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Nuclear skin and the curvature of the symmetry energy
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The effect of correlations between the slope and the curvature of the symmetry energy on ground-state nuclear
observables is studied within the extended Thomas-Fermi approximation. We consider different isovector probes
of the symmetry energy, with a special focus on the neutron skin thickness of 208Pb. We use a recently proposed
metamodeling technique to generate a large number of equation of state models, where the empirical parameters
are independently varied. The results are compared to a set of calculations using 17 different Skyrme interactions.
We show that the curvature parameter plays a non-negligible role on the neutron skin, while the effect is reduced
in Skyrme functionals because of the correlation with the slope parameter.
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I. INTRODUCTION

The determination of the nuclear matter equation of state
(EoS) is an extremely lively issue in modern nuclear physics
and astrophysics. The biggest uncertainties concern high
density and strongly asymmetric matter, where the EoS de-
termination is of outermost importance for the understand-
ing of a large variety of astrophysical phenomena involving
compact stars [1,2]. Observational measurements of neutron
star mass and radii start to provide compelling constraints to
the behavior of high-density matter [3,4], including the very
recent multimessenger observation of a neutron star merger [5],
where the EoS has a direct impact on the gravitational wave
form mainly through the tidal polarizability parameter [6]. In
this context, tight constraints coming from controlled nuclear
experiments are extremely important, particularly concerning
the isovector part of the EoS, the so-called symmetry energy
[7,8]. A huge amount of literature is devoted to the determi-
nation of the symmetry energy at saturation (Esym) and its
slope (Lsym) by comparing selected isovector observables to
EoS models issued from different energy density functionals
(EDF) [9,10]. These studies have convincingly shown that a
strong linear correlation exists between the Lsym parameter
and the neutron skin thickness [11,12]. This latter can be
measured directly from parity-violating electron scattering
[13] and pion photoproduction [14] or probed via various
isovector modes of collective excitations [15–20]. A good
correlation is also typically observed with the Esym parameter
[21,22] and qualitatively explained by the fact that the behavior
of the symmetry energy is, to a first-order approximation,
linear in density in the subsaturation regime [23]. However,
this correlation is somewhat blurred when different fami-
lies of mean-field models are compared [24], showing that
some residual model dependence exists. The careful study
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of Ref. [24] shows that this difference can be ascribed to
different nucleon density distributions in the surface region.
In turn, this can be due both to different surface properties
of the functionals and to different behaviors of the symmetry
energy at subsaturation, that is, to deviations from the linear
approximation.

To progress on this issue, it is important to assess the role
of the curvature of the symmetry energy (Ksym) on isovector
probes such as the nuclear skin. Little attention was paid to
this parameter in the literature until recently [25,26], mainly
due to the fact that it cannot be easily varied within a specific
EoS model, because the functional form of the EoS imposes a
correlation with the low order parameters Esym and Lsym. Still,
if Ksym is of secondary role for nuclear structure observables,
it is the main source of uncertainty when extrapolating the
laboratory constraints to the high-density domain relevant for
neutron star physics [27].

To perform this study, we use a recently proposed meta-
modeling approach to the EoS [28], where a large number
of different EoS models can be generated without any a
priori correlation among the different empirical parameters.
Following Ref. [29], ground-state observables are calculated
within the extended Thomas Fermi (ETF) approximation, with
the addition of a gradient term as an effective parameter
representing the different surface properties of the different
models.

We show that the Ksym parameter plays a non-negligible role
in the nuclear skin as well as in the differences of the proton
radii of mirror nuclei and that the uncertainty on this parameter
partially blurs the correlation with the symmetry energy slope.

The paper is organized as follows: The different energy
functionals are briefly reviewed in Sec. II, as well as the
ETF approximation used to calculate nuclear observables.
In Sec. III, after discussing the overall performance of the
ETF approximation on the Pb isotopic chain, we show our
main results concerning the correlations between the differ-
ent isovector observables and the empirical EoS parameters.
Finally, conclusions are drawn in Sec. IV.
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II. FORMALISM

A. Skyrme EDF

The most extensive calculations of nuclear observables and
their correlations with EoS parameters have been performed
using Skyrme EDF [30].

The nuclear Skyrme energy density is expressed in terms of
local nucleon densities nq(r), kinetic energy densities τq(r),
and spin-orbit densities Jq(r) defined by [31]

nq(r) =
∑
ν,s

|φν(r,s,q)|2nq
ν ,

τq(r) =
∑
ν,s

|∇φν(r,s,q)|2nq
ν ,

Jq(r) = (−i)
∑
ν,s,s ′

φ∗
ν (r,s ′,q)∇φν(r,s,q) × 〈s ′|σ |s〉nq

ν , (1)

where φν(r,s,q) represent the single-particle wave functions
with orbital and spin numbers ν and s, q = n,p indexes the
nucleonic species, and n

q
ν are the occupation numbers. The

functional form of the EDF is generated by a mean-field
calculation with an effective zero-range momentum-dependent
pseudopotential, augmented of a density-dependent term.
Standard pseudopotentials, as the ones considered hereafter,
depend on 10 parameters. The values of these parameters
are typically determined by fits of experimental ground-state
properties of spherical magic and semimagic nuclei (e.g.,
binding energy, root mean square (rms) radius of the charge dis-
tribution, spin-orbit splitting, isotope shifts, surface thickness,
breathing mode energy, etc.) and/or properties of symmetric
nuclear matter (energy Esat and density nsat at saturation,
compression modulus Ksat, symmetry energy Esym), and/or
equation of state of pure neutron matter as predicted by ab
initio models. These parameters vary largely from one Skyrme
model to another. Properties of nuclear matter (NM) can be
expressed analytically in terms of the same parameters [30].

In the following, 17 Skyrme EDFs will be employed:
SKa [32], SKb [32], Rs [33], SkMP [34], SLy2 [35], SLy9
[35], SLy4 [36], SLy230a [37], SkI2 [38], SkI3 [38], SkI4
[38], SkI5 [38], SkI6 [39], SKOp [40], SK255 [41], SK272
[41], and KDE0v1 [42]. The extent to which they fulfill
various constraints that have been obtained from experiment or
microscopic calculations during the past decade [43] has been
thoughtfully investigated in Ref. [44] in the context of unified
equations of state for neutron star matter. Their values of
saturation density of symmetric nuclear matter (SNM), energy
per particle, and compression modulus of symmetric satu-
rated matter span relatively narrow ranges, 0.1512 � nsat �
0.1646 fm−3, −16.33 � Esat � −15.52 MeV, and 222.40 �
Ksat � 271.5 MeV, as these quantities are relatively well
constrained. Larger domains are explored by the symmetry en-
ergy, 29.54 � Esym � 37.4 MeV, and, especially, its slope and
curvature 44.3 � Lsym � 129.3 MeV and −127.2 � Ksym �
159.5 MeV.

It is worthwhile to notice that the functional form of
the Skyrme energy density leads to correlations between the
different EoS parameters. Indeed, five independent parameters
govern the density dependence of the EDF (and two addi-
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FIG. 1. Correlations between EoS parameters. Numbers on the
left-hand side of each plot correspond to Pearson correlation coef-
ficients between the parameters plotted on the axis. Upper (lower)
values: meta-model (Skyrme).

tional ones determine the density dependence of the effective
masses). If the lowest order EoS parameters are fixed, namely
Esat, nsat,Ksat, Esym, Lsym, the higher order parameters can be
analytically expressed as a function of those fixed quantities.
In particular, Skyrme EDFs show a clear correlation between
the slope Lsym and the curvature Ksym of the symmetry energy
at saturation, which are a priori independent EoS parameters.

This correlation, which obviously affects the extrapolation
of the EoS to supersaturation densities, is graphically illus-
trated in the top panel of Fig. 1 (open circles). Its Pearson
correlation coefficient1 is C(Ksym,Lsym) = 0.87. It was re-
cently shown that this correlation is observed in a large class of
functionals and might therefore be physically founded [25,26],
even if its origin is not fully understood.

Another interesting nontrivial correlation is found between
the effective nucleon mass at saturation, m∗

sat, and the isoscalar-
like finite-size parameter Cfin (see Sec. II B and Ref. [29]). This
correlation is illustrated in the bottom panel of Fig. 1. Its Pear-
son correlation coefficient is C(m∗

sat,Cfin) = 0.88. As already

1The Pearson correlation coefficient between two variables X and
Y is defined by C(X,Y ) = (〈XY 〉 − 〈X〉〈Y 〉)/σ (X)σ (Y ).
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discussed in Ref. [29], this correlation is probably induced by
the parameter fitting protocol of Skyrme functionals. Indeed,
m∗

sat and Cfin are related to nonlocal terms in the EDF which
have an opposite effect on the surface energy, and neither of
them plays a role in the determination of EoS parameters: For
a given set of EoS parameters, a similar overall reproduction
of binding energies over the nuclear chart can be obtained with
compensating effects of the nonlocal terms.

B. Metamodeling of the EDF

A theoretical calculation of a nuclear observable depends,
besides the EoS, on the functional form assumed for the EDF
as well as on the many-body technique employed. To assess
the model dependence due to the functional form of the EDF,
one should consider different families of models with similar
values for the EoS parameters. To this aim, a metamodeling
technique was proposed in Ref. [28] and extended to finite
nuclei EDF in Ref. [29]. By varying the parameters of the
metamodeling, a large number of EoS from different families
of mean-field EDF can be generated. Moreover, density depen-
dencies that do not correspond to existing functionals but do not
violate any empirical constraint can be also explored [28]. The
inclusion of a single gradient term provides a minimal flexible
EDF for finite nuclei, with performances on nuclear mass and
radii comparable to the ones of full Skyrme functionals [29].
The exploration of the metamodeling parameter space thus
allows a full estimation of the possible model dependence of
the extraction of EoS parameters from nuclear ground-state
observables, due to the choice of the EDF.

The potential energy per baryon is expressed as a Taylor
expansion around saturation of symmetric nuclear matter in
terms of the density parameter x = (n − nsat)/(3nsat),

epot(x,δ) =
N∑

α=0

(aα0 + aα2δ
2)

xα

α!
uα(x) , (2)

where the functions uα(x) represent a low-density correction,
ensuring a vanishing energy in the limit of vanishing density,
without affecting the derivatives at saturation.

To correctly reproduce with a limited expansion order N
existing nonrelativistic (Skyrme and ab initio) and relativistic
(RMF and RHF) EDFs up to total densities n = nn + np ≈
0.6 fm−3, and isospin asymmetries δ = (nn − np)/n ranging
from symmetric matter δ = 0 to pure neutron matter δ = 1,
the functional is supplemented by a kinetic-like term adding
the expected n2/3 dependence at low densities, as well as the
contribution of higher orders in the δ expansion, as

ekin(x,δ) = tFG
sat

2
(1+3x)2/3

[
(1 + δ)5/3 m

m∗
n

+(1−δ)5/3 m

m∗
p

]
,

(3)

where tFG
sat = (3h̄2)/(10m)(3π2/2)2/3

n
2/3
sat is the energy per

nucleon of a free symmetric Fermi gas at nuclear saturation, m
stands for the nucleon mass, and m∗

q denotes the effective mass
of the nucleons q = n,p. For more details, see model ELFc in
Ref. [28].

In the present work, we only consider subsaturation matter
and, to avoid proliferation of unconstrained parameters, we
limit the expansion to N = 2, which was shown to be enough to
get a fair reproduction of nuclear masses [29]. The possible in-
fluence of higher order parameters is left for future work. When
only average nuclear properties (e.g., binding energies and
rms radii of neutron and proton distributions) are calculated,
isoscalar and isovector finite-size and spin-orbit interactions
can be fairly well described by a single isoscalar-like density
gradient term [29] of the form Cfin(∇nn + ∇np)2. For the sake
of convenience, only this isoscalar density gradient will be
considered in this work. Following Ref. [29], we also neglect
the effective mass splitting between neutrons and protons. The
metamodeling parameters are then directly linked to the usual
first- and second-order empirical parameters of the EoS by

a00 = Esat − tFG
sat (1 + κsat), (4)

a10 = −tFG
sat (2 + 5κsat), (5)

a20 = Ksat − 2tFG
sat (−1 + 5κsat), (6)

a02 = Esym − 5
9 tFG

sat (1 + κsat), (7)

a12 = Lsym − 5
9 tFG

sat (2 + 5κsat), (8)

a22 = Ksym − 10
9 tFG

sat (−1 + 5κsat), (9)

where κsat = m/m∗
sat − 1.

Different EDF models for nuclei are generated by
largely and evenly exploring the parameter space {Pα} =
{nsat,Esat,Ksat,Esym,Lsym,Ksym,m∗

sat,Cfin}. For a given model,
the ground-state nuclear energies and radii are calculated in
the extended Thomas Fermi approximation at second order,
as detailed in the next section. We retain for the subsequent
analysis only the models {Pα} which provide a fair description
of the experimental binding energies of the spherical magic
nuclei, (40,20), (48,20), (48,28), (58,28), (88, 38), (90, 40),
(114, 50), (132, 50), and (208, 82), and charge radii, (40,20),
(48,20), (58,28), (88, 38), (90, 40), (114, 50), (132, 50), and
(208, 82). The absence of the nucleus (48,28) in the second list
is due to the fact that its experimental charge radius is not yet
available. We recall that this set of data represents the core of
nuclear properties on which the parameters of many Skyrme
interactions have been fitted. The limitation to spherical nuclei
is obviously due to the simplifying spherical approximation
of most approaches, including ours. Specifically, retained
EDFs correspond to sets of parameters {Pα} which provide
χ (B) � 5 MeV and χ (Rch) � 0.10 fm. The minimum values
here obtained for standard deviation of masses and charge
radii are 2.7 MeV and, respectively, 2.07 × 10−2 fm. As
usual in the literature, the χ2 function is defined as χ2(X) =∑N

i=1 (XETF(i) − Xexp(i))2/N . The accepted values of standard
deviation on mass are typically one order of magnitude larger
than the lowest value in the literature, 0.5 MeV, which cor-
responds to more than 2350 nuclei and has been obtained
in the framework of a Hartree-Fock-Bogoliubov (HFB) mass
model [45].

The variation domain of each parameter is obtained by con-
sidering the dispersion of the corresponding values in a large
number of relativistic and nonrelativistic mean-field models;
see Ref. [28]. The precise frontiers of this domain depend on
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TABLE I. Average and standard variation of the different parameters of the phenomenological EDF, calculated based on 51 Skyrme
interactions and 15 relativistic mean-field interactions (see Table IV in Ref. [28]).

Parameter {Pα} nsat Esat Ksat Esym Lsym Ksym m∗
sat/m Cfin

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeVfm5)

Average 〈{Pα}〉 0.1543 −16.03 251 33.30 76.6 −3 0.72 75
Standard deviation σα ±0.0054 ±0.20 ±29 ±2.65 ±29.2 ±132 ±0.09 ±25

the number of models considered and their selection criteria
and is therefore somewhat arbitrary. However, a variation of
the borders of the parameter space might affect the overall
dispersion in the predictions of the metamodel but not the
quality of the correlations among parameters and observables,
which is the scope of the present work.

The domain considered for each parameter Pα is reported
in Table I in terms of average value and standard deviation.
Good (poor) experimental constraints on nsat, Esat, and Esym

on one hand and Ksat, Lsym, and Ksym on the other hand lead
to narrow (wide) variation domains of these variables.

As a first application of the metamodeling, we can investi-
gate the model dependence of the correlations among empirical
parameters observed in the previous section for the Skyrme
EDFs.

The only significant correlation that was found in the
different models generated by the metamodeling technique
after application of the mass and radius filter is the one between
m∗

sat and Cfin, as shown by solid squares in the bottom panel
of Fig. 1. The value of the correlation coefficient, C = 0.81, is
close to our previous calculations using a simplified version
of the extended Thomas Fermi approach [29] and also to
the correlation coefficient of Skyrme pseudopotentials. This
confirms that the Skyrme correlation comes from the physical
constraint of mass reproduction and is largely independent of
the EDF model.

Conversely, only a poor correlation between Lsym and
Ksym emerges from the metamodeling after application of the
mass constraint; see solid squares in the top panel of Fig. 1.
This suggests that the origin of that correlation observed in
different functionals [25,26] is not due to the constraint of
mass reproduction.

C. The Extended Thomas-Fermi approximation with
parametrized density profiles

For a given EDF model, average properties of atomic
nuclei can be reasonably well described within the extended
Thomas-Fermi (ETF) approximation [46]. In this work, we
will limit ourselves to the second-order expansion in h̄ and to
parametrized density profiles in spherical symmetry, such as to
limit the number of variational parameters. Because of these
approximations, the degree of reproduction of experimental
data is not comparable to the one of dedicated fully quantal
HFB calculations [45], and more realistic calculations will
definitely have to be performed in order to determine EoS
parameters in a fully quantitative way. Still, the complete
exploration of the parameter space is not affordable with these
more sophisticated many-body techniques, and we believe that

an ETF metamodeling is sufficient to extract the correlations
between EoS parameters and the neutron skin.

In the ETF framework, the energy of an arbitrary distribu-
tion of nucleons with densities {nn(r),np(r)} is given by the
volume integral of the energy density according to

Etot =
∫

d r(enuc[nn,np] + eCoul[np]), (10)

where the first term stands for the nuclear energy and the second
stands for the electrostatic contribution.

At second order in the h̄ expansion, the nuclear energy
density functional writes

enuc[nn,np] =
∑

q=n,p

h̄2

2m∗
q

τ2q + eT F , (11)

where eT F is the Thomas-Fermi approximation of the chosen
nuclear EDF model, which can depend on local densities nq

as well as on density gradients ∇nq and currents Jq and τ2q is
the (local and nonlocal) density-dependent correction arising
from the second-order h̄ expansion of the kinetic energy
density operator.

The Coulomb energy density is expressed as [47]

eCoul[np] = e2

2
np(r)

∫
np(r ′)
|r − r ′|d r ′ − 3e2

4

(
3

π

)1/3

n4/3
p (r),

(12)

where the Slater approximation has been employed to estimate
the exchange Coulomb energy density.

The ground state is determined by energy minimization
using parametrized neutron and proton distributions. For a
generic nucleus with N neutrons and Z protons and under
the simplifying approximation of spherical symmetry, these
are customarily parametrized as Wood-Saxon (WS) density
profiles,

nWS
q (r) = nbulk,q

1 + exp
[(

r − RWS
q

)
/aq

] , (13)

where nbulk,q is linked to the central density of the q = n,p
distribution, and RWS

q and aq respectively stand for radius and
diffuseness parameters. With the extra condition of particle
number conservation,

Z = 4π

∫ ∞

0
drr2np(r),N = 4π

∫ ∞

0
drr2nn(r), (14)

only four variables out of six are independent. In the variational
calculation of the ground state, we make the choice of varying
{nbulk,q ,aq ; q = n,p}, while RWS

q are obtained from Eq. (14).
The only experimental observables related to the distribu-

tion of matter are the root mean squared (rms) radius of the
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charge distribution and, with larger error bars, neutron skin
thickness. Rms radius of the charge distribution is defined
as the rms radius of the proton distribution corrected for the
internal charge distribution of the proton Sp = 0.8 fm,〈

r2
ch

〉1/2 = [〈
r2
p

〉 + S2
p

]1/2
. (15)

Neutron skin thickness is defined as the difference in the
neutron-proton rms radii,

�rnp = 〈
r2
n

〉1/2 − 〈
r2
p

〉1/2
, (16)

and, as demonstrated in Ref. [24], it can be decomposed with
good accuracy into a bulk contribution,

�rbulk
np =

√
3

5

[(
RWS

n − RWS
p

) + π2

3

(
a2

n

RWS
n

− a2
p

RWS
p

)]
,

(17)

and a surface contribution,

�rsurf
np =

√
3

5

5π2

6

(
a2

n

RWS
n

− a2
p

RWS
p

)
. (18)

It is worthwhile to notice that each of these contributions
depends on both WS radii and diffusivities of neutron and
proton distributions.

III. RESULTS

A. Performance of the ETF approximation
on experimental data

In order to visualize the overall performance of the ETF
approximation, we consider in this section a single nuclear
EDF model, namely the SLy4 [36] functional. We note that a
lot of data on which SLy4 [36] has been constrained includes
binding energies and rms radii of doubly magic nuclei and
the equation of state of pure neutron matter of Ref. [48]. The
last constraint guarantees a correct behavior at high isospin
asymmetry.

In terms of average standard deviation on masses and radii,
we obtain for the considered pool of spherical nuclei χ (B) =
4.9 MeV and χ (Rch) = 4.1 × 10−2 fm.

The results of total, i.e., nuclear plus electrostatic,
energy minimization in the four-dimensional space
{nbulk,n,nbulk,p,an,ap} are plotted in Figs. 2 and 3 for the
isotopic chain of Pb as a function of the isospin asymmetry,
I = 1 − 2Z/A. Two different methods are used to calculate the
Coulomb energy. In one case, it is calculated by accounting
for the diffusivity of the proton distribution via Eq. (12)
(“self-consistent”). In the second, a uniformly charge
distribution approximation is employed, which leads to
0.69Z2/A1/3 (“approx.”). The top and middle panels of
Fig. 2 present the evolution of each of the four variational
parameters as a function of I . The bottom panel presents
the I dependence of the WS radii on neutron and proton
distributions, obtained from particle number conservation.
We notice the important effect of a self-consistent treatment
of Coulomb in the determination of the density profiles.
In particular, the obtained bulk densities and diffuseness
parameters are in good agreement with fits of HF density
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FIG. 2. ETF results corresponding to the ground state of Pb
isotopes, for a representative EDF model (SLy4 [36]). Variational
parameters nbulk,n, nbulk,p (top panel), an, ap (middle panel), and RWS

n

and RWS
p (bottom panel) are plotted as a function of total isospin

asymmetry. The results obtained by considering the diffusivity of the
charge distribution [“self-consistent,” Eq. (12)] are confronted with
those corresponding to the uniformly charged sphere approximation
(“approx.”).

profiles with the same EDF [49], which reassures us of the
quality of the approximation.

We can also see that WS radii of neutron and proton distribu-
tions have similar values, though strongly dependent on I . This
might suggest that the skin is mainly a surface effect for this
calculation. However, this interpretation is not correct because
the equivalent sharp radius R3

q = [3
∫

drr2nq(r)]/nbulk,q is
different from the WS radius parameter, RWS

q , and effectively
depends on the diffuseness of the profile [24]. Moreover, as
explicitly worked out in Ref. [50], the diffuseness parameter
itself depends in a highly nontrivial way both on the gradient
terms of the EDF and on the bulk properties of matter.

Figure 3 illustrates the total binding energy per nucleon
(top panel), rms radius of charge distribution (middle panel),
and neutron skin thickness (lower panel) as a function of I .
When available, experimental data for binding energies [51]
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FIG. 3. ETF results corresponding to the ground state of Pb
isotopes and SLy4 [36]. Binding energy per nucleon (top panel), rms
radii of neutron and charge distributions (middle panel), and neutron
skin thickness are plotted as a function of total isospin asymmetry.
When available, experimental masses [51] and charge radii [52] are
plotted as well. For neutron skin thicknesses of 208Pb, the following ex-
perimental data are illustrated: 0.1515 ± 0.0197 fm [15], 0.156+0.025

−0.021

fm [16], and 0.3012 ± (0.175)exp ± (0.026)model ± (0.005)strange fm
[13,53]. As in Fig. 2, two methods for calculating the Coulomb energy
are considered. Neutron skin thickness decomposition into bulk and
surface contributions according to Eqs. (17, 18) is represented on the
bottom panel for the case in which the Coulomb energy is calculated
self-consistently (open symbols).

and charge radii [52] are plotted as well. For neutron skin
thickness of 208Pb, we display data from Refs. [13,15,16,53].
Self-consistent calculation of the Coulomb energy leads to
a fair agreement with experimental data though a systematic
overbinding is obtained for nuclei with I < 0.17. Complete HF
calculations from Ref. [29], performed in spherical symmetry,
are also shown. Aside from a residual deviation which can
be ascribed to the choice of the functional and/or beyond
mean-field effects, HF calculation describe very well the
experimental data. Concerning the ETF calculations, we can
see that missing higher h̄ orders and the use of a parametrized

density profiles lead to a deviation with respect to the experi-
mental data, which is larger than that of the HF calculation. The
energy error is, however, very small for 208Pb and neighboring
nuclei. This justifies the method described in Sec. II B and
employed to build metamodeling EDF based on best fit of
properties of spherical nuclei.

The performances of the ETF approximation when
Coulomb is consistently included in the variation can be judged
also from the agreement of rms radii of charge distributions
with experimental data. As one may see in the middle panel
of Fig. 3, the overall accord is good. The most important
deviations, of the order of 0.05 fm, are obtained for I > 0.17.
This deviation is comparable to the one obtained with complete
ETF or DFT calculations in the absence of deformation [54,55]
and can be ascribed to the choice of the functional and/or
to beyond-mean-field effects. Neutron skin thickness presents
a linear dependence on I irrespective of how Coulomb was
calculated. As is easy to anticipate, the consistent displacement
of neutron and proton distributions, due to the Coulomb
repulsion, leads to values of the neutron skin thickness lower
than those obtained in the simplifying approximation. It is
interesting to remark that while the Coulomb effect decreases
the neutron skin, the different diffuseness of the proton and
neutron density profiles tends to increase it. As a consequence,
the two effects partially cancel and the global result is close to
our previous calculations [29], where both effects were neg-
lected in order to obtain analytic approximations. The bottom
panel depicts also the bulk and surface contribution to the
skin thickness [24], calculated according to Eqs. (17) and
(18). One notices that, for 208Pb, they contribute equally to
the total thickness while in neutron-richer (neutron-poorer)
isotopes it is the bulk (surface) term that dominates. Given the
relatively low Lsym = 46 MeV value of SLy4 [36], this result is
in good agreement with the droplet model (DM) calculations of
Ref. [56], where the dominance of bulk or surface contributions
was shown to be linked to the value of Lsym.

B. Correlations between nuclear observables and
parameters of nuclear matter

The correlation between the neutron skin thickness of 208Pb
and Lsym has been reported in the past years in many different
studies based on density functionals [11,12,24], semiclassical
approaches [56,57], and DM [56].

More recently, the existence of other correlations with
various isovector modes of collective excitation was suggested,
namely electric dipole polarizability [16–18], isovector giant
dipole resonance (IVGDR) [58], isovector giant quadrupole
resonance (IVGQR) [20], pygmy dipole resonance (PDR)
[19,58,59], and antianalog giant dipole resonance (AGDR)
[60–62]. A correct description of these modes demands a
dynamical treatment in the framework of linear response theory
and is beyond the purpose of this work. However, simplified
expressions were proposed. An example in this sense is given
by Ref. [63], which relates the electric dipole polarizability of
a nucleus of mass number A and isospin asymmetry I ,

αD = πe2

54

A〈r2〉
Esym

(
1 + 5

3

Esym − asym

Esym

)
, (19)
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with the ground-state symmetry energy in the local density
approximation [24]

asym(A) = 4π

AI 2

∫ ∞

0
dr r2n(r)δ2(r)esym[n(r)], (20)

where esym = (1/2)∂2e(n,δ)/∂δ2|δ=0 represents the local sym-
metry energy. Another example is offered by Ref. [64] which
expresses the IVGDR energy constant in terms of symmetry
energy, saturation density, and surface stiffness coefficient,
Qstiff , as

D = D∞/

√
1 + 3EsymA−1/3/Qstiff , (21)

where D∞ =
√

8h̄2Esym/(mr2
0 ) and r3

0 = 3/(4πnsat). The
surface stiffness coefficient measures the resistance of the
asymmetric semi-infinite nuclear matter against separation of
neutrons and protons to form a skin and is typically performed
within HF or ETF approaches. Such calculations showed some
sensitivity of Qstiff to the calculation procedure [65,66] as
well as significant correlations with the symmetry energy
and its first- and second-order derivatives [57,67]. Different
approximation formulas have been proposed. Some of them
express Qstiff in terms of a number of nuclear matter parameters
and are based on fits of HF or ETF calculations performed
using different EDFs. Within the liquid drop model, Ref. [46]
calculates Qstiff from calculations of finite nuclei disregarding
the Coulomb interaction. In the present work, we adopt
the expression, Qstiff = 9EsymA−1/3/4/(Esym/aasym − 1), ob-
tained by equating the ground-state symmetry energy given
by Eq. (20) with the corresponding DM expression [24].
For the case of 208Pb, its accuracy is of the order of 10%,
which leads to a relative error of 2% on the IVGDR energy
constant of 208Pb calculated according to Eq. (21). This small
uncertainty only marginally affects the correlation between the
macroscopically derived IVGDR energy constant and various
properties associated with the finite nuclei or the nuclear
matter. However, more important distortions might come from
the nature of the approximation itself, namely the use of
macroscopic expressions in case of dynamical quantities. Such
distortions apply to both αD and D.

Another interesting observable, potentially linked to the
isovector EoS parameters, is given by the difference between
the proton radii Rp = 〈r2

p〉1/2 of mirror nuclei [68,69]. This
observable has the interesting feature of being directly acces-
sible from a variational calculation without any extra model
assumption. Moreover, it is much more accessible experimen-
tally than the neutron skin, which demands the measurement
of the neutron distribution.

The correlation between the proton radii differences in
mirror nuclei and electric dipole polarizability on one hand
and neutron skin thicknesses on the other hand has been
addressed in Refs. [23,68–70]. Reference [64] focused on the
nuclear symmetry energy dependence of the IVGDR energies
by considering a series of Skyrme interaction potentials. The
correlations between neutron skin thickness, electric dipole
polarizability, and IVGDR energy constant of 208Pb and proton
radii difference for A = 48 mirror nuclei are investigated in
Fig. 4 for both metamodeling EDF and Skyrme functional.
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FIG. 4. Correlations between neutron skin thickness in 208Pb and
differences in the proton radii of mirror nuclei Rp(48Ni) − Rp(48Ca)
(top), electric dipole polarizability of 208Pb (middle), and IVGDR
energy constant of 208Pb (bottom). Results corresponding to Skyrme
and metamodeling are represented with open circles and, respectively,
solid squares. Skyrme predictions corresponding to differences in
the proton radii of mirror nuclei Rp(50Ni) − Rp(50Ti), Rp(52Ni) −
Rp(52Cr), Rp(54Ni) − Rp(54Fe) are also plotted in the top panel.
Numbers on the left hand side of each plot correspond to Pearson
correlation coefficients between the observables plotted on the axis.
Upper (lower) values: metamodeling (Skyrme).

For completeness, Skyrme predictions corresponding to dif-
ferences in the proton radii of A = 50,52,54 and �rnp(208Pb)
are also plotted in the top panel. In the case of �rmirror

vs �rnp(208Pb), metamodeling EDF leads to a strong cor-
relation, with a Pearson correlation coefficient of 0.98. A
moderate correlation is obtained for D(208Pb) vs �rnp(208Pb).
A poor correlation is found between the dipole polarizability
and neutron skin thickness. Skyrme functionals provide very
similar results. Very strong correlations are obtained only
between �rnp(208Pb) and proton radii differences in mirror
nuclei with A = 48,50,52,54. This result is in agreement with
Refs. [68,69]. The correlation between electric dipole polariz-
ability and �rnp(208Pb) is loose, in agreement with Ref. [70].
Reference [70] has actually evidenced that a much better
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FIG. 5. Correlations between Lsym and �rnp(208Pb) (top panel)
and Lsym and Rp(48Ni) − Rp(48Ca) (bottom panel). In addition to
metamodeling EDF plotted in the previous figures, here we consider
also metamodeling EDF with fixed values of Ksym = 100,0,−100
MeV. The numbers on the left-hand side mention the Pearson
correlation coefficients in the following order: metamodeling with
freely varying Ksym, metamodeling with Ksym = 100,0,−100 MeV,
and Skyrme.

correlation holds between �rnp and (αDEsym), as expected
from Eq. (19). Finally Skyrme functionals lead to medium-
strength correlations between the IVGDR energy constant and
neutron skin thickness of 208Pb. This result can be understood
considering the Lsym and Ksym dependences of the D quantity
via Qstiff .

We now turn to test the sensitivity of the observables to the
different isovector parameters of the EoS. In a previous work
[29], a full Bayesian analysis of the correlation matrix was
performed, though with a more simplified version of the ETF
metamodeling, which did not include the self-consistent treat-
ment of Coulomb nor the definition of (nbulk,n,nbulk,p,an,ap) as
independent variational variables. In that study, it was shown
that the neutron skin is only sensitive to theLsym parameter. The
present calculations, with a more sophisticated treatment of the
ETF metamodeling, confirm the results of our previous work.

The correlation between the neutron skin in 208Pb and the
Lsym parameter is shown in the top panel of Fig. 5. The lower
value of the correlation coefficient with respect to the results
of Ref. [29] can be understood from the fact that the difference
between the neutron and proton diffusivity was neglected in
Ref. [29]. This value is also lower than the one corresponding
to Skyrme functionals, as well as the ones reported by most
analyses in the literature using specific energy functionals
[23,24,56,57,71]. The higher dispersion of the metamodeling
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FIG. 6. Correlations between Lsym and αD(208Pb) (top) and Lsym

and D(208Pb) (bottom). Numbers on the right-hand side of each
plot correspond to Pearson correlation coefficients between the
observables plotted on the axis. Upper (lower) values: metamodeling
(Skyrme). As in Fig. 5, metamodeling EDF with fixed values of
Ksym = 100,0,−100 MeV are plotted as well.

is due to the fact that the different EoS parameters are fully in-
dependent in the metamodeling approach. As already observed
in Ref. [29], though the EoS parameters are all influential in
the calculation of nuclear masses and radii, the constraint on
those quantities does not generate correlations among the EoS
parameters because compensations can freely occur.

To demonstrate this statement, we have generated models
with arbitrary fixed values of Ksym fulfilling the same criteria
imposed to the global set of models; see Sec. II B. The
resulting correlations are shown in Fig. 5 for three cases
Ksym = −100,0,100 MeV. We can observe that the correlation
between 208Pb and Lsym is greatly improved when Ksym is
fixed. In the case of Skyrme functionals, Ksym can largely
vary but its value is positively correlated to Lsym because of
the specific function form of the density-dependent term in
Skyrme interactions [see Fig. 1 (a)]. As a consequence, the
Skyrme results interpolate the more general metamodel ones
and the correlation coefficient is only slightly less than those
corresponding to metamodel EDF with fixed Ksym values.

The bottom panel of Fig. 5 summarizes the analyses done
above but for the correlation between the proton radii differ-
ence in A = 48 mirror nuclei and Lsym. The conclusions are
similar: Strong (poor) correlations exist in the case of Skyrme
functionals and metamodeling EDF with fixed Ksym values
(metamodeling EDF with freely varying Ksym).

The correlations of the dipole polarizability and IVGDR
energy constant of 208Pb with Lsym are reported in Fig. 6,
for the metamodeling and for the selected Skyrme function-
als. As in Fig. 5, metamodeling EoS with fixed values of
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Ksym = −100,0,100 MeV are also considered. As one may
see, αD(208Pb) and D(208Pb) show less correlation with Lsym

than with �rnp(208Pb), when metamodeling EDF are em-
ployed. At variance with this, Skyrme functionals provide for
αD(208Pb) and D(208Pb) almost the same degree of correlation
with Lsym as with the neutron skin of 208Pb. A word of caution
is nevertheless in order. The accurate calculation of these
two dynamical quantities is possible only within the linear
response theory. Equations (19) and (21) presently employed
rely on approximations and are thus are expected to distort the
sensitivity to nuclear matter EoS.

In Ref. [29], the isoscalar and isovector parameters of the
metamodelling EDF have been determined by fits of exper-
imental binding energies of symmetric nuclei with masses
20 � A � 100 and full isotopic chains of Ca, Ni, Sn, and
Pb. We have tested that the conclusions drawn above and the
degrees of correlation remain the same if the pool of nuclei on
which the parameters of the EDF are determined is replaced
by the one considered in Ref. [29].

IV. CONCLUSIONS

In this paper, we have explored the influence of the different
isovector empirical EoS parameters on some properties of
atomic nuclei, namely neutron skin thickness, difference in
proton radii of mirror nuclei, dipole polarizability, and the
IVGDR energy constant of 208Pb.

The analysis was done within a recently proposed meta-
modeling technique [28,29]. Varying the parameters of the
metamodeling, it is possible to reproduce existing relativistic
and nonrelativistic EDF, as well as to consider novel density
dependencies which are not explored by existing functionals.
With respect to our previous work, Ref. [29], we have improved

the ETF formalism employed to extract nuclear masses and
radii out of a given EDF: The Coulomb interaction is con-
sistently included in the variational procedure, and the bulk
densities and diffuseness parameters of the density profiles
are treated as independent variational parameters. These im-
provements allow a better description of nuclear radii and the
nuclear skin. The correlation between this latter observable
and the slope of the symmetry energy Lsym, already reported
in numerous studies in the literature with different EDFs as
well as many-body techniques, is confirmed by our study.

However, we show that the quality of this correlation is
considerably worsened if we allow independent variations of
the curvature parameter Ksym with respect to the slope Lsym,
while this was not observed in previous studies, probably
because in most existing functionals such correlation exists.
We conclude that it will be very important to constrain the
curvature parameter with dedicated studies, in order to reduce
the confidence intervals of EoS parameter and allow more
reliable extrapolations to the higher density domain.

We have shown that the condition of a reasonable re-
production of nuclear masses and radii does not necessarily
imply any strong correlation between Lsym and Ksym. For
this reason, it is possible that the existing correlation in the
Skyrme EDF might be spuriously induced by the arbitrariness
of the functional form, particularly the density-dependent term.
However, as suggested in Refs. [25,26], such a correlation
might also be physical and linked to the fact that Skyrme EDF
are derived from a pseudopotential which satisfies some basic
physical properties, which is not the case of the more general
metamodeling. To answer this question, it will be important
to evaluate and possibly constrain this correlation on ab initio
calculations of neutron matter [26]. This work is presently in
progress.
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