
PHYSICAL REVIEW C 97, 064316 (2018)
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Background: Ab initio many-body methods whose numerical cost scales polynomially with the number of
particles have been developed over the past fifteen years to tackle closed-shell mid-mass nuclei. Open-shell
nuclei have been further addressed by implementing variants based on the concept of spontaneous symmetry
breaking (and restoration). These methods typically access ground states properties and some restricted aspects
of spectroscopy.
Purpose: In order to access the spectroscopy of open-shell nuclei more systematically while controlling the
numerical cost, we design a novel many-body method that combines the merit of breaking and restoring symmetries
with those brought about by low-rank individual excitations.
Methods: The recently proposed truncated configuration-interaction method based on optimized symmetry-
broken and -restored states is extended to the SU(2) group associated with total angular momentum. Dealing
more specifically with the Lipkin Hamiltonian, the present study focuses on the breaking and the restoration of
the z-signature symmetry associated with a discrete subgroup of SU(2). The highly-truncated N -body Hilbert
subspace within which the Hamiltonian is diagonalized is spanned by a z-signature broken and restored Slater
determinant vacuum and associated low-rank, e.g., one-particle/one-hole and two-particle/two-hole, excitations.
Furthermore, the extent by which the symmetry-unrestricted vacuum breaks z-signature symmetry is optimized
in the presence of projected low-rank particle-hole excitations. The quality of the method is gauged against
exact ground- and excited-state eigenenergies for a large range of values of the two-body interaction strength.
Furthermore, results are compared to those obtained from the generator coordinate method, the random-phase
approximation, and the self-consistent (second) random-phase approximation.
Results: The proposed method provides an excellent reproduction of the ground-state energy and of low-lying
excitation energies of various z signatures and total angular momenta across the full range of internucleon coupling
defining the Lipkin Hamiltonian and driving the normal-to-deformed quantum phase transition. In doing so, the
successive benefits of (i) breaking the symmetry, (ii) restoring the symmetry, (iii) including low-rank particle-hole
excitations, and (iv) optimizing the amount by which the underlying vacuum breaks the symmetry are illustrated.
While the generator coordinate method, built on the same deformed vacua, provides results of similar quality, this is
not the case for the symmetry-restricted random-phase and self-consistent (second) random-phase approximations
in the strongly interacting regime.
Conclusions: The numerical cost of the newly designed variational method is polynomial with respect to the
system size. It achieves a good accuracy on the ground-state energy and the low-lying spectroscopy for both
weakly and strongly interacting systems. The present study confirms the results obtained previously for the
attractive pairing Hamiltonian in connection with the breaking and restoration of U(1) global gauge symmetry.
These two studies constitute a strong motivation to apply this method to realistic nuclear Hamiltonians in view
of providing a complementary, accurate and versatile ab initio description of mid-mass open-shell nuclei.
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I. INTRODUCTION

The capacity of ab initio many-body methods to describe
more and more nuclei has grown tremendously over the last
fifteen years [1–13]. This results from the combined benefit
of novel formal developments and increased computational
capabilities. In particular, open-shell systems have recently
been addressed by relying on the concept of spontaneous
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breaking (and possible restoration) of symmetries [14–19].
Resulting methods, which scale polynomially with the num-
ber of particles, typically tackle ground-state properties at
first while relying on further extensions or steps to access
spectroscopy. A different strategy consists of targeting a
closed-shell system to produce effective operators at play in a
second-step valence-space configuration-interaction calcula-
tion, thus accessing open-shell systems’ spectroscopy [20–22].
While very powerful and successful, this method inherently
carries the factorial scaling of the valence-space diagonaliza-
tion.

To access spectroscopy of (yet heavier) open-shell nuclei in
a systematic and numerically controlled fashion, the present
work is an attempt to combine the merit of breaking and
restoring symmetries with features brought about by low-rank
individual excitations. The highly truncated N -body Hilbert
subspace within which the Hamiltonian is diagonalized is
spanned by a symmetry-broken and -restored vacuum along
with associated low-rank individual excitations. Furthermore,
the extent by which the underlying vacuum breaks the sym-
metry is optimized in the presence of symmetry projected
low-rank excitations. The fact that the underlying vacuum does
break the symmetry in an optimal fashion allows the drastic
limitation to low-rank individual excitations, thus significantly
tempering the factorial scaling. The above elements bear
strong resemblance to those that underlined the development of
several valence-spape methods in the nuclear structure context
about thirty years ago, i.e., the projected shell model [23], the
variation after mean-field projection in realistic model spaces
(VAMPIR) method [24] and the model for handling many
number- and spin-projected two quasiparticle excitations with
realistic interactions and model spaces (MONSTER) [25,26].
While the spirit of the latter method is particularly close to the
present proposal, the main difference relates to the fact that the
currently proposed method is meant to be applied in an ab initio
context, i.e., its purpose, as a stand-alone approach or as part of
a hybrid method when eventually necessary, is to approximate
exact solutions of the Schrödinger equation in the full Hilbert
space associated with realistic, e.g., chiral effective field theory,
nuclear Hamiltonians. The approach outlined above is also
related to those designed in Refs. [27,28], with significant
differences.

Building the strategy initiated in Refs. [29,30], the above
scheme was applied to tackle the exactly solvable attractive
pairing Hamiltonian in Ref. [31]. The symmetry of interest
in this case is U(1) global gauge symmetry associated with
particle-number conservation. Results were very encourag-
ing given the high-accuracy reproduction of both ground
and excited eigenenergies. Following the same philosophy,
De Baerdemacker and collaborators recently developed a
method called Richardson-Gaudin configuration interaction in
Ref. [32]. In order to validate the method with respect to yet
another symmetry, the goal of the present paper is to apply it
to the exactly solvable Lipkin model [33] via the breaking and
the restoration of the z-signature symmetry associated with a
discrete subgroup of SU(2). The objective is to compare the
results to exact ones as well as to those obtained from the gener-
ator coordinate method, the random-phase approximation, and
the self-consistent (second) random-phase approximation.

This paper is organized as follows: Section II displays the
formalism in such a way that several standard methods can be
recovered as particular cases. Sections III–V provide numerical
results and compare them with exact solutions as well as results
obtained from other existing approximate methods. Section VI
concludes the present work.

II. FORMALISM

A. Lipkin model

The Lipkin model is an exactly solvable model often used to
benchmark approximations of the nuclear many-body problem
[34–48]. This model features N fermions distributed onto
two N -fold degenerated shells separated by an energy ε.
Each single-particle state is characterized by two quantum
numbers (p,σ ). Within a shell, the value of p differentiates
the N states. When belonging to the upper (lower) shell,
each such state labeled by p comes with σ = + (σ = −). A
two-body interaction is assumed to scatter pairs of particles
from one shell to the other without changing the corresponding
(p,p′) values. The associated Hamiltonian is written in second-
quantized form as

H ≡ ε

2

∑
pσ

σa†
pσ apσ − V

2

∑
pp′σ

a†
pσ a

†
p′σ ap′−σ ap−σ , (1)

where {a†
pσ } denotes creation operators associated with one-

body basis states whereas V characterizes the interaction
strength.

The unperturbed ground state of the system (V = 0) dis-
plays N particles in the lower shell, each particle occupying a
state with a different value of the quantum number p; i.e., it is
given by the Slater determinant

|�〉 ≡
N∏

p=1

a
†
p−|0〉. (2)

The interaction mixes |�〉 with excited Slater determinants in
which single-particle states characterized by the N different
p values are always all occupied but in such a way that they
can arbitrarily belong to the upper or the lower shells. There is
a total of 2N such many-body states, which makes solving
the corresponding eigenvalue problem of exponential cost
when N grows. Thankfully, symmetries of the Hamiltonian
tremendously reduce the dimensionality one must effectively
deal with.

B. Quasispin algebra

The resolution of the Lipkin model is based on the ob-
servation that bilinear products of creation and annihilation
operators can be viewed as generators of Lie groups. In the
present case, the Hamiltonian can be expressed in terms of
quasispin operators, and exact solutions can be obtained in
a reduced many-body space. The components of the total
quasispin operators of the system are defined as

J0 ≡ 1

2

∑
pσ

σa†
pσ apσ = Jz, (3a)

064316-2



COMBINING SYMMETRY BREAKING AND RESTORATION … PHYSICAL REVIEW C 97, 064316 (2018)

J+ ≡
∑

p

a
†
p+ap−, (3b)

J− ≡
∑

p

a
†
p−ap+, (3c)

and obey usual commutation relations of the angular-
momentum Lie algebra. Eventually, the Hamiltonian can be
expressed as

H

ε
= Jz − χ

2(N − 1)
(J 2

+ + J 2
−), (4)

where the reduced interaction strength χ ≡ V (N − 1)/ε has
been introduced. In the following, we set ε to 1, which is
equivalent to evaluating energies in units of ε.

The Lipkin Hamiltonian commutes with J 2 but not with Jz.
Rather, H commutes with the z-signature operator

Rz ≡ eiφeiπJz , (5)

which is defined up to a phase φ. In order for the z-signature
eigenvalue of the N -body ground-state of interest to be η =
+1, the phase is chosen as φ ≡ πN/2. The other eigenvalues
of Rz are η = −1 and η = ±i.

C. Exact eigenstates

Let |	JM〉 be eigenstates of J 2 and Jz. By construction, they
are also eigenstates of Rz with eigenvalue ηM = (−1)N/2+M .
Exact eigenstates |
Jη

k 〉 of H labeled by eigenvalues J and η,
respectively associated with J 2 and Rz, can be represented as
a linear combination of |	JM〉 states with the same J value
and M values differing by an even number such that ηM = η,
i.e.,

∣∣
Jη
k

〉 ≡
∑

M|ηM=η

c
JMη
k |	JM〉, (6)

where k labels the eigenstates, for a given J and η, from
the lowest (k = 0) to the highest (k = J or J − 1) energy.
Ultimately, for integer values of J , the exact eigenstates with
η = + (resp. −) is obtained by diagonalizing the Hamiltonian
in a space of size (J + 1) (resp. J ).

D. Many-body basis

The present many-body method is based on an ansatz that
expands approximate eigenstates on a set of states that we
now introduce. The goal is to explore, starting from symmetry-
restricted or symmetry-unrestricted Hartree-Fock (HF) theory,
different techniques to construct a highly truncated set of
many-body states used to diagonalize the Hamiltonian.

1. Symmetry-restricted basis states

Let us first consider the restricted HF (RHF) approximation
to the N -body ground-state. (See Table I for a list of acronyms
used in this paper.) It is nothing but the Slater determinant |�〉
introduced in Eq. (2) with an associated RHF energy equal
to −N/2. It can be checked that the RHF state is a specific
eigenstate of (J 2,Jz) characterized by |�〉 = |	J−J 〉 with J =
N/2.

TABLE I. Table of acronyms used in the text.

GS Ground state
IRREP Irreducible representation
RHF Restricted Hartree-Fock
UHF Unrestricted Hartree-Fock
PAV Projection after variation
PHF Projected Hartree-Fock
VAP Variation after projection
RVAP Restricted variation after projection
RPA Random-phase approximation
SCRPA Self-consistent random-phase approximation
TCI Truncated configuration interaction
GCM Generator coordinate method
GTCI Generalized truncated configuration interaction

From the RHF vacuum |�〉, n-particle/n-hole (npnh) exci-
tations are generated according to

|�p1...pn〉 =
n∏

k=1

a
†
pk+apk−|�〉. (7)

These excited Slater determinants are not eigenstates of (J 2,Jz)
and it is, thus, more convenient to consider specific linear
combinations of them that do have such property, i.e., the linear
combinations of npnh excitations (n � 2J ) of the type

|	J−J+n〉 = J n
+|�〉 = 1√(

N
n

)
∑

p1<···<pn

|�p1...pn〉. (8)

2. Symmetry-breaking basis states

While the above set of states is built from the RHF Slater
determinant, a more general starting point consists of allowing
the reference vacuum to break z-signature symmetry [36], i.e.,
to allow the solution of the HF equations to have a (chosen)
deformation with respect to the corresponding subgroup of
SU(2). The symmetry unrestricted Hartree-Fock (UHF) Slater
determinant is

|�(�)〉 ≡ R(�)|�〉 =
N∏

p=1

a
†
p−(�)|0〉, (9)

where creation and annihilation operators have been rotated in
quasispin space according to

a†
pσ (�) ≡ R†(�)a†

pσR(�) (10a)

= cos(α)a†
pσ − σ sin(α)e−iσϕa

†
p−σ . (10b)

In the above equation, the rotation operator R(�) is

R(�) ≡ exp(−�J+ + �∗J−), (11)

where the variable � ≡ αeiϕ actually collects two rotation
(“deformation”) parameters.

Starting from the set of states |	JM〉 introduced in Eq. (8),
the application of R(�) delivers a new set of configurations

|	JM (�)〉 ≡ R(�)|	JM〉, (12)
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corresponding to linear combinations of npnh excitations
(M > −N/2) on top of the UHF Slater determinant (M =
−N/2). While states |	JM (�)〉 carry labels (J,M) as a
memory of the states they originate from, they are neither
eigenstates of Jz nor of Rz.

3. Symmetry-breaking and -restored basis states

Since exact eigenstates do carry good z signature η, a more
appropriate set of states to expand our approximate eigenstates
are obtained by further applying the projection operator

Pη ≡ 1
2 (1 + ηRz), (13)

thus

|�JMη(�)〉 ≡ Pη|	JM (�)〉
= 1

2 [|	JM (�)〉 + ηηM |	JM (−�)〉]. (14)

For a given value of the deformation �, {|�JMη(�)〉,M =
−J, . . . , + J } constitutes a set BJη(�) of nonorthogonal
states with good angular momentum J and z signature η
that results from projecting deformed (linear combinations
of) npnh excitations on top of the UHF Slater determinant
|�(�)〉. The quantum number M labels the state |	JM〉 the
final state originates from but does not mean that |�JMη(�)〉
is an eigenstate of Jz. As a matter of fact, a z signature η = ±1
can be obtained from an original state whose associated M
value corresponds to the opposite z signature ηM = ∓1 as
soon as � �= 0. For � = 0, one recovers |�(0)〉 = |�〉 and
|	JM (0)〉 = |	JM〉 such that the application of Pη becomes
superfluous.

E. Generalized truncated CI method

We wish to approximate eigenstates of H , starting with
its ground state, via an exact diagonalization within a highly
truncated subspace. In its most general setting, the subspace in
question is spanned by the set of states {BJη(�),|�| � π/4};
i.e., exact eigenstates are approximated by the ansatz

∣∣�Jη
k

〉 ≡
∑

�∈mesh

Mmax∑
M=−J

c
JMη
k (�)|�JMη(�)〉, (15)

where Mmax � J and where � ∈ mesh designates the selected
set of deformations included in the expansion. The ansatz
introduced in Eq. (15) defines the so-called generalized trun-
cated configuration interaction (GTCI) method. It constitutes
a generalization of the TCI method applied to the pairing
Hamiltonian in Ref. [31] given that ansatz (15) allows the
mixing of states associated with different deformations �.

The energy associated with state |�Jη
k 〉 is given by1

E
Jη
k =

〈
�

Jη
k

∣∣H ∣∣�Jη
k

〉
〈
�

Jη
k

∣∣�Jη
k

〉 . (16)

1It is worth noting that the eigenstates and associated eigenenergies
are functions of the reduced interaction strength χ defining the Lipkin
Hamiltonian H .

Applying a variational principle to the trial state, coefficients
of the mixing are obtained by solving a Schrödinger equation
represented in a restricted nonorthogonal basis by

∑
�′M ′

c
JM ′η
k (�′)

(HJη
MM ′(�; �′) − E

Jη
k N Jη

MM ′ (�; �′)
) = 0,

(17)

where the expressions of the Hamiltonian and norm matrices,
defined in each irreducible representation (J,η), are provided
in the Appendix. The eigenvalue problem is solved by first di-
agonalizing the norm matrix through a unitary transformation,
leading to a new set of orthonormal states that is eventually
used to diagonalize H .

F. Particular cases

The above many-body scheme incorporates several existing
approaches as particular cases:

(1) Considering a particular value for the deformation �aux

and setting c
JMη
k (�) to zero for � �= �aux lead to using

the reduced ansatz

∣∣�Jη
k

〉 ≡
Mmax∑

M=−J

c
JMη
k (�aux)|�JMη(�aux)〉. (18)

The configuration mixing is, thus, limited to npnh
configurations without any fluctuation of the collective
variable (i.e., the deformation) �. Such an ansatz
denotes a purely vertical expansion. While ansatz (18)
provides exact solutions for every �aux if Mmax = J ,
our present goal is to employ it for Mmax 	 J . In
this case, and as numerically exemplified later on,
the quality of the purely vertical expansion strongly
depends on the value�aux of the collective deformation.
Naively, �aux can be set to zero, in which case Eq. (18)
reduces to a standard, symmetry restricted, (truncated)
CI approach. Rather, �aux ≡ �UHF is defined at the
minimum of the UHF energy while �aux ≡ �RVAP is
obtained at the minimum after the symmetry restoration
has been applied (i.e., the so-called restricted variation
after projection (RVAP) minimum [49]). Eventually,
�aux ≡ �opt corresponds to a full optimization of the
deformation in the presence of both the symmetry
restoration and the npnh excitations included in the
variational ansatz. The latter option corresponds to the
choice made in Ref. [31] and defines the so-called TCI
method.

(2) Setting c
JMη
k (�) to zero for M �= −J leads to using the

reduced ansatz
∣∣�Jη

k

〉 ≡
∑

�∈mesh

c
J−Jη
k (�)|�J−Jη(�)〉, (19)

corresponding to the adiabatic symmetry-restored gen-
erator coordinate method (GCM). The configuration
mixing is thus limited to fluctuations of the collec-
tive deformation � defining the (constrained) UHF
vacuum and does not incorporate any individual npnh
excitation. Such an ansatz denotes a purely horizontal
expansion. For the Lipkin Hamiltonian, the GCM
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ansatz provides exact solutions using an equidistant
spacing mesh when the number of states matches the
full dimensionality of the problem [39]. It is also
worth noting that the GCM ansatz itself can restore the
z-signature symmetry such that the explicit projection
becomes superfluous. Indeed, an eigenstate of Rz with
eigenvalue η = + (resp. η = −) is obtained by mix-
ing symmetry-breaking states |	J−J (±�)〉 in ansatz
(19) with equal (resp. opposite) weights cJ−J

k (−�) =
cJ−J
k (�) [resp. cJ−J

k (−�) = −cJ−J
k (�)].

The rationale behind the full ansatz introduced in Eq. (15)
is to eventually achieve the best possible optimization of the
highly truncated subspace employed by combining the benefits
of both horizontal and vertical expansions. In the present
case, however, the Lipkin Hamiltonian happens to be too
simplistic to allow us to test such a highly tuned ansatz. We thus
presently limit ourselves to testing the purely horizontal and the
purely vertical expansions separately. This already enables the
characterization of the merits of each of these two expansions
in reproducing exact solutions at the lowest possible cost.
When dealing with a richer Hamiltonian later on, the optimized
combination of both expansions can be envisioned and tested.

III. POTENTIAL ENERGY

As a precursor of TCI and GCM calculations, we presently
discuss projected Hartree-Fock (PHF) potential energy curves
as a function of the deformation �

EPHF
η (�) ≡ 〈�J−Jη(�)|H |�J−Jη(�)〉

〈�J−Jη(�)|�J−Jη(�)〉 (20a)

= 〈�(�)|HPη|�(�)〉
〈�(�)|Pη|�(�)〉 , (20b)

for η = ±. Further, setting η = 0 gives the unprojected poten-
tial energy, i.e., the UHF potential energy curve from which the
RHF energy is extracted at ϕ = α = 0. The potential energy
curves are shown in Fig. 1 as a function of α (for ϕ = 0) for
four values of the reduced interaction strength χ .

For χ < χc = 1.0 [panel (a)], the minimum of the UHF
curve is obtained for the RHF solution (ϕ = α = 0); i.e., the
system is in a normal phase and no spontaneous symmetry
breaking occurs at the mean-field level. For χ > χc [panels
(c) and (d)], the minimum of the UHF curve is obtained for
ϕ = 02 and α = arccos(1/χ )/2 [e.g. α = 0.615 in panel (d)];
i.e., the system undergoes a spontaneous symmetry breaking
at the mean-field level. For χ = χc [panel (b)], the system
is unstable with respect to deformation and is exactly on the
edge of undergoing the phase transition eventually observed
in panels (c) and (d). In all cases, the RHF energy (α = 0)
is equal to −N/2 = −10. While in panel (c) the symmetry
breaking is weak and brings little energy gain as compared to
the RHF reference, the UHF minimum is significantly lower
in panel (d) where the symmetry breaking is strong, such that

2As ϕ does not play a crucial role, it is set to zero in the present
work. See Ref. [46] for a corresponding discussion.
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N=20 (a) χ = 0.5

E
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η = 0
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FIG. 1. Potential energy curves (in units of ε) as a function of α for
N = 20 and (a)χ = 0.5 < χc, (b)χ = 1 ≡ χc, (c)χ = 1.1 > χc, and
(d) χ = 3.0 � χc. The UHF (black solid line) along with the positive
(blue dashed line) and negative (red short-dashed line) z-signature
projected energies are displayed in each case. Arrows point to the
global minimum of each curve. A single arrow appears in panel (d)
given that the global minimum is the same for the three curves in this
case. In all panels the horizontal black dotted-dashed line corresponds
to the exact ground-state energy.

a large amount of static correlations3 are captured to approach
the exact ground-state energy.

The PHF state with positive z signature approximates
the ground state, i.e., the lowest state in the irreducible

3Static and dynamical correlations relate to a loose, but physically
motivated, partitioning of many-body correlations. Dynamical cor-
relations are associated with weakly correlated, i.e., closed shell,
systems while static correlations further arise from near degeneracies
of the ground state that lead to strong correlations in, e.g., open-
shell systems. A current challenge in many-body physics consists of
designing efficient methods that can capture both types of correlations
in a consistent fashion.
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representation (IRREP) characterized by J = N/2 = 10 and
η = +1. The corresponding energy curve is systematically
below or superimposed on the UHF one. At the UHF minimum,
there is no gain in energy in panels (a), (b), and (d), i.e.,
the projection after variation (PAV) method does not provide
additional correlation energy beyond UHF in these cases. In
the first two cases, as explained above, the UHF minimum
does not differ from the RHF one (i.e., it occurs at ϕ = α = 0)
such that no symmetry is broken in the first place. In panel
(d), on the contrary, the symmetry is so strongly broken at
the UHF minimum (i.e., it occurs at a large α value) that the
projection, in spite of restoring the good z-signature quantum
number in the ground state, does not bring any additional
correlation energy. Indeed, the two components appearing in
Eq. (14) are essentially orthogonal and not coupled by the
Hamiltonian in Eq. (20). The situation is qualitatively different
in panel (c) (actually on the whole interval 1 < χ < 1.5) where
the symmetry breaking is weak at the UHF minimum. In this
case, the configuration mixing associated with the symmetry
projection does bring additional correlation energy; i.e., the
PHF curve is below the UHF one at the UHF minimum. More
interestingly, the RVAP energy corresponding to the global
minimum of the PHF energy curve captures additional static
correlations beyond UHF in panels (a)–(c), i.e., when the latter
does not spontaneously break the symmetry or only breaks it
weakly. In these cases, the PHF minimum differs from the
UHF one. However, when the z signature is strongly broken at
the UHF level [panel (d)], static correlations are fully grasped
at that level and the projection does not lower the energy any
further, as explained above.

The PHF state with negative z signature approximates the
lowest state in the IRREP characterized by J = N/2 = 10
and η = −1. The corresponding energy curve is systematically
above or superimposed with the UHF one. In panels (a)–(c),
the global minimum is at higher energy and larger deformation
than for the positive z-signature curve. In panel (d) where the
symmetry is strongly broken, both global minima are the same.
One can, thus, anticipate that the energy difference between the
first positive and negative z-signature states will decrease as
the strength increases.

IV. VERTICAL EXPANSION (TCI)

We are now in position to perform TCI calculations based
on a pure vertical expansion of the many-body states [see
Eq. (18)]. In the following, the notation (i + j + · · · )phα is
employed to specify that the configurations used in the vertical
expansion are ipih, jpjh, …, on top of the UHF vacuum with
deformation parameter α. For instance, (0)phα means that only
the vacuum is included while (0 + 1 + 2)phα means that 1p1h
and 2p2h states are further added. The subscript η is added
whenever the configurations have been projected onto good
z signature.

A. Ground state

Figure 2 illustrates the successive benefits of breaking the
z-signature symmetry [panel (a)], of restoring it [panel (b)],
and of optimizing the symmetry breaking of the underlying
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FIG. 2. Absolute ground-state energy as a function of the coupling
strength χ ∈ [0,2] for N = 10 and J = 5. The three panels compare
successive levels of approximations to exact results. (a) RHF and
UHF with and without inclusion of associated 2p2h configurations.
(b) PHF with and without inclusion of 2p2h configurations all at
the deformation of the UHF minimum. (c) TCI results obtained
by optimizing the α parameter with and without inclusion of 2p2h
configurations. Note that when low-rank excitations are included, the
optimization is made in the presence of them. The critical value χc = 1
is indicated by the black dashed vertical line.

vacuum [panel (c)] for the description of the ground-state
energy. In each case, the impact of including low-rank, e.g.,
2p2h, individual excitations is displayed as well. Results are
shown for N = 10 for a good visualization but the analysis
of the results would be the same for different, e.g., N = 20,
particle numbers.

As seen in panel (a), the RHF solution is exact in the
absence of two-body interaction (χ = 0) and a decent approx-
imation in the very small coupling regime (χ < 0.2). As the
Hamiltonian only couples states with the same z signature,
2p2h configurations on top of the RHF state are the first
to amend the latter; i.e., 1p1h excitations do not contribute.
Adding 2p2h configurations provides a good reproduction of
the exact solution over the entire normal phase (χ < χc) but
not in the deformed phase (χ > χc), eventually leading to the
wrong asymptotic behavior for χ � χc. Contrarily, the UHF
solution has a good asymptotic behavior and already leads to a
better approximation of the ground-state energy than the RHF
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solution with 2p2h excitations for χ > 1.6. It is thus clear that
breaking the z signature qualitatively improves the description
beyond χc, especially at very large coupling strength, even
in the absence of projection. As for the RHF in the normal
phase, it is, however, necessary to add 2p2h excitations on
top of the UHF minimum to reach a decent accuracy over the
whole deformed phase. Still, the description is far from perfect,
especially in the weakly deformed regime and at the very phase
transition where an artificial kink appears.

As seen in panel (b), and as discussed in Sec. III, the PAV
does not lower the energy in the normal phase or for very
deformed systems. On the other hand, it does improve very
significantly the description for χc < χ < 1.5 at the price of
inducing an artificial kink at the phase transition. At the UHF
minimum, the projection performed in the presence of 2p2h
configurations improves the description very significantly over
the deformed phase. The reproduction of the exact ground-state
energy is now quantitatively satisfactory over the entire range
of coupling values, except just before the phase transition.
Qualitatively, the phase transition is still artificially provided
with a first-order character, which is definitely absent from
exact results.

Let us thus comment on the origin of the artificial kink at the
phase transition. As discussed in Ref. [31], this relates to the
fact that the space spanned by the truncated basis is not the same
on both sides of the phase transition. On the symmetry broken
side, the truncated basis contains more configurations than
those continuously reducing to the symmetry-conserving 2p2h
configurations through the phase transition. Without symmetry
restoration [panel (a)], these additional configurations outside
the relevant Hilbert space first deteriorate the results, before
improving them when the breaking becomes strong. Thus,
the kink at the phase transition goes in the wrong direction
compared to the symmetry-conserving 2p2h calculation. Once
the symmetry is restored [panel (b)] all configurations are phys-
ically relevant and include some npnh symmetry-conserving
configurations. As a consequence, the higher dimensionality
of the basis on the symmetry-breaking side becomes beneficial
such that the kink is now in the right direction.

Panel (c) illustrates how optimizing the symmetry breaking
of the underlying UHF vacuum in the presence of the symmetry
restoration and of 2p2h configurations4 does correct the re-
maining deficiencies. First of all, even when the UHF does not
spontaneously break the symmetry (χ < χc), it does so when
optimized in the presence of the symmetry restoration. This
leads to a tremendous improvement of the description over the
normal phase, which eventually carries over to the deformed
phase. This constitutes the strict RVAP result. Adding projected
2p2h configurations and further optimizing the deformation of
the underlying vacuum eventually provides a nearly perfect
reproduction of the exact ground-state energy throughout
the entire range of coupling strengths. This constitutes an
“advanced” RVAP result. As illustrated in Fig. 3, the absolute

41p1h configurations are not included here as they only weakly
couple to the PHF state (they entirely decouple when the symmetry
is not restored). They will be included later on to generate fully
optimized results.
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FIG. 3. Top: Error on the ground-state energy per particle as
a function of χ for N = 16, . . . ,100. Results are obtained from
the optimized TCI method including 1p1h and 2p2h configurations.
Bottom: Maximum error over the interval χ ∈ [0,3] on the ground-
state energy per particle as a function of the particle number.

error on the ground-state energy per particle remains below
1.6×10−3 ε (i.e., below 0.3% relative error) for all particle
numbers and over the full interval χ ∈ [0,3]. In particular, the
inadequate first-order character of the phase transition is fully
amended. In addition, the reproduction of the ground-state
energy improves as the particle number increases, i.e., as the
size of the Hilbert space grows. The precision and scaling with
particle number is particularly remarkable in view of the small
size of the highly truncated many-body Hilbert space used here.
This directly stems from the use of a strongly entangled state
optimized to incorporate the physics close to a quantum phase
transition. The merits of the TCI method presently illustrated
for the Lipkin Hamiltonian and the z-signature symmetry are
in line with the results obtained for the pairing Hamiltonian
and U(1) global gauge symmetry [31].

B. Excited states

Because the TCI method diagonalizes the Hamiltonian in
a highly optimized and truncated (nonorthogonal) basis, it
naturally accesses low-lying excited states. Excitation energies
are defined as

E
Jη
exc,k = E

Jη
k − E

N/2+
0 , (21)
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FIG. 4. Low-lying excitation energies for N = 20 as a function
of χ ∈ [0,3]. (a) J = 9 and η = ±1. (b) J = 19/2 and η = ±i.
(c) J = 10 and η = ±1. Results from the TCI method including up to
2p2h excitations (lines) are compared to exact results (symbols). The
deformation of the underlying vacuum is optimized in each IRREP
(J,η) to minimize the energy of the lowest state.

where E
N/2+
0 and E

Jη
k denote the absolute ground-state energy

(η = +) and the energy of the kth excited state in the IRREP
(J,η), respectively.

Figure 4 compares the excitation energy of twelve low-lying
states corresponding to three different J values against exact
results as a function of χ ∈ [0,3] for N = 20. Within any given
IRREP (J,η), the deformation of the underlying vacuum is
chosen to optimize the energy of the lowest state.

Panel (c) deals with IRREPs (J = 10, η = ±) and includes
the ground state whose energy is set to 0 by definition. The
first excited state has a negative z signature. As anticipated in
Sec. III, its excitation energy decreases steadily as a function
of χ and becomes asymptotically degenerate with the ground
state. The corresponding TCI result matches perfectly the
exact energy for all values of the coupling strength, in part
because the vacuum deformation was chosen to optimize the
energy of that (J = 10, η = −) state. The two other J = 10
states are well reproduced in the normal phase but quickly
degrade in the deformed phase. They lie too high in energy
and become degenerate at too small coupling strength. While
static correlations are efficiently included via the breaking and
the restoration of the z-signature symmetry, the reproduction
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FIG. 5. Focus on the second (b) and third excited states (a)
shown in panel (c) of Fig. 4. The exact results (filled circles) are
systematically compared to the optimized TCI method including up
to 2p2h configurations (black solid line), 3p3h configurations (red
dotted line), and 4p4h configurations (blue dashed line).

of these excited states at large coupling is obtained via a
better account of dynamical correlations. As demonstrated in
Fig. 5, the inclusion of 3p3h configurations allows one to
fully capture the second negative z-signature state over the
full range χ ∈ [0,3]. While the second positive z-signature
state is also very significantly improved, 4p4h configura-
tions are necessary to postpone its degeneracy with the sec-
ond negative z-signature state to the appropriate coupling
value.

Similar observations hold true for panels (a) and (b). The
energy of the lowest state is impeccably reproduced in each
IRREP by virtue of optimizing the deformation of the under-
lying vacuum. Next states are also very well reproduced for all
coupling strengths, except for the third and fourth excited states
(those shown) that necessitate the inclusion of higher-rank
npnh configurations at large couplings. All in all, the TCI
method efficiently captures static and dynamical correlations
in both the normal and the deformed phases for both ground
and low-lying states. However, for states that have a nontrivial
degree of collectivity and require 3p3h configurations or more,
it will probably be more efficient to optimize the truncated
Hilbert space in a different manner, e.g., by mixing vertical
and horizontal configurations in an optimal fashion.

In Fig. 6, the excitation energy of the first (η = −) and sec-
ond excited (η = +) states with J = 10 are compared for N =
20 to results obtained from the random-phase approximation
(RPA) and the self-consistent RPA (SCRPA) [37] performed
on the RHF vacuum. The three methods are essentially exact
in the weak coupling regime. This results from the fact that
they all explicitly incorporate 1p1h and 2p2h configurations
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FIG. 6. First excited state energy with J = 10 and (a) η = +1
or (b) η = −1 obtained for N = 20 particles. Exact results (open
circles) are compared to those obtained via RPA (blue dashed line) and
SCRPA (red short dashed line) [37] as well as via the TCI approach
including up to 2p2h (black solid line) and 3p3h (green dashed line)
configurations.

with respect to the RHF vacuum5 that dominate the structure
of the lowest and second excited states, respectively, in the
noninteracting limit. The excitation energy degrades as χ
increases in the RPA and vanishes for χ = χc such that there
is no real solution for χ > χc. This relates to the known failure
of the RPA with regards to dealing with phase transitions.
To overcome this difficulty, a solution consists of enforcing
self-consistency via the SCRPA method. As shown in Fig. 6,
the SCRPA is indeed able to reproduce the excitation energy
all throughout the normal phase and to avoid the collapse at
χ = χc and beyond. However, the description in the deformed
phase (χ > χc) is qualitatively and quantitatively incorrect. In
particular, the steady decrease of the excitation energy leading
to a degeneracy with the ground state is not captured by the
SCRPA based on the RHF Slater determinant. By comparison,
the optimized symmetry breaking and restoration efficiently
captures mandatory static correlations (along with dynamical
correlations) in the TCI method beyond the phase transition.
These correlations are hard to come by in RHF-based many-
body methods. While it is significantly better than SCRPA

5At exactly zero interaction strength, the RPA and self-consistent
RPA methods cannot address the second excited state that is a pure
2p2h excitation on top of the RHF vacuum. Contrarily, taking the
limit χ → 0 does provide the correct value thanks to the fact that the
RPA excitation operator acts on a correlated ground state as soon as
χ �= 0 and thus generates the 2p2h components necessary to describe
the second excited state. There is thus a discontinuity at χ = 0 in the
RPA calculation of that second excited state.

beyond the phase transition, even the nonlinear higher RPA
with truncation d = 2 built on the RHF reference [50], which
is equivalent to the self-consistent (extended) second RPA [51],
provides an accurate description of the first η = −1 state only
up to χ ≈ 1.14 (see line B in panel (b) of Fig. 6 in Ref. [50]).

This limitation of the (truncated) nonlinear higher RPA
beyond the phase transition led the authors of Ref. [50] to
implement their method on the basis of the UHF reference state,
in close spirit with our approach. However, when truncated to
d = 2, which is similar to our 2p2h approximation, the method
does not provide satisfactory behavior. This approach would
certainly benefit from optimizing the underlying symmetry-
breaking reference state beyond choosing the UHF one, again
in close similarity with what is done here. Furthermore, the
exact symmetry restoration included in our approach and not
considered in Ref. [50] is probably mandatory to obtain a fully
satisfactory spectroscopy.

V. HORIZONTAL EXPANSION (GCM)

A. Setup

Starting again from the GTCI ansatz [Eq. (15)], we now
consider the other limit constituted by the adiabatic GCM
method that mixes symmetry-projected vacua with different
α deformations (at ϕ = 0) without including any of the
associated npnh excitations. A number Nα of vacua are
mixed according to a selected set of {αk} values within the
interval [−π/4,+π/4]. As mentioned previously, including
states characterized by deformations ±|αk| with equal weights
automatically performs the projection on good z signature
η while generating approximate ground- and excited-state
energies. This is at variance with the TCI method discussed
previously where the symmetry projection is achieved prior to
the diagonalization.

One can study the optimal choices for Nα and {αk} that
minimize the numerical effort while maximizing the accuracy
on a set of chosen properties. In this respect, interested readers
can refer to the corresponding discussion in Ref. [46]. Here,
we display results for one representative discretization strategy
based on an odd number of equidistant points in the interval
]−π/4,+π/4[. The odd number reflects (i) the wish to always
include the point α = 0 that is key to describing the normal
phase optimally and (ii) the necessity to always include the
pair of points ±|αk| in order to restore the z signature. The Nα

points are thus chosen according to the following procedure:6

(1) pick α1 = 0,
(2) pick (Nα − 1)/2 equidistant values in ]0,+π/4[,
(3) take the (Nα − 1)/2 opposite values in ]−π/4,0[.

The mesh is independent of the interaction strength and is
the same for all values of χ on the figures shown below.

6Other choices can be more physically motivated, such as picking
the UHF minimum or the RVAP minimum as the first mesh point and
enlarging the set by adding points distributed around it. This could be
the option for realistic calculations based on a deformation parameter
that does not belong to a bounded interval.
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TABLE II. Dimensionality of TCI and GCM calculations (in a
symmetry-restored basis).

TCI η = + η = − GCM η = + η = −
(0)phα 1 1 Nα = 1 1 0
(0 + 1)phα 2 2 Nα = 3 2 1
(0 + 1 + 2)phα 3 3 Nα = 5 3 2
(0 + 1 + 2 + 3)phα 4 4 Nα = 7 4 3

Comparisons with the TCI results presented earlier should
employ subspaces of equal dimensions. In the TCI calcula-
tions, including up to npnh configurations leads to a diag-
onalization in a subspace of dimension n + 1 for η = + or
η = −. Compensating for the dimensionality associated with
the symmetry restoration, and knowing that the value α = 0
is included by default but does not contribute for η = −1,
GCM calculations are performed in a space of dimension
(Nα − 1)/2 + 1 [(Nα − 1)/2] for η = + (η = −). The di-
mensionalities associated with both methods are compared in
Table II.

B. Ground-state energy

The GCM ground-state energy displayed as a function of χ
can be found in Ref. [46] for 30 and 50 particles. Consequently,
such curves are not reproduced here. We focus instead on how
the maximum error on the ground-state energy per particle over
the interval7 χ ∈ [0,3] behaves as a function of the particle
number. This maximum error is displayed in Fig. 7 for Nα =
5, 7, and 19 equidistant discretization points and compared to
TCI results obtained by including up to 2p2h or up to 3p3h
configurations. We observe that the GCM error does not scale
as the TCI one as a function of N and saturates at a significantly
larger value. Even though the adiabatic GCM is known to be
exact in the continuous limit [39], increasing the number of
equidistant mesh points reduces the error only very slowly, as
is illustrated for Nα = 19 in Fig. 7.

To test whether this is an inherent aspect of the GCM method
or a feature of our discretization strategy, the ±|αRVAP| mesh
point is added to the equidistant discretization corresponding
to Nα = 5,7. The corresponding results displayed in Fig. 8
convincingly demonstrate that the error is highly dependent on
the discretization and that adding a single physically optimized
state does correct for the deficiency of the equidistant dis-
cretization.8 Eventually, the error as a function of N is virtually
the same as for TCI calculations.

7This interval is obviously arbitrary but covers weak, intermediate,
and (rather) strong coupling regimes.

8One notices that results are less good for Nα = 7 than for Nα = 5
for certain particle numbers. This is because the distribution of mesh
points is different in both cases and may accidentally provide better
results for Nα = 5 in spite of the smaller number of points.
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FIG. 7. Maximum error, over the interval χ ∈ [0,3], on the
ground-state energy per particle as a function of the particle number.
(a) TCI method including up to 2p2h configurations (full circles) and
up to 3p3h configurations (empty circles). (b) horizontal GCM method
based on Nα = 5,7,19 equidistant discretization points in the interval
[−π/4,+π/4].

C. Excited states

The capacity of the adiabatic GCM to describe the lowest
two excited states with J = 10 has been extensively discussed
in Ref. [46], including a comparison to RPA results. Some
of the features highlighted below9 have thus already been
identified in Ref. [46]. The present study, in particular, extends
the analysis to a larger set of excited states, among which are
states with J < 10.

Figure 9 displays the four lowest eigenenergies for each
value J = 10,19/2,9 as a function of χ for Nα = 5. Com-
paring with Fig. 4, the lowest η = + state is equally well
reproduced for all couplings for J = 10. For J = 19/2,9,
it is even slightly better described at strong coupling. The
same features are seen for the lowest η = −, although it is
slightly less well reproduced at small coupling because the
effective dimensionality is equal to Nα − 1 = 4 (see Table II)
in this case. The second η = − state is significantly less well
reproduced at small coupling than in TCI calculation, in part
again because of the reduced dimensionality but also because
of the associated absence of active point at low deformation.
The employed discretization does not capture the 3p3h nature
of the second η = − state with J = 10 (and similarly for other
J ) in the noninteracting limit. Contrarily, the 2p2h character
of the second η = + state is well captured at low coupling
thanks to the presence of the α1 = 0 mesh point. See Ref. [46]

9Conclusions are not strictly the same because discretization strate-
gies are not identical in both studies.
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±|αRVAP| mesh points to the equidistant discretization corresponding
to Nα = 5,7.

for a related discussion. At intermediate coupling, the second
η = + state is better reproduced than with the TCI but it drifts
away at high coupling, just as the second η = − state does.

The convergence of the GCM results as a function of the
Nα equidistant mesh points is illustrated in Fig. 10 for the
second and third excited states with J = 10. This can be
directly compared to Fig. 5. The adiabatic GCM being exact
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FIG. 9. Same as Fig. 4 with the adiabatic GCM using Nα = 5
equidistant discretization points in the interval [−π/4,+π/4].
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FIG. 10. Same as Fig. 5 for the adiabatic GCM. Results are
displayed for Nα = 5 (black solid line), 7 (red dotted line), and 9
(blue dashed line). Exact energies are shown as open circles.

in the continuous limit, the convergence towards exact results
is no surprise. Still, energies converge rather rapidly to the
exact ones and are essentially perfect over the full interval
χ ∈ [0,3] for Nα = 9 equidistant points. By comparison with
the error on the ground-state energy discussed in Sec. V B, this
demonstrates that excitation energies are much less sensitive to
the discretization strategy. In comparison to the TCI method,
the convergence as a function of the dimensionality is slightly
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FIG. 11. Same as Fig. 6 for the adiabatic GCM approach with
Nα = 5,7 (Nα = 7,9) for η = +1 (η = −1).
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better at intermediate coupling (especially for the η = + state)
but slower at small and large coupling strengths.

Last but not least, the comparison to RPA and SRPA results
displayed in Fig. 6 is repeated for the GCM10 in Fig. 11.
As already mentioned, a similar comparison was proposed in
Ref [46] but limited to the RPA. For reasons discussed above,
and contrarily to RPA, SRPA and TCI methods, the adiabatic
GCM does not provide exact results in the very weak coupling
limit. For the rest, GCM results are perfect over the interval
χ ∈ ]0,2] and, just as for the TCI, do not display the limitations
of RPA or SCRPA for χ � 1.

VI. CONCLUSIONS

The long-term goal of the present work is to systematically
access the spectroscopy of open-shell nuclei in an ab initio
fashion while controlling the associated numerical cost. This
is done herein by designing a novel many-body method that
combines the merit of breaking and restoring symmetries with
those brought about by low-rank individual excitations.

The truncated configuration interaction method based on
optimized symmetry-broken and -restored states, which we
denote as a purely vertical expansion, was already applied
to the Richardson Hamiltonian [31] in connection to U(1)
gauge symmetry. Here it is extended and applied to the
Lipkin Hamiltonian in connection to the z-signature symmetry.
While z-signature symmetry is close in spirit to discrete parity
symmetry, this extension constitutes a step towards testing the
method against the continuous rotational symmetry associated
with the SU(2) group.

The breaking and restoration of z-signature symmetry along
with the optimization of the former in the presence of low-rank
particle-hole excitations lead to highly accurate ground-state
and low-lying excitation energies all the way from weak to
strong coupling regimes and across the phase transition in
between. The overall quality of the approximation is very
satisfactory from small to large particle numbers. In the end,
it is superior in the strong coupling regime to methods like
the self-consistent random-phase approximation or the self-
consistent second random-phase approximation, even when
the latter is implemented over a symmetry-breaking vacuum.
The performance of the approach is further compared to the
adiabatic generator coordinate method, which we denote as a
purely horizontal expansion and which is shown to provide
results of similar quality.

The rationale of the present work is to optimize the highly
truncated subspace employed by combining the benefits of
both horizontal and vertical expansions. In the present case,
however, the Lipkin Hamiltonian happened to be too simplistic
to test such a highly tuned ansatz. When dealing with a
richer Hamiltonian later on, the optimized combination of both
expansions can be envisioned and tested, especially for states
presenting a nontrivial degree of collectivity, i.e., requiring
3p3h configurations or more in the purely vertical expansion.

10The state η = +1 is the one for which the convergence of the
calculation was displayed in panel (b) of Fig. 10 over the full interval
χ ∈ [0,3].
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APPENDIX: MATRIX ELEMENTS COMPUTATION

1. Reduction of the problem

To apply the GTCI method, one needs to compute matrix
elements of an operator O commuting with Rz, such as H ,
between |	JM〉 states

OJ
MM ′ ≡ 〈	JM |O|	JM ′ 〉, (A1)

between symmetry-breaking states

OJ
MM ′ (�; �′) ≡ 〈	JM (�)|O|	JM ′

(�′)〉
= [R†(�)OR(�′)]JMM ′ , (A2)

and between symmetry-restored states

OJη
MM ′ (�; �′) ≡ 〈�JMη(�)|O|�JM ′η(�′)〉

= [R†(�)OPηR(�′)]JMM ′ , (A3)

where the fact that Pη is a projector and commutes with O
was used. Inserting the expression of the z-signature projector
[Eq. (13)] in the symmetry-restored matrix elements [Eq. (A3)]
actually allows one to express them in terms of the nonpro-
jected ones [Eq. (A2)] according to

OJη
MM ′ (�; �′) = 1

2

[OJ
MM ′ (�; �′) + ηηM ′OJ

MM ′ (�; −�′)
]
,

(A4)

where ηM ′ is the z signature of |	JM ′ 〉. Furthermore, defining
the rotated operator O(�) as

O(�) ≡ R†(�)OR(�), (A5)

one can rewrite the matrix elements between symmetry-
breaking states, which are the key inputs to Eq. (A4), as

OJ
MM ′(�; �′) = [O(�)R†(�)R(�′)]JMM ′

=
∑
M ′′

O(�)JMM ′′ [R†(�)R(�′)]JM ′′M ′ , (A6)

where a completeness relation was inserted. Eventually, the
problem reduces to the computation of the matrix elements
of the rotated operator O(�) and of the rotation operator
R†(�)R(�′) between |	JM〉 states. The matrix elements of the
rotation operator are Wigner D functions DJ

MM ′ (α,β,γ ), where
identities relating variables (�,�′) to variables (α,β,γ ) exist
[52]. The summation over M ′′ in Eq. (A6) runs in principle
from −J to +J , but properties of O can greatly reduced
this range, e.g., M ′′ = M for O = 1 and |M ′′ − M| � 2 for
O = H . This is easily checked from the expressions of the
rotated norm overlap

N (�)JMM ′ = δMM ′ (A7)

and of the rotated Hamiltonian matrix elements (A12) given in
the next section.
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2. Matrix elements of H(�)

The rotated Hamiltonian is expressed as a function of rotated quasi-spin operators according to

H (�) = R†(�)HR(�) = εJz(�) − V

2
[J 2

+(�) + J 2
−(�)]. (A8)

The rotated operator Jz(�) is expressed as a function of unrotated quasispin operators using Eqs. (3) and (10):

Jz(�) = R†(�)JzR(�) = 1

2

∑
pσ

σ a†
pσ (�)apσ (�) = cos(2α)Jz − 1

2
sin(2α)[e+iϕJ+ + e−iϕJ−]. (A9)

In a similar manner one obtains

J 2
+(�) + J 2

−(�) = sin2(2α) cos(2ϕ)
(
3J 2

z − J 2
)

+ [cos4(α) + sin4(α)e+4iϕ]J 2
+ + H.c.

+ [cos2(α) − sin2(α)e+4iϕ] sin(2α)e−iϕ{Jz,J+} + H.c., (A10)

where {Jz,J±} = JzJ± + J±Jz. Knowing the action of unrotated quasispin operators on |	JM〉,

J 2|	JM〉 = J (J + 1)|	JM〉, (A11a)

J±|	JM〉 =
√

J (J + 1) − M(M ± 1)|	JM±1〉, (A11b)

Jz|	JM〉 = M|	JM〉, (A11c)

one obtains matrix elements of the rotated Hamiltonian in the |	JM〉 basis under the form

H(�)JMM ′ = + ε cos(2α)MδMM ′ − V

2
sin2(2α) cos(2ϕ)[3M2 − J (J + 1)]δMM ′

− ε

2

∑
σ=±1

sin(2α)eiσϕ
√

J (J + 1) − M(M − σ )δMM ′+σ

− V

2

∑
σ=±1

[cos2(α) − sin2(α)e4iσϕ] sin(2α)e−iσϕ(2M − σ )
√

J (J + 1) − M(M − σ )δMM ′+σ

− V

2

∑
σ=±1

[cos4(α) + sin4(α)e4iσϕ]
√

(J (J + 1) − (M − σ )2)2 − (M − σ )2δMM ′+2σ . (A12)
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