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Neutron-proton pairing correlations and deformation for N = Z nuclei in the p f shell
within the deformed BCS and Hartree-Fock-Bogoliubov approach
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We investigated neutron-proton pairing correlations effects on the shell evolution of ground-state energies
by the deformation for N = Z nuclei in pf shell, such as 44Ti, 48Cr, 52Fe, 64Ge, 68Se, 72Kr, and 76Sr. We
started from a simple shell-filling model constructed by a deformed Woods-Saxon potential with β2 deformation,
and included pairing correlations in the residual interaction, which give rise to smearing of the Fermi surface
revealing interesting evolution of the Fermi energy along the shell evolution. In this work, like-pairing and
unlike-pairing correlations decomposed as isovector T = 1 and isoscalar T = 0 components are explicitly taken
into account. Finally, we estimate ground-state energies comprising the mean-field energy, the pairing energy,
and the self-energy due to the pairing correlations, in terms of the deformation. The enhanced T = 0 pairing
interaction supports oblate deformations for 72Kr and 68Se, whose features are different from other pf -shell
N = Z nuclei considered in this work.

DOI: 10.1103/PhysRevC.97.064322

I. INTRODUCTION

Deformation in nuclei is one of the key ingredients of
understanding the nuclear structure. In particular, weakly
bound or neutron-rich (or neutron-deficient) nuclei show many
interesting features by the deformation [1,2]. Deviation from
the spherical shape usually needs nonspherical coordinate
approaches. A typical approach for the deformation is to use
the Nilsson basis [3] by using a deformed Woods-Saxon (WS)
potential [4,5]. The single-particle spectrum obtained by the
deformed WS potential is sensitive on deformation parameters,
β2 and β4, defined as

R(θ ) = R0[1 + β2Y20(θ ) + β4Y40(θ )], (1)

where the sharp-cut radius R0 = 1.2A1/3 fm [6], and Y20 and
Y40 are spherical harmonics.

In general, shell evolution by the deformation becomes
significant in neutron-rich nuclei, whose deformation can be
confirmed by the E2 transition probability extracted from
the experiments [7,8], and plays vital roles in understanding
the β decays in nucleosynthesis. However, such features
may also appear for neutron-deficient deformed nuclei, for
example, in pf -shell N = Z nuclei. In particular, according
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to theoretical calculations, 68Se and 72Kr are claimed to have
oblate deformations while 44Ti, 48Cr, 52Fe, 64Ge, and 76Sr have
prolate (or spherical) deformations as tabulated in Table I.

In this paper, we discuss which deformation is the most
stable by investigating the evolution of ground-state ener-
gies along with the deformation within a framework of
the deformed Bardeen-Cooper-Schrieffer (DBCS) and de-
formed Hartree-Fock-Bogoliubov (DHFB). Specifically, 64Ge
is known to play a bottleneck role on the p or α processes
[12,13]. Then the neutrino-proton (νp) process, ν̄e + p → n +
e+, produces many neutrons, which make it possible to escape
the bottleneck by 64Ge (n,p) 64Ga (p,γ ) 65Ge reaction and
subsequently bridge the waiting points. Therefore, the nuclear
structure of 64Ge and its β decay [14] become important for
quantitative understanding 64Ge (n,p) 64Ga reaction.

On the other hand, pairing correlations, which comprise
like-pairing [neutron-neutron (nn) and proton-proton (pp)]
and unlike-pairing [neutron-proton (np)] correlations, are
thought to play important roles in nuclear structure and relevant
nuclear electromagnetic (EM) and weak transitions for N = Z
nuclei. In these nuclei, protons and neutrons occupy the same
orbital and may have the maximum spatial overlap. The nn and
pp pairings have isovector (IV) spin-singlet (T = 1, J = 0)
mode, while the np-pairing correlations have isoscalar (IS)
spin-triplet (T = 0, J = 1) as well as IV spin-singlet mode
(T = 1, J = 0) [15–18]. Specifically, the T = 0,J = 1 mode
is peculiar to the np-pairing correlations. Over the last few
decades, there have been many discussions regarding the
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TABLE I. Deformation parameter βE2
2 from the experimental

E2 transition data [7] and theoretical deformation parameters β2

by relativistic mean-field (RMF) [9] and FRDM model [10] for
N = Z pf -shell nuclei. Empirical pairing gaps deduced from the
five-point mass formula [11] are also tabulated.

Nucleus βE2
2 [7] βRMF

2 [9] βFRDM
2 [10] �emp

p �emp
n δemp

np

44Ti 0.277 (+12
−6 ) 0.000 0.011 2.631 2.653 2.068

48Cr 0.340 (19) 0.225 0.226 2.128 2.138 1.442
52Fe 0.230 (14) 0.186 –0.011 1.991 2.007 1.122
64Ge 0.259 (+23

−17) 0.217 0.207 1.807 2.141 1.435
68Se 0.239 (16) –0.285 0.233 1.909 2.174 1.522
72Kr 0.330 (22) –0.358 –0.366 2.001 1.985 1.353
76Sr 0.443 (+31

−25) 0.410 0.402 1.626 1.657 0.715

np-pairing correlations, in particular, the IS and IV compo-
nents and their competition and coexistence in some specific
nuclear models [19–22]. Most studies focused on the N = Z
nuclei because the np pairing is expected to be larger than other
N �= Z nuclei. However, as shown in a recent work [23], the
nuclear structure of the N � Z nuclei may also be affected by
the np-pairing correlations. For example, Ref. [23] found the
mixing phase of the IS and IV condensation for nuclei with
60 < N < 70 and 57 < Z < 64.

Recently, more interesting experimental data are reported,
which show the IV quenching in the M1 spin transition data
for the N = Z nuclei in sd shell [24]. It was suggested that
the T = 0 pairing enhanced by the tensor force well known
in the deuteron structure may become more significant even
inside nuclei [25,26], which may lead to the IS condensation
in nuclear symmetric matter. Since then there appeared many
theoretical discussions about the quenching of the spin tran-
sitions related to the neutron-proton pairing [27–29]. Detailed
reports about the present status and recent progress regarding
thenp-pairing correlations in the nuclear structure can be found
at Refs. [30,31].

The importance of the np pairing was also discussed in our
early papers for double-β-decay transitions by using a realistic
two-body interaction given by the Brueckner G matrix based
on the CD Bonn potential [11,32,33]. However, they were
performed in a spherical QRPA, which did not include the
deformation explicitly and the IS np pairing was taken into
account by renormalizing the IV np-pairing component.

The aim of the present work is to study whether we can
understand the nuclear shape evolution of pf -shell nuclei
in the DBCS and/or DHFB approaches by including all
kinds of pairing correlations with the quenching phenomena.
Specifically, if we note that the isospin singlet condensation
may be formed in the sd-shell nuclei [34], it would be quite
interesting if the IS condensation may also be formed in the
pf -shell nuclei. In that context, this work is a general extension
of the previous works [34–37].

II. FORMALISM FOR DEFORMED BCS
AND DEFORMED HFB

Since the theoretical framework for the DBCS approach had
already been detailed in our previous papers [34,35], here only

the basic formula is briefly stated. We start from the following
nuclear Hamiltonian:

H = H0 + Hint,

H0 =
∑
ρααα′

ερααα′c
†
ρααα′cρααα′ ,

Hint =
∑

ραρβργ ρδ,αβγ δ,α′β ′γ ′δ′
Vρααα′ρβββ ′ργ γ γ ′ρδδδ′

× c
†
ρααα′c

†
ρβββ ′cρδδδ′cργ γ γ ′ , (2)

where greek letters denote proton or neutron single-particle
states with a projection � of a total angular momentum on
a nuclear symmetry axis. ρα(ρα = ±1) denotes a sign of
the total angular momentum projection of a state α. Isospin
of the particle is denoted by greek letter with prime. The
operator c

†
ρααα′ (cρααα′ ) in Eq. (2) stands for a usual creation

(destruction) operator of the real particle in the state ofαρα . The
Hamiltonian, represented by real particles in Eq. (2), was then
transformed to a quasiparticle representation by the following
DHFB transformation:

a
†
ρααα′′ =

∑
ρβββ ′

(
uαα′′ββ ′c

†
ρβββ ′ + vαα′′ββ ′cρβ β̄β ′

)
,aραᾱα′′

=
∑
ρβββ ′

(
uᾱα′′β̄β ′cρβ β̄β ′ − vᾱα′′β̄β ′c

†
ρβββ ′

)
. (3)

Since our formalism is intended to include the np-pairing
correlations, we denote the isospin of quasiparticle as α′′
or β ′′ = 1 or 2. We assume the time-reversal symmetry,
which means uαα′′ββ ′ = u∗̄

βα′′ᾱβ ′ and vαα′′ββ ′ = −v∗̄
βα′′ᾱβ ′ . In the

DHFB, the quasiparticle comprises particle and hole properties
located in different deformed states, α and β.

On the other hand, the DBCS transformation for each α
state is usually given as

⎛
⎜⎜⎝

a
†
1

a
†
2

a1̄
a2̄

⎞
⎟⎟⎠

α

=

⎛
⎜⎝

u1p u1n v1p v1n

u2p u2n v2p v2n

−v1p −v1n u1p u1n

−v2p −v2n u2p u2n

⎞
⎟⎠

α

⎛
⎜⎜⎝

c
†
p

c
†
n

cp̄

cn̄

⎞
⎟⎟⎠

α

, (4)

where the u and v coefficients are calculated by the following
DBCS equation:

⎛
⎜⎝

εp − λp 0 �pp̄ �pn̄

0 εn − λn �np̄ �nn̄

�pp̄ �pn̄ −εp + λp 0
�np̄ �nn̄ 0 −εn + λn

⎞
⎟⎠

α

⎛
⎜⎝

uα′′p
uα′′n
vα′′p
vα′′n

⎞
⎟⎠

α

= Eαα′′

⎛
⎜⎝

uα′′p
uα′′n
vα′′p
vα′′n

⎞
⎟⎠

α

. (5)

Here Eαα′′ is the energy of the quasiparticle with isospin
quantum number α′′ in a α state. We include np̄ and pn̄ pairings
in addition to the like-pairing (pp̄ and nn̄) correlations.
However, the np and n̄p̄ pairings in the same orbital (e.g.,
|np,T = 0〉 and |n̄p̄,T = 0〉) are not explicitly included, but
implicitly taken into account by Eqs. (22)– (23) in Ref. [34].
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FIG. 1. Empirical (�em
p,n and δem

np ) and theoretical (�th
p,n and δth

np) pairing gaps in (a) and (b), and Fermi energy evolution of protons and
neutrons in (c) for sd and pf shell N = Z nuclei.

In the DBCS, we do not allow pairings of the different
deformed single-particle states (SPSs), α and β. However,
in the present approach, a quasiparticle state is mixed with
different spherical SPSs because each deformed state (basis)
is represented by a linear combination of the spherical state
(basis) (see Fig. 1 in Ref. [35]). This feature is one of additional
merits due to the inclusion of deformation in the BCS approach,
i.e., the DBCS approach. With the np pairing in the deformed
basis it leads to a simple HFB-type transformation in the
spherical basis [17].

The pairing potentials in the DBCS Eq. (5) were calculated
in the deformed basis by using G matrix calculated from the
realistic Bonn CD potential for nucleon-nucleon (N -N ) inter-
action. At this step, we also tested the JK couplings between
different deformed SPSs treated in the DHFB transformation
in Eq. (3). For this end, the pairing potentials in Eq. (5) are
extended to include the pairing between different γ and δ states
as follows:

�pp̄α
= �αpᾱp = −

∑
J,c,d

gppF
J0
αaᾱaF

J0
γ cδ̄c

G(aacd,J,T = 1)

× (
u∗

1pc
v1pd

+ u∗
2pc

v2pd

)
, (6)

�pn̄α
= �αpᾱn = −

∑
J,c,d

gnpF
J0
αaᾱaF

J0
γ cδ̄c

[
G(aacd,J,T = 1)

×Re
(
u∗

1nc
v1pd

+ u∗
2nc

v2pd

) + iG(aacd,J,T = 0)

× Im
(
u∗

1nc
v1pd

+ u∗
2nc

v2pd

)]
, (7)

where FJK
αaᾱa = Bα

a Bα
a (−1)ja−�αCJK

ja�αja−�α
(K = �α − �α)

was introduced to represent the G matrix in the deformed
basis with the expansion coefficient Bα [35]

Bα
a =

∑
Nnz


C
j�α

l� 1
2 


A
N0l
Nnz�

bNnz
,A
N0lnr

Nnz�
= 〈N0l�|Nnz�〉.

(8)

Here K is a projection number of the total angular momentum
J onto the z axis, and selected as K = 0 at the DBCS stage.
G(aacd,J,T ) matrix represents two-body scattering matrix
calculated in the spherical basis. In the present work, we have
included all possible J values in Eqs. (6) and (7), which have
the K = 0 projection. �αnᾱn is the similar to Eq. (6) where
n was replaced by p. Hereafter, we call these calculations as
DHFB approach because this may include the effect by the
DHFB transformation in Eq. (3).

In order to renormalize the G matrix, strength parameters,
gpp, gnn, and gnp were multiplied to the G matrix [11] by
adjusting the pairing potentials, �pp̄ and �nn̄, of the lowest
state in Eq. (6) to empirical pairing gaps, �

emp
p and �

emp
n . The

empirical pairing gaps of protons and neutrons were evaluated
by a symmetric five mass-term formula for neighboring nuclei
in Ref. [35].

For the np pairing, we assume that the ground state
of odd-odd nuclei has one unpaired proton and neutron
with energies close to the Fermi surface and the attrac-
tive short-range interaction between them is to be the ori-
gin of the np-pairing interaction [11,18]. Therefore masses
of the odd-odd nuclei are treated as a sum of even-even
mass and the like-pairing gaps subtracted by the attractive
residual np interaction energy, namely, M(Z,N )odd−odd =
M(Z,N )even−even + �

emp
p + �

emp
n − δ

emp
np . Then the np-pairing

gap was deduced as follows:

δemp
np = ± 1

4 {2[M(Z,N + 1) + M(Z,N − 1) + M(Z − 1,N )

+M(Z + 1,N )] − [M(Z + 1,N + 1)

+M(Z − 1,N + 1) + M(Z − 1,N − 1)

+M(Z + 1,N − 1)] − 4M(Z,N )}, (9)

where the signs in the + (–) stand for even (odd) mass nuclei.
Regarding the masses in Eq. (9), we used available empirical
masses. By following the above argument, our theoretical np
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FIG. 2. Shell evolutions of single-particle states (SPSs) by the
deformation for 44Ti and 64Ge. They are calculated by using a
deformed Woods-Saxon potential with the optimal parameter set in
Ref. [4].

pairing gaps were calculated as

δth.
np = −[(

H 12
gs + E1 + E2

) − (
Hnp

gs + Ep + En

)]
. (10)

Here H 12
gs (Hnp

gs ) is a total DBCS ground-state energy with
(without) np pairing and E1 + E2(Ep + En) is a sum of the
lowest two quasiparticle energies with (without) np-pairing
potential �np in Eq. (5). For quantitative understanding of the
np pairing as well as the like-pairing gap, we present empirical
and theoretical pairing gaps in Fig. 1 with the Fermi energies
calculated by the DBCS. The δnp results for pf -shell nuclei
in Fig. 1(b) are shown to be comparable to those for sd-shell
nuclei in Fig. 1(a), while the like pairings become smaller with
the increase of mass number.

Experimental masses used in Eq. (9) include all possible
correlations beside the pairing correlations. It means that the
present theoretical DBCS (or DHFB) approach for the pairing
gaps used in this paper should be an approximation to the
empirical gap. More refined approaches, for example, the
(isospin) generalized BCS [17,19], which explicitly includes
|np〉 and |n̄p̄〉 pairing as well as |np̄〉 and |pn̄〉 pairing

considered in this work are further desirable for deducing
the empirical pairing gaps in a microscopic way. Here, we
take a simple approach for the n̄p̄ and np pairing, for which
we multiply a weight factor 2.0 for the T = 0 np pairing as
discussed in our previous paper [34]. Also, for more exact
treating the particle numbers in the DBCS or DHFB theory,
one needs the Lipkin-Nogami method [38] and/or the projected
BCS approach [39–42].

III. RESULTS AND DISCUSSIONS

This study exploited the cylindrical Woods-Saxon potential
with the optimal parameter set reported by Cwiok et al. [4].
Other parameter sets show almost same results, at least, for the
nuclei considered in this work [43]. The particle model space
for all the nuclei was exploited up to N = 5h̄ω for a deformed
basis and up to N = 10h̄ω for a spherical basis.

Evolutions of single-particle states (SPSs) by the deforma-
tion parameter β2 are shown for 44Ti and 64Ge in Fig. 2. In a
viewpoint of a simple shell-filling model, which distributes all
particles up to the outermost shell by allocating two particles
in each deformed SPS state, the shell gaps from the outermost
shell are relatively small, less than 2 MeV, regardless of the
deformation. It means that particles are easily jumped to
the next shell, which makes more or less correlations and
excitations. One point to notice is the shell evolution of the
1/2+

4 state (pink hexagons) in 0d3/2 shell, which is bounded
stronger at β2 = 0 rather than the prolate and oblate regions.
But the 7/2−

1 state (orange squares) in 0f7/2 shell becomes
looser with the prolate deformation while the 1/2−

4 state (black
inverted triangles) in 1p3/2 shell is more bounded with the
prolate deformation. Another point to notice is that the N = 28
magic shell is still valid number in whole deformation region
except β2 � 0.3 region and N (= Z) = 34 and 36 shells show
relatively large energy gaps along the deformation, apart from
−0.25 < β2 < 0 region.

Usually the T = 0 pairing was not strong enough to man-
ifest itself in the pairing energy [18,35]. However, recent M1
spin data [24] report that the IV spin transitions show more
quenching than the IS ones and the IS T = 0 pairing interaction
is pointed out to induce partially this quenching effect.

However, this data showing the IV spin quenching is limited
to the M1 spin transition for sd-shell nuclei. In this work, we
test the possibility of the IV quenching (or IS condensation) in
pf -shell nuclei in the following. One more point to be noticed
in the present scheme is that we did not explicitly include
the np and n̄p̄ pairings. Therefore, in the third approach,
we take into account the enhanced IS pairing interaction by
multiplying a factor 1.5 to the corresponding matrix elements
by following the results in Ref. [29]. We also effectively include
the other T = 0 contribution due to the np and n̄p̄ pairings by
multiplying a factor 2 to the T = 0 pairing by the np̄ and pn̄
correlations. Therefore, the enhanced factor becomes three,
whose detailed argument can be found at Ref. [34].

First, we examine the DHFB approach. In Fig. 3, we
show the results of DBCS and DHFB calculations; Fig. 3(a)
with pp + nn pairings; Fig. 3(b), pp + nn + np pairings; and
Fig. 3(c) pp + nn + np pairings with the enhanced T = 0
channel. In Fig. 3(a), the two results are almost identical,
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FIG. 3. Pairing correlation energies by DBCS and DHFB approximations as a function of quadrupole deformation parameter β2. The pairing
energies are estimated by three different cases, (a) without and (b) with the np pairing, and (c) with the three times enhanced T = 0 pairing.

while the np pairing in Fig. 3(b) gives rise to some differences
between two results in oblate and prolate sides |β2| > 0.2. In
the case of the enhanced T = 0 pairing, one can also see some
differences in both oblate and prolate sides. However, since
these differences do not affect much the shell evolution by the
deformation, we refer only the results of DBCS hereafter.

In the following (Figs. 4–12), we present our numerical
results regarding total ground-state energies for 44Ti, 48Cr,

52Fe, 64Ge, 68Se, 72Kr, and 76Sr, in terms of the deformation
parameter β2. Figures 4(a)–12(a) show ground-state energies
(GSEs) by the simple shell-filling model, which means the
occupation probability v2

a = 1 or 0 by no smearing. They
are calculated with respect to the Fermi energy located in
the outermost shell. Different evolutions of GSEs by the
deformation can be easily understood by the shell evolution of
SPSs in Fig. 2. A typical feature in the GSE evolution of these
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FIG. 4. Ground-state energy (GSE) for 44Ti by the DBCS model based on a deformed Woods-Saxon potential [4]. Energies are estimated
from the Fermi energy surface calculated by the DBCS. EMF’ is the mean-field energy with respect to the Fermi energy, which is different
from the GSE in (a) because the Fermi energy is changed by the DBCS approach owing to the pairing interactions. Epair is the pairing energy
indicated in the right axis label. The pairing energies are estimated by three different cases, (b) without and (c) with the np pairing and (d) with
the three times enhanced T = 0 pairing. (d) includes the self-energy due to the pairing interactions denoted as (green) diamond.

nuclei is a double valley. For example, for 44Ti, left downhill in
the oblate shape comes mainly from the evolution of the 1/2+

4
state in 0d3/2 shell. The uphill part in the prolate region results
from the 7/2−

1 state in 0f7/2 shell, but the gradient becomes
smaller than the oblate region by the downhill of the 1/2−

4 state
in 1p3/2 shell.

If we switch on residual interactions, the GSEs in panels
(b)–(d) in Figs. 4–12 look like they retain their double valley
evolutions, but their depths are largely moderated by the
occupation probabilities calculated by the DBCS. Therefore,

deformation positions for the minimal GSEs turn out to depend
on the pairing energy types. Here the GSE evolution by the
DBCS model, which is a sum of EMF ′ + Epair + Eself , denoted
as black, blue, and green, included the np pairing as well as
the nn- and pp-pairing correlations and the self-energy. We
estimate them with three different cases. Panels (b) and (c)
are without and with the np-pairing correlations, respectively.
Panels (d) are with the enhanced np pairing and the self-energy
within the DBCS scheme. Since the HFB effects turn out to be
so small, we did not show them in this paper.
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FIG. 5. The same as Fig. 4, but for 48Cr.

1. 44Ti and 48Cr

In Fig. 4, we show GSEs by the simple shell-filling model
for 44Ti in Fig. 4(a). EMF ′ (black squares) in Figs. 4(b)–4(d)
is the mean-field energy corrected by the smearing due to the
occupation probabilities v2

i by the DBCS approach. Pairing
energies, Epair, are denoted as blue triangles. EMF’ in Fig. 4(b)
shows two valleys similarly to that by the simple shell-filling
model in Fig, 4(b). This means that the like-pairing energy does
not affect seriously the GSE evolution although it is largely
moderated. An interesting point is that the evolution of the
pairing energy in Fig. 4(b) also reflects the shell structure of
Fig. 2; small shell gaps at both oblate and prolate sides near the
Fermi energy. Even if the np pairing is taken into account, the
pairing energy in Fig. 4(c) retains the valley around β2 ∼ 0.2
region.

Final GSEs, which are given as ETotal = Epair + EMF’ +
Eself , are presented as red circles in Fig. 4(d). One point
to notice here is regarding a role of the enhanced T = 0
channel of thenp-pairing correlations. We use the strongT = 0
contribution, enhanced about 3 times as large. It gives more
bound prolate ground state compared to Fig. 4(c). That is,
the enhanced T = 0 pairing affects more or less the shape
evolution of 44Ti.

Results for 48Cr in Fig. 5 are not so much different from
those for 44Ti. Double valleys in the mean field still remain
even with the DBCS smearing as shown in Fig. 5(b). These
pairing correlations still make the nucleus prolate. Both strong
bound features in the double valley come from the open-shell
property in the |β2| � 0.2 region as shown in Fig. 2 reflected
in the zigzag pattern in Fig. 5(a). Another point is that the
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FIG. 6. The same as Fig. 4, but for 52Fe.

prolate deformation of 48Cr was not changed by the np-pairing
correlations. However, the enhanced np-pairing correlations in
Fig. 5(d) make the valley salient compared to Fig. 5(c). That is,
the enhanced np pairing strongly leads the nucleus to a prolate
shape.

2. 52Fe and 64Ge

Results by EMF ′ in Figs. 6(b) and 7(b) suggest a spherical
shape for 52Fe and an oblate deformation for 64Ge. Even the
np pairing in Figs. 6(c) and 7(c) does not change the trend.
However, the enhanced np pairing for 52Fe induces the stronger
Epair in the prolate region. Thus, the ETotal can reach to prolate

deformation consistent with other data or evaluations. For
64Ge, the situation is a bit different from that of 52Fe. EMF ′ in
Figs. 6(b) and 7(b) suggests an oblate deformation shape. Even
Epair by the np pairing requires the oblate deformation. That is,
the np pairing still retains the oblate shape trend. However, the
enhanced np pairing is shown to lead to a prolate deformation,
although the minimum energy in the prolate region is only a bit
deeper than the oblate region. More detailed analysis beyond
the present calculation is necessary for this nucleus.

Therefore, the enhanced T = 0 contribution makes the
bounding more stronger due to its attractive property and
leads the oblate deformation to the prolate deformation. The
self-energy correction does rarely depends on the deformation
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FIG. 7. The same as Fig. 4, but for 64Ge.

as shown on all (d) panels. This means that the self-energy
correction does not affect the evolution of total GSEs.

3. 68Se, 72Kr, and 76Sr

Figures 8 and 9 show the shell evolution of GSEs for
68Se and 72Kr. Deformation signs of both nuclei in Table I
are still remained to be solved, although experimental data
[44,45] argued that 72Kr has a strong deformation as a mixture
of prolate and oblate deformations [45], and 68Se shows a
transitional type of γ -unstable and oblate deformations [44].
On the theoretical side, their ground states were claimed to
be oblate by a constrained Hartree-Fock calculation [46] and

a deformed self-consistent HF+RPA approach with density-
dependent effective interaction [47].

In the present calculation, first, we note, without pairing,
the oblate minimum for 68Se in Fig. 8(a). This can be
understood because the Nilsson model shows large energy
gaps versus quadrupole deformation at Z(= N ) = 34 and
36 for oblate and prolate deformations as shown in Fig. 2.
However, the energy minimum for 72Kr in Fig. 9(a) has a
spherical shape. The spherical minimum also comes from
the SPS in Fig. 2. If we trace the N = 36 Fermi energy
line by the shell-filling model, the spherical shape would
be the most stable without the pairing energy contributions
even if we take into account the shell corrections by using
1
2
i(εi + ti).
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FIG. 8. The same as Fig. 4, but for 68Se.

The double local minima in the mean-field theories in
Figs. 8(a) and 9(a) by the simple shell-filling model are changed
to have a single valley around β2 ∼ 0 region by the DBCS
smearing as shown in Figs. 8(b), 9(b) and 8(c), 9(c) even with
the np pairing. The unlike np-pairing correlations do not affect
so much the shell evolution by the like-pairing correlations
and make only the nucleus more bound. Namely, the spherical
shapes of 68Se and 72Kr were not changed by the unlike-pairing
correlations. However, the enhanced T = 0 pairing shifts the
deformation to some oblate deformation regions as shown in
Figs. 8(d) and 9(d).

Contrary to 52Fe and 64Ge, mean-field energies EMF ′

of 68Se and 72Kr show a parabola-type behavior with the

deformation due to the pairing energy as shown in Figs. 8 and
9. However, the enhanced T = 0 pairing correlations make
it oblate deformation as shown in Figs. 8(d) and 9(d). This
behavior is quite different from the above two nuclei, 52Fe
and 64Ge. It is an interesting result because 52Fe and 64Ge do
not evolve to the oblate deformation even if we exploit the
enhanced T = 0 strength.

The reason for this transition to the oblate region by the
enhanced T = 0 pairing can be understood in Fig. 10. In
this figure, one may notice interestingly different behavior of
curves of the gnp and g∗

np for larger deformation |β2| > 0.3.
Namely, both the gnp and g∗

np keep almost the same value in
the region |β2| < 0.2 region, but g∗

np becomes smaller in both
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FIG. 9. The same as Fig. 4, but for 72Kr.

the larger prolate and oblate deformation region |β2| > 0.3.
This is due to the effect of the T = 0 pairing condensation,
which makes additional T = 0 correlations to the gap energy
usually dominated by the T = 1 np contributions. These
results suggest a manifestation of coexistence of two types of
superconductivities (T = 0 and T = 1) in this large deformed
region, similarly to the results found in sd-shell N = Z
nuclei [34].

More detailed discussions regarding which deformation
is the most stable in these nuclei are done in Fig. 11. A
sudden drop of the pairing energy of 68Se [see Fig. 8(d)] in
the β2 = −0.2 region by the enhanced T = 0 pairing channel
comes from the wider smearing of the proton and neutron

Fermi surfaces at the deformation. Figure 11 shows how largely
the deformation affects the smearing for 68Se. For example, if
we compare the smearing by the enhancedT = 0 pairing, black
squares in Figs. 11(a) and 11(b), the smearing at β2 = −0.2
[Fig. 11(b)] starts earlier around −30 MeV up to −5 MeV
compared to the β2 = −0.1 case [Fig. 11(a)], which can also
be easily confirmed if we note the significant deviations of
black squares from red circles in Fig. 11(b). The large smearing
change in β2 = −0.2 comes mainly from the two states, 9/2+

1
and 7/2+

1 states, in 0g9/2 shell and the 5/2−
2 state in 0f5/2 shell,

whose occupation probabilities are increased by the enhanced
T = 0 pairing due to their greater decrease of the SPS in the
β2 = −0.2 rather than β2 = −0.1 region. Note their uphill
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FIG. 10. Strength parameters evolution with the deformation for
72Kr. Here g∗

np means the case by the enhanced T = 0 pairing
correlations.

shapes along the prolate deformation in Fig. 2. But, for 72Kr
case in Fig. 9, SPS energies of the 1/2−

5 and 3/2−
4 states in

0f5/2 shell become lower with the smaller oblate deformation,
which leads the minimum to the β2 = −0.1 region rather than
β2 = −0.2 region. Interestingly, these oblate deformations in
68Se and 72Kr due to the enhanced T = 0 pairing are in contrast
with the prolate deformation in 44Ti, 48Cr, 52Fe, and 64Ge
whose pairing energy become deeper in the prolate region by
the enhanced T = 0 pairing. Evidently this results from the
shell evolution of the states in 0f5/2 and 0g9/2 shells.

Figure 12 presents the results for 76Sr, which nucleus is
reported to be largely prolate deformed [48–50], contrary to
the oblate deformed nuclei, 68Se and 72Kr. However, mean-
field energy with the nn + pp + np-pairing correlations is
minimized at the spherical shape similarly to 68Se and 72Kr.
However, although the pairing energy itself is minimized at the
oblate region β2 = −0.3 likewise 68Se and 72Kr, the enhanced
np pairing shifts the minimum energy position to the prolate
region due to the prolate minimum in the mean field corrected
by the DBCS. Therefore, this nucleus could also give a clue for
the IS condensation in the pf -shell N = Z nuclei. However,
this deformation for 76Sr is smaller rather than the deformation

reported in Refs. [48–50]. It may come from the limit of our
present approach as addressed in the following.

Finally, the following point should be noted for more defi-
nite conclusions. All of our results are obtained by the DBCS
(or DHFB), which keeps correct average particle numbers, but
does not guarantee exact particle numbers in the ground state
because of particle number fluctuations. The Lipkin-Nogami
(LN) BCS theory is known as an approach to cure this problem.
Actually, Ref. [38] calculated like-pairing gaps using various
pairing models and compared the LN results to the BCS theory,
in which the results by both the LN and the BCS theory
show a similar minimum deformation in the shell evolution
of the ground state of 48Cr, but pairing gaps become more
or less moderated by the LN method. For the exact particle
number conservation, we had to rely on the number projected
BCS (PBCS) theory [39], which needed a much more time-
consuming process. A few modern calculations by the PBCS
are being developed by many papers [40–42], but still applied
only to some simple model cases.

IV. SUMMARY AND CONCLUSION

In this work, we studied evolution of single-particle state
(SPS) energies for N = Z nuclei in pf shell by exploiting
a deformed Woods-Saxon potential. By taking the SPS as
a mean-field energy, we calculated ground-state energies of
the nuclei by including the pairing interactions of like- and
unlike-pairing correlations in the deformed BCS (or HFB)
framework. The pairing correlations turn out to be sensitive
on the deformation parameter β2 and evolve Fermi energies εf

along the deformation.
The pairing effects bound the nucleus more strongly, but

do change the evolution of ground-state energies so much.
The np pairing also contributes to making more bound nuclei.
In particular, the enhanced T = 0 pairing correlations, which
played vital roles to determine nuclear deformations of sd-
shell nuclei [34], also affect significantly the pf -shell nuclear
deformation. Specifically, the oblate deformations of 68Se
and 72Kr and prolate deformations of 52Fe, 64Ge, and 76Sr
would not be explained without the enhanced T = 0 pairing
correlations. Finally, the HFB approach including the pairings
among different states does not give any discernible effects

FIG. 11. Comparison of the occupation probabilities of neutrons by the enhanced T = 0 pairing for 68Se with (a) β2 = −0.1 and (b) −0.2.
Black squares are for the enhanced T = 0 case.
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FIG. 12. The same as Fig. 4, but for 76Sr.

on the nuclear structure, but contribute to more reasonable
renormalization of the strength parameter for the nuclear
interaction inside nuclei. Also the nucleon self-energy due
to the pairing correlations rarely affect the shape evolution
because its effect turns out to be nearly independent of the
deformation.

In conclusion, evolution of ground-state energies by a
simple shell model is mainly determined by the evolution of
the outermost shell. However, the pairing interactions change
significantly the evolution. The pairing energy itself is not
large enough to change the evolution, but make the nuclei
more bound by changing the Fermi energies (or chemical

potentials), which affect the evolution seriously. In particular,
the enhanced isoscalar pairing interaction is shown to play
an important role in shape deformations even in the pf -shell
N = Z nuclei such as 68Se, 72Kr, and 76Sr. This means that the
IS condensation by the enhanced T = 0 pairing may happen
not only in sd shell, but also in pf -shell nuclei. In addition,
the pairing interactions among different states are shown to
rarely affect nuclear structures compared to the conventional
like pairing by the BCS approach. However, for more definite
conclusion of the pairing and the deformation, one needs to
develop more realistic projected DBCS or DHFB theory to
retain exact particle number conservation. This work will be
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extended tofpg-shell nuclei, where more interesting deformed
structure, such as coexistence of oblate and prolate shapes,
are reported recently [46]. Also, detailed calculations for the
Gamow-Teller strength distributions [48] are in progress in the
deformed QRPA formalism based on the DBCS approach in
the present paper.
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