulties,
the goal of establishing Tc in nuclei appears to be within reach
through continuing innovations in experimental techniques
and theoretical efforts. Indeed, a shoulderlike structure (also
referred to as an S-shape structure, although a severe bending
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of one’s head is required to see the S in many cases) in CV vs
T has been experimentally observed for many nuclei [12–15].

The study of fluctuations in the order parameter �(T ) and
the suppression of superconductivity/superfluidity in systems
of small number of particles (nanoparticles in modern par-
lance) in condensed matter physics [17,18] predates similar
efforts in nuclear physics [19,20]. The inadequacy of the mean-
field BCS formalism becomes apparent in situations when the
mean level spacing of the single-particle (sp) energy levels
δ � �. As these studies have revealed, the absence of a second-
order phase transition with a discontinuity in CV at Tc is direct
consequence of large fluctuations in �. A study of the role of
thermal fluctuations, albeit with a semiclassical treatment of
fluctuations following Refs. [20,21], is also undertaken in this
work. This treatment goes beyond BCS insofar as the gauge
(number) symmetry broken in the BCS approach is restored.
A full quantum treatment of fluctuations is outside the scope
of this paper, but will be reported separately.

In this paper, we introduce the random spacing (RS) model
to study the pairing properties of a system consisting of
a finite number of nucleons. The basic feature of the RS
model is the randomly distributed (sp) energy levels around
the Fermi surface to mimic the bunched shell-model orbitals
in nuclei generated through the use of different underlying
energy density functionals. Although reminiscent of the ran-
dom matrix model, the RS model differs from it in that
diagonalization of a random Hamiltonian matrix is bypassed.
Insofar as many random realizations of the sp energy levels
will be considered for a fixed number of particles, the use
of different physically motivated energy density functionals
leading to different disposition of the sp levels will be captured.
The pairing properties of the RS model are explored in two
distinct stages as outlined below.

In the first stage, the BCS formalism in which the most
probable gap values are employed to calculate thermodynamic
quantities such as the excitation energy, entropy, and specific
heat is used. The ensuing results are compared with the
analytical results of the Fermi gas (FG) and constant spacing
(CS) models as well those of select nuclei. In the second stage,
the role of fluctuations is examined based on a semiclassical
treatment of fluctuations reserving for a later study a fully
quantum treatment of the same. As in the first stage, a
comparison with results of the CS model and those of nuclei
including fluctuations is made.

The organization of this paper is as follows. In Sec. II, the
basic features of the RS model are introduced. A description of
the theoretical approach in the first stage of our investigations
and a discussion of our results is contained in Sec. III. The
influence of thermal fluctuations on the pairing gap and on
the thermodynamic quantities examined in the second stage
is described in Sec. IV, which also includes results and
discussion. Our summary and conclusions are in Sec. V.

II. RANDOM SPACING MODEL

Our objective here is to examine the pairing properties in
a global manner keeping in mind that the single-particle (sp)
energies of nuclei exhibit bunching caused by shell and pairing
effects. Figure 1 shows the bunching of neutron sp energies

FIG. 1. Neutron single-particle energy levels in the indicated
nuclei from HFB calculations [22,23] using the SkO′ energy density
functional with full pairing. The dotted lines indicate the location of
the Fermi energies in each case.

from HFB calculations using the energy density functional
SkO′ with full pairing in 57Co, 126Sn, and 197Pt [22,23]. The
proton levels for these cases (not shown) also exhibit similar
bunching. We stress, however, that use of different energy
density functionals and pairing schemes (constant force,
surface or bulk pairing, etc.) lead to significant differences in
the spacing of levels around the Fermi surface [24].

When the sp levels of a large number of nuclei are examined,
they appear to resemble those generated randomly around the
Fermi surface. An example is shown in Fig. 2 where the
neutron sp levels of 126Sn are contrasted with three cases
of randomly generated sp levels with the same number of
neutrons at T = 0. Although not exact replicas, the latter
share the property of bunched levels with nuclei. In a set
consisting of a very large number of randomly generated
sp levels for a given nucleus, some are likely to represent
the true situation, especially considering the dependence on
different energy density functionals currently in use. Thus,
the primary focus of this work is to examine the pairing
properties from randomly distributed sp energy levels with

FIG. 2. Neutron single-particle energy levels in 126Sn from
HF+BCS calculations [22,23] using the SkO′ energy density func-
tional with constant pairing force (leftmost set) and three randomly
generated single-particle energy levels.

064324-2



PAIRING PROPERTIES FROM RANDOM DISTRIBUTIONS … PHYSICAL REVIEW C 97, 064324 (2018)

appropriate constraints imposed to model sp energy levels
of nuclei. We will (i) address the extent to which the basic
characteristics such as Tc/�0 [where �0 = �(T = 0)], the
ratio of superfluid to normal specific heats at constant volume,
C

(s)
V /C

(n)
V |

Tc
, and 1

Tc

d�2

dT
|
Tc

compare with those Fermi gas (FG)
and HFB calculations, and (ii) place statistically based bounds
for the case randomly distributed sp energy levels.

III. PAIRING PROPERTIES

With model sp energies as input, various physical quantities
can be calculated utilizing the BCS equations generalized to
include angular momentum [25]:

N =
∑
s,k

[
1 − εk − λ

2Ek

tanh

(
Ek + (−1)sγmk

2T

)]
(1)

2

G
=

∑
s,k

1

2Ek

tanh

(
Ek + (−1)sγmk

2T

)
, (2)

M =
∑
s,k

mk

(−1)s+1

1 + exp
(

Ek+(−1)sγmk

2T

) , (3)

where N denotes the number of particles, εk are the sp energies,
λ is the chemical potential, and T is the temperature. The
summation index s takes on the values 1 and 2, whereas
the index k sums over all sp energy levels. The quasiparticle
energy is

Ek =
√

(εk − λ)2 + �2, (4)

where � is the pairing gap at the Fermi surface generated by
the pairing interaction with strength G. The quantity M is the
projection of the total angular momentum on a laboratory-fixed
z axis or on a body-fixed z′ axis, mk are the sp spin projections
and γ is the Lagrange multiplier that fixes M . Equations (1)–
(3), studied as a function of (T ,M) for fixed (N,G) provide
the critical temperature Tc below which the system is paired
[� ≡ �(T ,M) �= 0] and above which it is normal [� = 0].
The excitation energy Ex = E(T ) − E(0), entropy S and the
specific heat at constant volume CV = T (dS/dT ) are obtained
from [25,26]

E(T ) =
∑
s,k

εk

[
1 − εk − λ

Ek

tanh

(
E

(s)
k

2T

)]
− �2

G
(5)

S =
∑
s,k

{
ln

[
1 + exp

(−E
(s)
k

/
T

)] + E
(s)
k

/
T

1 + exp
(
E

(s)
k

/
T

)
}

(6)

CV = 1

4

∑
s,k

E
(s)
k /T

cosh2
(
E

(s)
k

/
2T

)[
E

(s)
k

T
− 1

2Ek

d�2

dT

]
, (7)

where E
(s)
k = Ek + (−1)sγmk .

To mimic the sp energy levels εk of nuclei in the random
spacing (RS) model, random numbers from a uniform sequence
are generated between ±2h̄ω from the Fermi energy EF (= λ
at T = 0) with h̄ω = 41A−1/3, where A is the mass number, to
conform to the systematics of spacing between major shells in

nuclei [4]. For light nuclei, Ref. [27] recommends the relation
h̄ω = 45A−1/3 − 25A−2/3. HFB and/or HF+BCS calculations
of nuclei guide the choice of G in solving Eqs. (1) and (2)
to obtain � and λ. In the results reported below, the T = 0
pairing energies were tallied with the systematics for nuclei
with A = N + Z [28]. For the neutron pairing gaps,

�N,Z = 24/A + 0.82 ± 0.27 MeV, for N odd,
(8)

�N,Z = 41/A + 0.94 ± 0.31 MeV, for N even,

whereas for the proton pairing gaps,

�N,Z = 0.96 ± 0.28 MeV, for Z odd,
(9)

�N,Z = 1.64 ± 0.46 MeV, for Z even.

As in the case of the FG or constant spacing (CS) models,
an analytical calculation of Q = − 1

Tc

d�2

dT
|
Tc

[2,26] is precluded
for discrete bunched levels. We have therefore devised a three-
term formula utilizing Refs. [29,30] to calculate Q. Explicitly,
for a general f and step size h, the right end-point derivative
is

f ′(x) = 1

39

[
32φ

(
h

4

)
+ 12φ

(
h

2

)
− 5φ(h)

]
+ O(h4),

(10)

φ(h) = 1

2h
[f (x − 2h) − 4f (x − h) + 3f (x)].

Results

First, we recall the analytical results for spin-doublet sp
levels (degeneracy d = 2) in the FG model in which the sp
level density g(ε) ∝ ε1/2 and for the CS model in which g(ε)
is a constant, for both of which [1,2,25,26,31]

�0 = h̄ω

sinh(1/gG)
≈ 2h̄ω exp

(
− 1

gG

)
(11)

Tc

�0
� 0.57,

C
(s)
V

C
(n)
V

� 2.43 and − 1

Tc

d�2

dT

∣∣∣∣
Tc

� 9.4, (12)

where ±h̄ω are the upper and lower limits of integration above
and below the Fermi energy EF . The similarity of results
in these two models stems from the conditions T/EF � 1,
�0/EF � 1 (i.e., pairing is a Fermi surface phenomenon)
and g(EF )G � 1 (weak coupling) being satisfied.

Our results for the RS model are for a large number (� 500)
of independent random realizations of sp energy levels for a
given N at T = 0. The pairing gap � vs T shown in Fig. 3(a)
corresponds to 500 such realizations with N = 76, M = 0, and
G = 0.2 (similar results ensue for other values of G) for spin-
doublet levels. The varying �0 and Tc are due to the different
set of sp levels encountered in each run. Every curve in this
figure resembles the BCS prediction for the FG or CS model.
The nearly universal behavior displayed in Fig. 3(b) indicates
that even for randomly generated sp levels, deviations from the
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FIG. 3. (a) Pairing gap vs temperature for 500 sets of randomly
generated sp levels. (b) Pairing gap normalized to its zero-temperature
value vs temperature normalized to the critical temperature for the
results in (a).

BCS relations

�/�0 � 1 −
(

2πT

�0

)1/2

exp

(
−�0

T

)
for T � �0,

� 1.74

(
1 − T

Tc

)1/2

for Tc − T � Tc, (13)

are small. Small quantitative differences from the BCS result
for intermediate values of T/Tc, evident from the bandlike
structure of the bell-shaped curve in Fig. 3(b), are caused by
the variety of levels close to EF .

The ratio C
(s)
V /C

(n)
V at Tc is shown in Fig. 4. Note that the

scatter around the mean value, which is moderately close to
that for the FG or CS model, is significant for the RS model.
The outlying points in this figure correspond to cases in which
a couple of levels lie closely on either side of EF , but other
levels are far away from it. In Table I, the basic characteristics
of the phase transition for the RS model are compared with
those of FG and CS models.

The role of angular momentum on � is shown in Fig. 5
for the RS model with �0 = 1 MeV and mk = 2 to provide
comparison with similar results for the CS model [25]. In-
creasing values of T and M diminish �, and thus Tc relative

FIG. 4. Ratio of the superfluid to normal phase specific heats at
constant volume at Tc.

to when M = 0. As for the CS model, the paired region
extends to Mmax beyond Mc at which Tc = 0 in the RS
model with Mmax/Mc = 1.22 ± 0.12 in accord with �1.22
for the former case. For Mc < M < Mmax, two critical points
exist in both of these models. For values of M accessible in
experiments, this region is likely not encountered. We have
verified that up to M � 10, the first-order approximation, M �
(βγ/2)

∑
k m2

ksech2(Ek/2T ), is sufficiently accurate, terms
involving higher even powers of mk being required only for
larger M .

Endowing the sp energy levels of the CS and RS models
with d = 2j + 1 angular momentum (j ) degeneracies of the
shell-model orbitals of spherical nuclei yield results similar
(to within the standard deviations shown in Table I) to those
for nuclei. The T = 0 results for the nuclei shown conform
to the nuclear systematics in Eq. (8). Results of the RS
model for values of N other than 76 show similar trends.
For example, Tc/�0 = 0.56 ± 0.04(0.57 ± 0.04),C(s)

V /C
(n)
V =

3.23 ± 1.47(3.46 ± 2.15), andQ = 9.81 ± 1.07(9.71 ± 1.17)
for N = 30(119). Note that although Tc/�0’s remain close to
the FG or CS model predictions, properties associated with
the specific heat vary considerably in the RS model as well
as in HF+BCS calculations owing to the variety of bunched

TABLE I. Characteristics of the pairing phase transition. Results
for the CS and RS models with N = 76 are for 1000 runs. The
HF+BCS results for the SkO′ energy density functional are for
protons and neutrons, respectively. Entries with N/A correspond to
the case when �0 = 0.

Model Tc

�0

C
(s)
V

C
(n)
V

∣∣∣
Tc

Q = − 1
Tc

d�2

dT

∣∣
Tc

FG & CS(d = 2) �0.57 �2.43 �9.4
CS(d = 2j + 1) 0.55 2.99 9.92
RS(d = 2) 0.57 ± 0.05 2.71 ± 0.73 9.51 ± 0.81
RS(d = 2j + 1) 0.57 ± 0.04 3.05 ± 1.53 9.55 ± 0.98

HF+BCS(57Co) 0.59, 0.56 2.30,2.33 9.85,9.75
HF+BCS(126Sn) N/A,0.54 N/A,4.47 N/A,10.03
HF+BCS(197Pt) 0.55,0.54 3.46,4.93 10.33,10.52
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FIG. 5. Pairing gap � vs temperature, T , and the projection of
the total angular momentum, M .

sp levels encountered. The largest deviations from the mean
values occur when a few levels are on either side of λ, but
other levels are far away from it (see Fig. 6). In such cases,
C

(n)
V is significantly smaller than those in other cases, which

renders the ratio C
(s)
V /C

(n)
V very large.

Unlike in the FG and CS models in which the parameter gG
chiefly determines the pairing properties, the average density
of states ḡ(EF ) and G separately influence results in the RS
model as well as those in HF+BCS calculations of nuclei. By
comparing with results of HFB calculations for typical cases,
we have verified that results of the RS model encompass the
case of deformed nuclei for which the above degeneracies are
lifted.

IV. INFLUENCE OF FLUCTUATIONS IN �

The gap equation, Eq. (2), follows from the condition

∂

∂�

∣∣∣∣
T

= 0, (14)

FIG. 6. Examples of random sp energy spectra illustrating the
origin of large deviations in Cs

V /Cn
V . The long horizontal lines show

the locations of the corresponding Fermi energies.

where (we take M = 0 hereafter for simplicity) the grand
potential

(T ,�) = −T lnZ =
∑

k

(εk − λ − Ek)

− 2T
∑

k

ln

[
1 + exp

(
−Ek

T

)]
+ �2

G
, (15)

where Z is the grand partition function. (Note that  as
defined above differs from that in Ref. [20] by the factor
−T , but conforms to the conventional definition in Ref. [21].)
Equation (14) delivers the most probable gap values �mp(T ).
The transition to the paired state is usually a second-order
phase transition and �mp(T ) is its order parameter. Its decrease
with increasing T is continuous with a discontinuity in its
slope at the critical temperature Tc beyond which the system
becomes unpaired. There is no latent heat but a discontinuity
in specific heat at Tc. Utilizing �mp to determine the ther-
mal variables is justified when the corresponding probability
distribution P (�) is sharply peaked at �mp. In a system
with a large number of particles, P (�) approaches a delta
function. However, nuclei are comprised of a small number
of particles and fluctuations can be very large, particularly
when the mean single-particle level spacing δ̄ = 1/ḡ � �. In
this case, superconductivity/superfluidity is expected to vanish
although pairing correlations may persist. For a small number
of particles, but still with� ∼ δ, quantum fluctuations suppress
superconducting properties and the mean-field BCS theory
becomes invalid. These features were uncovered for small
superconducting grains (nanoparticles) in condensed matter
physics [17,18] and are also characteristic of nuclei with a
small number of particles [19].

When � 
 δ and can be considered as strongly coupled
to all the other intrinsic degrees of freedom, the isothermal
semiclassical probability distribution for � is given by [20,21]

P (�) ∝ exp[−(T ,�)/T ]. (16)

As emphasized in Ref. [21], when the temperature is too
low or when � varies too rapidly with time the fluctuations
cannot be treated thermodynamically, and a quantum treat-
ment becomes necessary to account for the purely quantum
fluctuations. Here we will use the semiclassical treatment of
fluctuations in � as in Ref. [20] by using Eq. (16) to examine
the extent of its utility and also to identify the regions of T or
Ex in which a proper quantum treatment is necessary.

In what follows, we consider the role of fluctuations in � on
the thermal variables for the CS, RS, and HFB models when
the gap values

�av =
∑

� �P (�)∑
� P (�)

, �av ± σ with

σ =
[∑

� �2P (�)∑
� P (�)

− �2
av

]1/2

(17)

are used to calculate the various thermal variables. For any
value of � including �mp, the number, energy, and entropy
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expressions [for M = 0)] are given by [20,25]

N = ∂ lnZ
∂α

=
∑

k

[
1 − εk − λ

Ek

tanh

(
Ek

2T

)]
+ �

T

∂�

∂α

[∑
k

1

Ek

tanh

(
Ek

2T

)
− 2

G

]
, (18)

where α = λ/T ,

E = T 2 ∂ lnZ
∂T

=
∑

k

εk

[
1 − εk − λ

Ek

tanh

(
Ek

2T

)]
− �2

G
−

(
�2 − �T

∂�

∂T

)[∑
k

1

Ek

tanh

(
Ek

2T

)
− 2

G

]
(19)

and

S = (E − λN − )/T

= 2
∑

k

{
ln[1 + exp(−Ek/T )] + 2

Ek/T

1 + exp(Ek/T )

}
− �

T

(
λ

T

∂�

∂α
− T

∂�

∂T

)[∑
k

1

Ek

tanh

(
Ek

2T

)
− 2

G

]
. (20)

For � = �mp, the familiar forms for these quantities are
recovered as the factor in the last parentheses in each of
the above expressions is the gap equation in Eq. (2) for
M = 0 which vanishes. The specific heat at constant volume
CV = dE/dT = T (∂S/∂T ) is readily evaluated numerically
(or from the lengthy analytical expression in Ref. [32]). The
numerical results presented below for Ex and CV are for
Ex(�mp,�av,�av ± σ ) and CV (�mp,�av,�av ± σ ), respec-
tively, where appropriate. Note, however, that

〈Q〉 =
∑

� QP (�)∑
� P (�)

�= Q(�av), (21)

except when Q, that can be any of Ex,CV , and S, is a
linear function of �, which is not true in the present context.
Nonetheless, the results shown below amply illustrate the role
of fluctuations in �.

Note that the last terms in Eqs. (18) through (20) involving
the gap equation together with appropriate multiplicative
factors takes the semiclassical analysis of fluctuations beyond
BCS, but remains at the mean-field level insofar as only thermal
fluctuations on a static underlying mean field are considered.
Equation (18) ensures number conservation thereby restoring
the broken gauge (number) symmetry of the BCS approach.

Results

1. CS Model

Although the influence of fluctuations in the CS model
have been considered before using the semiclassical treatment
described above in Ref. [20], we summarize our main findings
here to enable comparison with the results in the RS and
HFB models to be discussed later. We also include results
related with standard deviations from �av not shown in
Ref. [20]. The role of fluctuations is analyzed by choosing
a constant spacing g = 5 MeV−1 between doubly degenerate
single-particle levels for A = 144 and �0 = 1 MeV at T = 0
as in Ref. [20]. For this choice, G = 0.0581 MeV, h̄ω �
41A−1/3 = 7.78 MeV, with levels distributed between ±2h̄ω
around λmp(0) = −1.3471 MeV at T = 0. Figure 7 shows

P (�) [normalized such that P (�mp) = 1] vs � for different
temperatures. Noteworthy features in this figure are (i) for
T � 0, the distribution P (�) is symmetrical around �mp, (ii)
with increasing T , P (�) becomes increasingly asymmetrical,
and (iii) For T � Tc � 0.57 MeV, P (�) is peaked at � = 0.

Very similar results are obtained with g = 7 MeV−1 (as
in Ref. [20]) and �0 = 1 MeV for which G = 0.0462 MeV
at T = 0 MeV. In this case, the levels are distributed between
±1.4h̄ω to ensure that roughly equal number of levels lie above
and below λmp(0) = −0.7397 MeV. For all curves shown, λ(T )
vsT is calculated using Eq. (18) prior to the calculation of�(T )
required in the evaluation of P (�) in Eq. (16). The derivative
∂�/∂α needed in Eq. (18) is given by [25]

∂�

∂α
=

∑
k(ε − λ)(ak − bk)

(�/T )
∑

k(ak − bk)
with

ak = 1

2

1

E2
k

1

cosh2 Ek

2T

and bk = T

E3
k

tanh
Ek

2T
, (22)

FIG. 7. Probability distributions P (�) vs � at different T ’s. The
maximum for each P (�) occurs at the corresponding �mp obtained
from Eq. (2).
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FIG. 8. The most probable and average chemical potentials for
pairing gaps, �mp and �av.

which is valid for all models and not just for the CS model. For
T � Tc, λmp(T ) ≈ λmp(0) very nearly coincides with λav(T ),
whereas λmp(T ) is slightly below λav(T ) for T > Tc as shown
in Fig. 8.

In Fig. 9, the most probable average paring gaps, �mp

and �av, vs T are compared. Also shown are results for the
standard deviation σ and the gaps �av ± σ . In each case, the
appropriate λ(T ) was calculated with a numerical evaluation
of the derivative ∂�/∂α. The discontinuity at Tc that occurs for
�mp is absent for �av and �av ± σ . Furthermore, in the latter
cases finite values of gaps persist for T � Tc indicating that
some high-energy quasiparticles continue to undergo pairing.
As first noted in Ref. [20], these results imply that the second-
order phase transition present for �mp is considerably altered
by fluctuations. We have verified that the qualitative features
of these results are not changed when the degeneracy of each
single-particle energy level is increased to 4 (for the same �0

and A).

FIG. 9. The most probable and average pairing gaps, �mp and
�av, along with those differing by one standard deviation, σ .

FIG. 10. (a) Excitation energies with the gaps shown in Fig. 9.
(b) Specific heats at constant volume with the gaps shown in Fig. 9.

The excitation energies Ex vs T are shown in Fig. 10
for the various gap values shown in Fig. 9. The inset in
Fig. 10 shows an expanded version of the same results in
the vicinity of Tc. Notice that the kink present in Ex(�mp)
at Tc is absent in all other cases as a consequence of smooth
variations in �’s at and around Tc, further indicating the lack of
a strong second-order phase transition. The derivative ∂�/∂T ,
required in the evaluation Ex = E(T ) − E(0) from Eq. (19),
is straightforwardly calculated numerically.

The influence of fluctuations in � is particularly evident
in the behavior of the specific heats, CV ’s, with respect to T
shown in Fig. 10(b). Although the CV ’s with �av and �av ± σ
exhibit multiple extrema, the sharp discontinuity of CV (�mp)
at Tc is absent. Whether a similar behavior is exhibited in the
RS and HFB models will be the subject of the next two sections.

2. RS Model

We turn now to examine the effects of fluctuations in �
for the RS model, first with degeneracy d = 2 and thereafter
d = 2j + 1 to mimic shell-model-like configurations for A =
144. In both cases, the uniformly distributed random sp energy
levels were sorted in ascending order. The mean level spacing
δ̄ = (ḡ)−1, where ḡ is the mean level density, was chosen
to be much smaller than �0 = 1 MeV to facilitate a proper
comparison with results of the CS model. For each set of
random sp energy levels, the level separation and its probability
distribution enables the calculation δ̄ and thus of ḡ.
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FIG. 11. The most probable and average pairing gaps, �mp and
�av, for 50 independent random realizations of sp energies.

3. Degeneracy d = 2

The overall calculational scheme remains the same as for
the CS model described above. Our results to be discussed
below are for 50 independent realizations of sp energy levels.
The probability distribution P (�) vs � in each case looks very
similar to that of the CS model in Fig. 7 and is therefore not
shown.

Figure 11 shows the most probable gap �mp and the average
gap �av vs T for 50 independent realizations of sp energy
levels. The standard deviations σ and �av ± σ were also
calculated but are omitted for visual clarity. The band structures
for �mp and �av establish statistical bounds for each quantity.
As for the CS model, �av lacks the sharp discontinuity at Tc

and persists with a nonvanishing gap above Tc.
The excitation energies calculated using �mp and �av from

Eq. (19) are shown in Figs. 12(a) and 12(b), respectively.
Particle number was conserved at every stage of the calculation
by using the extended number equation, Eq. (18). The kinks in
Ex(�mp) at Tc are absent in Ex(�av) [Figs. 12(a) and 12(b)],
again signifying the lack of a second-order phase transition.

The corresponding specific heats, calculated by taking
numerical derivatives, are shown in Figs. 13(a) and 13(b). The
discontinuity in CV present for all different sets sp energy
levels when using �mp is absent when �av, likely more
appropriate for systems with small number of particles for
which fluctuations are large, is used. The discontinuity is
replaced by a so-called shoulderlike structure, which points to
the persistence of pairing correlations but not a second-order
phase transition. Note that the qualitative features for all
thermodynamic quantities in the RS model with d = 2 are
similar to those of the CS model.

4. Degeneracy d = 2 j + 1

Inclusion of angular momentum degeneracy d = 2j + 1 in
the sp levels of the RS model makes the model better to mimic
nuclei. In what follows, 36 sp energy levels were generated
between ±2h̄ω using a uniform sequence random number
generator and then sorted in ascending order so that the lowest
energy level is at the bottom. The sorted energy levels were
then assigned individual shell-model-like degeneracies 2, 4,
6, etc. For each set of a large number of such realizations,
the number and gap equations were then solved for T = 0 and

FIG. 12. Excitation energies with (a) �mp and (b) �av shown in
Fig. 11.

�0 = 1 MeV for a fixed N using the sp energy levels to extract
the corresponding pairing strength G and Fermi energy λ0. To
ensure pairing as a Fermi surface phenomenon, approximately
equal number of energy levels are needed above and below the
Fermi energy. Consequently, all the energy levels were then
shifted by a constant energy so that the shifted Fermi energy
λs is slightly below 0 MeV as a hole state.

The results of �mp,�av, and � ± σ for two such calcula-
tions as described above among hundreds of individual random
realizations of sp energy levels are shown in Fig. 14. The
latter two quantities were calculated following the procedure
described at the beginning of this section. For the cases
shown, the average level spacing δ̄ was found to be 0.82
and 0.87 MeV, respectively, which are slightly less than the
zero-temperature gaps �0 = 1 MeV. These numbers make
a semiclassical treatment of fluctuations valid, albeit on the
borderline of requiring a quantum treatment needed for cases
in which δ̄ � �0 as found for many nuclei. Note that the
qualitative features in Fig. 14 are similar to those in Fig. 9
of the CS model.

The excitation energies and specific heats corresponding to
the results in Fig. 14 are shown in Figs. 15(a)–15(d). Although
the overall features in this figure seem very similar to those
of the CS model, values of Ex and its slope with respect
to T (CV ) are different owing to the different bunching and
degeneracy of the individual sp energy levels of the RS model.
As the number of particles in the two cases are fixed at
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FIG. 13. Specific heats at constant volume with (a) �mp and (b)
�av shown in Fig. 11.

N = 144, differences between the two cases reflect the dif-
ferent dispositions of the sp energy levels, which can arise due
to use of different energy density functionals in describing
the same nucleus. One noticeable feature is that the Ex

curve calculated using �av-σ obtains slightly negative values
for near zero temperatures. There is a possibility of similar
occurrence even for Ex(�av) for other sp energy realizations.

FIG. 14. Same as Fig. 11, but for the RS model with degeneracy
d = 2j + 1.

FIG. 15. Same as Fig. 10, but for the RS model with degeneracy
d = 2j + 1.

This behavior can be attributed to the failure of a semiclassical
treatment in the very low temperature region.

The specific heat curves in Figs. 15(c)–15(d) again show the
smoothing effect of fluctuations. The shoulderlike structures
evident when fluctuations are incorporated as opposed to the
sharp discontinuity in CV (�mp) indicate the absence of a
second-order phase transition. This is a very close represen-
tation of the situation in nuclei as found in experiments.

5. HF calculations for nuclei

In this section, results of HF calculations for the odd-even
nucleus 197

78 Pt are compared with those of the CS and RS
models. Pairing properties were calculated within the BCS for-
malism with a constant force for illustrative purposes. Neutrons
and protons were treated as two separate systems, but owing to
the linearity of thermodynamic quantities they can be simply
added to obtain the same thermodynamic quantities for the
whole nucleus. Figure 16 shows the proton and neutron gaps
vs T . The most probable gaps �mp for protons and neutrons
at T = 0 were calculated by fixing the coupling strengths
G so that the gaps conform to the systematics indicated by
Eqs. (8) and (9). Also shown are �av along with their standard
deviations as a function of temperature. These results have
qualitative resemblance with those of the CS and RS models.
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FIG. 16. Same as Fig. 9, but for protons (a) and neutrons (b) in
197Pt.

The excitation energy and specific heat curves shown in
Fig. 17 also show similar qualitative behavior to those of
the RS model. A noticeable feature is the larger fluctuations
than for the RS model. This is owing to δ̄ being 1.97 and
1.68 MeV, respectively, for protons and neutrons. These values

FIG. 17. Same as Fig. 10, but for protons and neutrons in 197Pt.

of δ̄ are larger than the corresponding �0’s, which indicate
that improvement over the mean-field BCS treatment, which
advocates use of most probable gaps, is necessary [17–21].
Results of our semiclassical treatment of fluctuations in the
RS model as well those in the HF+BCS calculations with
a constant force highlights that pairing correlations persist
even if a second-order phase transition disappears. A similar
semiclassical treatment of pairing correlations with similar
results for 94Mo using Nilson model sp energy levels can be
found in Ref. [32]. Analogous results have been obtained with
more advanced treatments that include improvements such as
HFB calculations beyond mean-field theory and a quantum
treatment of fluctuations (see below and the many articles in
Ref. [33]).

Detailed comparisons with experiments are premature at
this development stage of the RS model. The influence of
additional sources of fluctuations such as beyond-mean-field
effects, collective effects, and those from rotation should
be considered in a fully quantum treatment to provide a
comparison with the semiclassical treatment adopted in this
work. We expect further modifications of the shoulderlike or
the S-shaped structure when these and additional sources of
fluctuations are included.

6. Beyond-mean-field theory

The HF theory includes pairing in nuclei using the BCS
approximation by treating the pair correlations through time-
reversed orbital wave functions. In this approach, the HF equa-
tions are self-consistently solved to find variational minima
using an underlying energy density functional. However, the
minima (HF wave functions) so obtained using HF/BCS could
be different from that of HFB [8]. This is due to the more
complete wave functions of the Bogoliubov transformation in
contrast to the small configuration space HF wave functions.
Hence, HFB is more inclusive of physical effects than HF.

In the HFB/BCS approach, broken symmetries, which are
artifacts of the mean-field approximation, appear. Beyond-
mean-field techniques restore the number symmetry and treat
fluctuations in the BCS order parameter; see Ref. [8] and
references therein. Other popular techniques include the ran-
dom phase approximation (RPA) and their derivatives [34].
Even then, many technical difficulties, such as the sign of the
overlap of HFB wave functions and additional difficulties with
odd-A nuclei, arise [8]. Correlations beyond the mean field
have also been treated in Ref. [19] by using the Hubbard-
Stratonovich (HS) transformation, which can be incorporated
in many different ways, e.g., the static-path approximation
(SPA) in which only the thermal fluctuations are addressed.
The SPA coupled with RPA includes time-dependent quantal
fluctuations in addition to thermal effects. Advanced, but
computationally intensive, methods such as the auxiliary-field
Monte Carlo (AFMC) approach include additional fluctuations
[19]. This reference gives an account of the various methods
employed to treat fluctuations at the quantum level.

While the static (BCS or HFB) mean-field approximation is
an adequate treatment for a spherical or nonrotating nucleus,
dynamic effects (such as pairing vibrations) need to be included
on top of the static mean field for a rotating nucleus. The effect
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of pairing on rapidly rotating nuclei is to significantly reduce
the rigid body moment of inertia. The formation of Cooper
pairs means having two nucleons with time-reversed conjugate
orbits. In rapidly rotating nuclei, nucleons are forced to align
their angular momenta with the rotation axis, which leads to
the breaking of Cooper pairs. This results in a gradual decrease
of the effective pairing gap (static gap + dynamic gap) as
opposed to a sharp disappearance of the static gap, see, e.g.,
Ref. [34].

In this paper, we have examined the role of thermal
fluctuations in the RS model using a semiclassical treatment
within the canonical ensemble method of Ref. [20]. Static
fluctuations in the pairing gap � have been also been treated
earlier in the literature through the introduction of a fluctuating
pairing gap � = G|ξ |, where ξ is a complex pairing field (see
Ref. [35], and references therein). This approach permits the
evaluation of both the canonical and grand canonical partition
functions. It is gratifying that our semiclassical analysis of
fluctuations yields results for CV that are similar to those
of the number-projected SPA within the canonical approach
[36]. Nonetheless, a detailed comparison of results between
the canonical and grand canonical approaches, as performed,
for example, in Ref. [37], is warranted in the context of the
RS model, which will be undertaken in subsequent studies.
A quantitative comparison with a quantum treatment that
includes additional sources of fluctuations within the RS model
is also beyond the scope of this paper, but will be reported in
a separate work.

V. SUMMARY AND CONCLUSIONS

In the medium-to-heavy mass region, spherical and de-
formed nuclei accessible to laboratory experiments, and
particularly those only realized in the highly neutron-rich
environments encountered in astrophysical phenomena, are
characterized by an assortment of bunched single-particle (sp)
energy levels owing to shell and pairing effects. Laboratory
experiments performed on various nuclei have revealed a
shoulderlike structure around the critical temperature Tc ex-
pected from a second-order phase transition from the BCS
formalism of the pairing phenomenon involving fermions, but
not a discontinuous jump in the specific heat from the paired
to the normal phase [12–15].

The main contribution of this paper is the introduction
of the random spacing (RS) model in which the sp energy
levels are distributed around the Fermi energy to mimic those
of nuclei obtained via the use of different energy density
functionals. The distributions of these sp energy levels closely
resemble those of randomly generated levels around the Fermi
surface. Exploiting this similarity, we have calculated the basic
characteristics of the pairing correlations in the RS model and
compared the results with those of select nuclei. Aspects of
the RS model are studied in two distinct stages as summarized
below.

In the first stage, the BCS formalism, which employs the
most probable pairing gaps to calculate the critical temperature,
the behaviors of the entropy and specific heat at constant
volume as functions of temperature (excitation energy) and
angular momentum, is used for the sp energy levels of the RS
model. Comparisons with results of the Fermi gas, constant
spacing models and nuclei are provided. Our principal results
at this stage are as follows. From the statistically based bounds
obtained, we find that the ratio of the critical temperature to the
zero-temperature pairing gap is close to its Fermi gas value, and
appears to be a robust result. However, the ratio of the paired to
normal phase specific heats at the critical temperature Tc differs
significantly from its Fermi gas counterpart. The scatter around
the mean value for the discontinuity in the specific heat at the
critical temperature is largest when a couple of sp levels lie
closely on either side of the Fermi surface, but other levels are
far away from it.

In the second stage, the role of fluctuations, expected to be
large for systems with a small number of particles, is studied.
Based on a semiclassical treatment of thermal fluctuations first
developed in Ref. [20] for the CS model and later applied
with some improvements in Ref. [32] for 94Mo, applications
are considered here to the RS model. The chief result of
this investigation is that the second-order phase transition, a
consequence of using the most probable values for the paring
gaps in the BCS formalism, is suppressed and replaced by a
shoulderlike structure around Tc when the average values for
the pairing gaps are used indicating the lasting presence of
pairing correlations. Such a structure is indeed observed in
experiments performed on several nuclei [12–15]. We note,
however, that a semiclassical treatment is strictly valid only
when the mean sp level spacing around the Fermi surface is
smaller or nearly equal to the zero-temperature pairing gap and
a fully quantum treatment of fluctuations becomes necessary
otherwise to overcome the limitations of the BCS formalism
[17–21]. Contrasting the semiclassical and quantum treatments
of fluctuations in the canonical and grand canonical approaches
as well as investigations of fluctuations in highly neutron-rich
isotopes with more advanced techniques in the context of the
RS model will be undertaken in future works.

To the extent that the sp levels of the RS model resemble
those of nuclei that exhibit considerable dependence on choices
of the energy density functionals and pairing schemes used,
our results indicate the variation to be expected in the basic
characteristics of the pairing phenomenon in nuclei. These
results can help to perform sensitivity tests in astrophysical
settings that harbor exotic nuclei.
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