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Degenerate two-body and three-body coupled-channels systems:
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Motivated by the existence of candidates for exotic hadrons whose masses are close to both two-body and
three-body hadronic thresholds lying close to each other, we study degenerate two-body and three-body coupled-
channels systems. We first formulate the scattering problem of non-degenerate two-body and three-body coupled
channels as an effective three-body problem, i.e., as effective Alt-Grassberger-Sandhas (AGS) equations. We
next investigate the behavior of S-matrix poles near the threshold when two-body and three-body thresholds
are degenerate. We solve the eigenvalue equations of the kernel of AGS equations instead of AGS equations
themselves to obtain the S-matrix pole energy. We then face a problem of unphysical singularity: although the
physical transition amplitudes have physical singularities only, the kernels of AGS equations have unphysical
singularities. We show, however, that these unphysical singularities can be removed by appropriate reorganization
of the scattering equations and mass renormalization. The behavior of S-matrix poles near the degenerate threshold
is found to be universal in the sense that the complex pole energy, E, is determined by a real parameter, c, as
c + E log (−E) = 0, or equivalently, c + Re E log (Re E) = 0 and Im E = πRe E/ log (Re E). This behavior is
different from that of either two-body or three-body systems and is characteristic of the degenerate two-body and
three-body coupled-channels system. We expect that this new class of universal behavior might play a key role
in understanding exotic hadrons.
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I. INTRODUCTION

The X(3872) was first observed in 2003 [1] and is consid-
ered not to be a simple charmonium [2–4] and is therefore a
candidate for the exotic hadron. Since its mass is very close to
the neutral DD̄∗ threshold, it is pointed out that it has a signifi-
cant DD̄∗ molecular component [5–20]. However, we must be
aware that its mass is also very close to the DD̄π three-body
threshold. We therefore have to consider DD̄∗-DD̄π hadronic
two-body and three-body coupled-channels analysis whose
importance has also been discussed [21–27]. See Refs. [28–31]
for recent review articles of heavy quarkonium and candidates
for the exotic hadron in those energy regions. There are both ex-
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perimental and theoretical indications that a strange dibaryon
exists in the K−pp system [32–34]. Since the resonance
�(1405) exists in the K̄N channel, K̄NN -�(1405)N -π�N
two-body and three-body coupled-channels effects regarding
�(1405) as a compact qqq baryon might play an important
role in understanding the system. The existence of non-strange
dibaryons was first discussed in the 1960s [35,36]; however,
it is only recently that they were actually observed experi-
mentally [37–43]. The importance of hadronic two-body and
three-body coupled-channels analysis in these channels has
also been discussed [44,45]. See, for example, an introduction
in Ref. [46] for a review of the current status of non-strange
dibaryon physics.

Two-body and three-body coupled-channels analysis is
therefore required to deepen our understandings of those
resonances whose thresholds lie close to each other. In this
paper, motivated by such circumstances, we develop two-body
and three-body coupled-channels scattering equations and
investigate the S-matrix pole behavior near the thresholds in
the case of a degenerate two-body and three-body coupled-
channels system.

2469-9985/2018/97(6)/064001(22) 064001-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.97.064001&domain=pdf&date_stamp=2018-06-19
https://doi.org/10.1103/PhysRevC.97.064001
https://creativecommons.org/licenses/by/4.0/


KONISHI, MORIMATSU, AND YASUI PHYSICAL REVIEW C 97, 064001 (2018)

The discussion so far has been focused on phenomeno-
logical aspects of hadron physics. However, the degenerate
two-body and three-body coupled-channels system is also
interesting from a purely theoretical perspective. It is known
that the S-matrix pole behavior near the threshold in a single-
channel two-body and three-body system has a universal prop-
erty [47]. Namely, it is determined by one or two parameters
depending on how close the poles are located to the threshold.
It is also known that universal behavior crucially depends on
the phase-space property near the threshold, that is, whether
it is a two-body system, a it is three-body system, or the
system has relative angular momentum excitation [48]. Then,
a question arises: How does the S-matrix pole behave near the
thresholds in the case of a degenerate two-body and three-body
coupled system? We expect a new class of universal behavior
emerges in such a case. We might also want to ask the same
question in relation to the Efimov effect. If two pairs of three
particles develop a zero-energy bound state, an infinite number
of bound states appear, which is known as the Efimov effect. A
degenerate two-body and three-body coupled-channels system
corresponds to a three-body system in which one of the three
pairs develops a zero-energy bound state.

The behavior we are going to discuss is therefore interesting
on its own and also might play a key role in understanding those
observed candidates for the exotic hadrons lying in the energy
regions where two-body and three-body hadronic thresholds
rest close to each other. In this article, we investigate and
answer those questions mentioned above.

In Sec. II, we present basic setups, namely, the Hamil-
tonian we consider, effective interactions constructed by
the Feshbach projection, the Alt-Grassberger-Sandhas (AGS)
equations which three-body transition amplitudes satisfy, a
problem of unphysical singularity, and its solution with the
mass renormalization plus an appropriate reorganization of
the Feynman diagrams. In Sec. III, we calculate the S-matrix
pole behavior near the thresholds in a degenerate two-body
and three-body coupled-channels system using Yamaguchi-
type separable interactions. We show that the S-matrix pole
behavior is characteristic in the system and also univer-
sal in a sense that it is determined by the equation c +
E log (−E) = 0 or, equivalently, c + Re E log (Re E) = 0 and
Im E = πRe E/ log (Re E), where E is the S-matrix pole
energy, while c a real parameter. In Sec. IV, we summarize
the results and discuss their physical applications.

II. EFFECTIVE AGS EQUATIONS FOR TWO-BODY AND
THREE-BODY COUPLED-CHANNELS SYSTEM

We consider a two-body and three-body coupled-channels
system. We denote three particles in a three-body channel as
φ1φ2φ3 and two particles in a two-body channel as ψφ3. Since
we investigate the S-matrix pole behavior of a two-body and
three-body coupled-channels system by solving the effective
three-body system, we first explain how we solve the three-
body system with an effective Hamiltonian,

H
(3)
eff =

3∑
i=1

(
mi + k2

i

2mi

)
+ U1 + U2 + U3 + U4, (1)

where U1, U2, and U3 are the effective two-body interactions
of φ2φ3, φ3φ1, and φ1φ2, respectively, and U4 is the effective
three-body interaction of φ1φ2φ3.

The three-body problem can be solved by the following
AGS equations [49,50]:

X = Z + ZT X, (2)

where the quantities are 3 × 3 matrices whose rows and
columns correspond to channel states. X is the transition
amplitude matrix, T is the diagonal matrix,

T =
⎛
⎝t1 0 0

0 t2 0
0 0 t3

⎞
⎠, (3)

whose diagonal matrix elements t1, t2, and t3 are the two-body
T -matrices of φ2φ3, φ3φ1, and φ1φ2, respectively,

ti = Ui + UiG
φj φk

0 Ui + · · ·

= Ui

1

1 − G
φj φk

0 Ui

(i = 1,2,3), (4)

and G
φj φk

0 is the free Green function of φjφk ,

G
φj φk

0 = 1

E − mj − k2
j

2mj
− mk − k2

k

2mk

. (5)

Z is composed of two parts:

Z = Z0 + Z4. (6)

Z0 has only off-diagonal elements,

Z0 = G
φφφ
0 δ̄, (7)

where

δ̄ =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠, (8)

and G
φφφ
0 is the free Green function of φ1φ2φ3,

G
φφφ
0 = 1

E − ∑3
i=1

(
mi + k2

i

2mi

) . (9)

Z4 has all 3 × 3 components and is a sum of repeated effective
three-body force.

The off-diagonal structure of Z0 combined with diagonal
nature of T prevents overcounting the same two-body T -
matrices in a row. A diagrammatic representation of the
scattering equations is given in Fig. 1. The diagrammatic
representation clearly shows what is done in the scattering
equations. We first sum a three-body interaction in addition
to three two-body interactions to give the three two-body
T -matrices, ti (i = 1,2,3) and Z4. We then sum them up,
mixing them with each other while taking care of overcounting
the same two-body T -matrices in a row. The solution of the
AGS equations is formally given as

X(E) = 1

1 − Z(E)T (E)
Z(E), (10)
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FIG. 1. A diagrammatic representation of the AGS equations with three-body force.

where E is the energy of the three-body system. Considering
the eigenvalue equation of the kernel of the AGS equations,

Z(E)T (E)|n〉 = ηn(E)|n〉, (11)

with the eigenvector and eigenvalue, the formal solution is
written as

X(E) =
∑

n

|n〉〈n|
1 − ηn(E)

Z(E). (12)

If it has an eigenvalue, 1, at the energy E = Ep, i.e., ηn(Ep) =
1, then X(E) has a pole at the energy E = Ep as can be seen
from Eq. (12). Therefore, we solve the eigenvalue equation of
the kernel of the effective AGS equations instead of solving
the equations themselves.

We next discuss the reordering of the transition matrix X,
which is needed in order to understand the singularity structure
of X and Z. To that end, we decompose the two-body T -matrix
as

T = T̄3 + T3, (13)

where, written in an explicit matrix form,

T̄3 =
⎛
⎝t1 0 0

0 t2 0
0 0 0

⎞
⎠, T3 =

⎛
⎝0 0 0

0 0 0
0 0 t3

⎞
⎠. (14)

The transition matrix X can be expanded as

X = Z + ZT Z + · · · = 1

1 − ZT
Z. (15)

Since Z = Z0 + Z4 and T = T3 + T̄3, we regard the rhs) of
Eq. (15) as a function of Z0, Z4, T3, and T̄3. We first collect
the terms including Z4 and T3 and define the sum to be W3:

W3 = Z4 + Z4T3Z4 + · · · = 1

1 − Z4T3
Z4. (16)

We next include Z0 and define the sum to be X3:

X3 = Z0 + Z0T3Z0 + (1 + Z0T3)W3(T3Z0 + 1), (17)

where use has been made of T3Z0T3 = 0. We finally include
T̄3, which gives X as

X = X3 + X3T̄3X3 + X3T̄3X3T̄3X3 + · · ·
= X3 + X3(T̄3 + T̄3X̄3T̄3 + · · · )X3

= X3 + X3

(
1

1 − T̄3X̄3
T̄3

)
X3, (18)

where

X̄3 =

⎛
⎜⎝

0
(X3)ij

0
0 0 0

⎞
⎟⎠, (19)

and use has been made of T̄3X3T̄3 = T̄3X̄3T̄3. Clearly, the
three-body pole of X comes from that of T̄3 + T̄3X̄3T̄3 + · · · =
(1 − T̄3X̄3)−1

T̄3, which plays an important role in proving the
equivalence of the pole in the original and modified AGS
equations.

Now, we move on to how we construct effective AGS
equations starting from a two-body and three-body coupled-
channels system. We first explain what happens if we naively
follow the method by Feshbach [51,52]. The transition matrix
X is known to have the same physical singularities as the
original two-body and three-body coupled-channels system.
We show, however, that if we try to solve the eigenvalue
equation, Eq. (11), we face the problem of an unphysical
singularity since a part of the driving term Z4 has unphysical
singularities. Then, we show that we can define modified AGS
equations where not only the transition matrix X′ but also
Z′

4 has only the same physical singularities as the original
two-body and three-body coupled-channels system.

We express the effective AGS equations in terms of un-
renormalized Green functions in the former argument but in
terms of renormalized ones in the latter. This is because the
appearance and disappearance of unphysical singularities are
most transparent in terms of unrenormalized Green functions
in the former argument and in terms of renormalized ones in the
latter, respectively. However, even if we express the effective
AGS equations in terms of renormalized Green functions in
the former or in terms of unrenormalized ones in the latter,
the fact that unphysical singularities appear or disappear does
not change although the expressions become much more com-
plicated. The origin of the appearance and disappearance of
unphysical singularities lies in the reorganization of the higher-
order terms of the kernels in the effective AGS equations
but not in the use of unrenormalized or renormalized Green
functions.

In the method by Feshbach, introducing the projection
operators onto the three-body channel, P , and the two-body
channel, Q, respectively, we write the full Hamiltonian as a
matrix [51,52]:

H =
(

PHP PHQ
QHP QHQ

)
=

(
HP

0 + VPP VPQ

VQP H
Q
0 + VQQ

)
.

(20)
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Vφiφj
=

Vψ-φ1φ2
= Vψφ3

=

Vφ1φ2-ψ =

Gφ
0 = Gψ

0 =

FIG. 2. Summary of Feynman rules. We denote the free Green
function of φi as solid lines and the unrenormalized free Green
function of ψ as dashed red lines.

The kinetic terms in the three-body and two-body channels,
HP

0 and H
Q
0 , are respectively given by

HP
0 =

3∑
i=1

(
mi + k2

i

2mi

)
, (21)

H
Q
0 = M + K2

3

2M
+ m3 + k2

3

2m3
. (22)

We assume that the diagonal interaction terms in the three-body
and two-body channels, VPP and VQQ, are given by two-body
interactions, while the off-diagonal interaction terms, VPQ and
VQP , are due to φ1φ2-ψ coupling:

VPP = Vφ2φ3 + Vφ3φ1 + Vφ1φ2 ,

VQQ = Vψφ3 ,

VPQ = Vφ1φ2-ψ,

VQP = Vψ-φ1φ2 . (23)

We define the free Green function of φi , G
φi

0 (E,ki), by

G
φi

0 (E,ki) = 1

E − mi − k2
i

2mi

, (24)

and that of ψ , G
ψ
0 (E,K3), by

G
ψ
0 (E,K3) = 1

E − M − K2
3

2M

. (25)

The Feynman rules are therefore given as shown in Fig. 2.
The physical mass of ψ is shifted from the bare one by the

coupling toφ1φ2. The dressed Green function ofψ ,Gψ (E,K3),
which is diagrammatically shown as

Gψ = , (26)

is expressed by the free Green function, G
ψ
0 (E,K3), and the

self-energy, �(E,K3), as

Gψ (E,K3) = G
ψ
0 (E,K3) + G

ψ
0 (E,K3)�(E,K3)Gψ

0 (E,K3)

+ · · · , (27)

FIG. 3. Summary of Feynman rules. We denote the free Green
function of φi as solid lines and the unrenormalized free Green
function of ψ as dashed red lines.

or diagrammatically,

= + + · · · . (28)

The physical mass of ψ , M ′, is determined from the pole energy
of the Green function with the vanishing momentum, K3 = 0,

M ′ = M + �(E,0)|E=M ′ . (29)

We also define the renormalized free Hamiltonian as the
kinetic term with the physical mass,

H ′
0
Q = M ′ + K2

2M ′ + m3 + k2
3

2m3
, (30)

and add the difference of the bare and renormalized free
Hamiltonians, 	, from the interaction, Vψφ3 :

H ′
0
Q = H

Q
0 − 	, (31)

V ′
ψφ3

= Vψφ3 + 	. (32)

The renormalized free Green function is defined by

G′
0
ψ (E,K3) = 1

E − M ′ − K2
3

2M ′

. (33)

The Feynman rules in terms of the renormalized free Green
function are therefore given as shown in Fig. 3.

In the Feshbach projection method the effective Hamilto-
nian in the three-body channel is given by

H
(3)
eff = PHP + PHQ

1

E − QHQ
QHP = HP

0 + UPP ,

(34)
where UPP is the effective interaction in the three-body
channel:

UPP = VPP + VPQ

1

E − H
Q
0 − VQQ

VQP . (35)

UPP can be decomposed into the sum of the two-body
interactions in each channel,Ui (i = 1,2,3), and the three-body
interaction, U4:

UPP = U1 + U2 + U3 + U4, (36)

where

U1 = Vφ2φ3 =
φ2

φ3

, (37)

U2 = Vφ3φ1 =
φ3

φ1

, (38)
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U3 = Vφ1φ2 + Vφ1φ2-ψGψφ3
0 Vψ-φ1φ2 =

φ1

φ2

+
φ1

φ2

ψ
,

(39)

(40)

and

ψ

φ3

tψφ = + + · · · . (41)

The matrix, Z4, is channel independent, i.e., Z4 = z41, where

1 =
⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠. (42)

z4 is given by

z4 =G
φφφ
0 U4G

φφφ
0 +· · ·=G

φφφ
0 U4

1

1−G
φφφ
0 U4

G
φφφ
0 , (43)

or diagrammatically,

(44)

and z4t3z4 by

z4t3z4 = ẑ4 ẑ4 = + · · · . (45)

The matrix, W3, is also channel independent, i.e. W3 = w31, and w3 = z4 + z4t3z4 + · · · is diagrammatically given by

w3 = ẑ4 + ẑ4 ẑ4 + · · ·

= + + + · · ·

≡ ŵ3 ,
(46)

where in the intermediate state use has been made of the relation for the dressed and free Green functions for ψ ,

Gψ = G
ψ
0 + G

ψ
0 �G

ψ
0 + G

ψ
0 �Gψ�G

ψ
0 , (47)

or diagrammatically,

= + + . (48)

The first two terms in Eq. (47) or Eq. (48), G
ψ
0 and G

ψ
0 �G

ψ
0 , are included in Z4 (z4), while the last term G

ψ
0 �Gψ�G

ψ
0 in

included in Z4T3Z4 (z4t3z4), and the sum of these terms gives the full Green function, Gψ , in W3 (w3). Thus, it is clear that
Z4, and therefore Z, has an unphysical branch point at E = M + m3, while W3, and therefore X, has only a physical one at
E = M ′ + m3. If we solve for the scattering amplitudes X, this unphysical singularity of Z does not matter. However, since
we solve the eigenvalue equation of ZT , which has an unphysical singularity, the existence of the unphysical singularity causes
difficulty in searching for the S-matrix pole in the complex energy plane.

Later, we modify the effective AGS equations and compare the matrix element, X̄3, in the original and modified effective AGS
equations. Therefore, we show here the ij (i,j = 1 or 2) matrix element of the third term of Eq. (17), (1 + Z0T3)W3(T3Z0 + 1),
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which is given as

(49)

where use has been made of the relation
Gψ = G

ψ
0 + G

ψ
0 �Gψ, (50)

or diagrammatically,

= + . (51)

Let us now discuss the modification of the effective AGS equations. Our task is to find the modified AGS equations
X′(E) = Z′(E) + Z′(E)T (E)X′(E), (52)

Z′(E) = Z0(E) + Z′
4(E), (53)

where the modified transition amplitude, X′, has the same three-body pole as the original amplitude, X, yet the modified kernel,
Z′, has only physical singularities.

We first define t ′ψφ3
by summing up the higher-order terms of tψφ3 , which includes counterterms, as

(54)

Then, we define z′
4 similarly to Eq. (44), which is diagrammatically given by

(55)
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and z′
4t3z

′
4 by

z4t3z4 = ẑ4 ẑ4 = + · · · . (56)

Recalling that the corresponding counterterms of z′
4t3z

′
4 are included in z′

4, we can show that w′
3 = z′

4 + z′
4t3z

′
4 + · · · is given by

w3 = ẑ4 + ẑ4 ẑ4 + · · ·

= + + +

= ŵ3 ,
(57)

where use has been made of the relation for the dressed and renormalized free Green functions for ψ ,

Gψ = G′
0
ψ + G′

0
ψ (� + 	)G′

0
ψ + G′

0
ψ (� + 	)Gψ (� + 	)G′

0
ψ

= G′
0
ψ + G′

0
ψ
�G′

0
ψ + G′

0
ψ
	G′

0
ψ + G′

0
ψ
	Gψ	G′

0
ψ + G′

0
ψ
	Gψ�G′

0
ψ + G′

0
ψ
�Gψ	G′

0
ψ + G′

0
ψ
�Gψ�G′

0
ψ
, (58)

or diagrammatically,

= + + +

+ + + .
(59)

Clearly, the vertex ŵ′
3 is the same as ŵ3, yet, given as

a finite sum of the renormalized free Green function, z′
4

has a physical branch point at E = M ′ + m3, not an un-
physical one at E = M + m3 in contrast to z4. This is be-
cause we define z′

4 as a finite sum of the renormalized free
Green function, and therefore it includes not only z4 but
also a part of the higher-order terms, z4t3z4, z4t3z4t3z4, and
so on, which changed the bare singularity to the physical
one.

In contrast to Z4, we define the matrix Z′
4 not to be

proportional to 1 but to be given as (see Appendix A for details)

(Z4)33 = ẑ4

(Z4)3j = ẑ4 + ẑ4

(Z4)i3 = ẑ4 + ẑ4

(Z4)ij = ẑ4 + ẑ4

+ ẑ4 + ẑ4 .

(60)

The matrix element of W ′
3, which is defined by W ′

3 = Z′
4 +

Z′
4T3Z

′
4 + Z′

4T3Z
′
4T3Z

′
4 + · · · , is given as

(W ′
3)αβ = (Z′

4)αβ + (Z′
4)α3t3(Z′

4)3β + (Z′
4)α3t3z

′
4t3(Z′

4)3β + · · ·

= (Z′
4)α3

z′
4 + z′

4t3z
′
4 + z′

4t3z
′
4t3z

′
4 + · · ·

z′
4

2 (Z′
4)3β

= (Z′
4)α3

w′
3

z′
4

2 (Z′
4)3β. (61)

Therefore, W ′
3 has a matrix structure similar to Z′

4 as

(W3)33 = ŵ3

(W3)3j = ŵ3 + ŵ3

(W3)i3 = ŵ3 + ŵ3

(W3)ij = ŵ3 + ŵ3

+ ŵ3 + ŵ3 .

(62)
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Then, the ij (i,j = 1 or 2) matrix element of the third term of Eq. (17), (1 + Z0T3)W ′
3(T3Z0 + 1), is given as

(63)

where use has been made of the relation

Gψ = G
′ψ
0 + G

′ψ
0 �Gψ + G

′ψ
0 	Gψ, (64)

or, diagrammatically,

= + + . (65)

From Eqs. (49) and (63) one sees that

((1 + Z0T3)W ′
3(T3Z0 + 1))ij = ((1 + Z0T3)W3(T3Z0 + 1))ij .

(66)

The first and second terms of Eq. (17), Z0 and Z0T3Z0, are
also the same in the original and modified equations, since we
have modified neither Z0 nor T3. Therefore,

(X′
3)ij = (X3)ij , (67)

and

T̄3

1 − T̄3X̄
′
3

= T̄3

1 − T̄3X̄3
, (68)

from which we conclude that the modified transition amplitude,
X′, has the same three-body pole as the original amplitude, X.

III. THE S-MATRIX POLE BEHAVIOR NEAR THE
THRESHOLD: NUMERICAL RESULTS

In this section, we numerically solve the eigenvalue equa-
tion of the kernel of the effective AGS equations and analyze
the S-matrix pole behavior near the thresholds in the case
of a degenerate two-body and three-body coupled-channels
system.

We adopt separable interactions both for diagonal and off-
diagonal parts whose matrix elements are

〈kikj |Vφiφj
|k′

ik
′
j 〉 = g(pk)λφiφj

g(p′
k), (69)

〈Kk3|Vψφ3 |K ′k′
3〉 = g(q3)λψφg(q ′

3), (70)

〈K|Vψ-φ1φ2 |k1k2〉 = 1

K2
δ(K − k1 − k2)λψ-φφg(p3), (71)

where pk is the relative momentum of φi and φj , pk = (ki −
kj )/2, while q3 is that of ψ and φ3, qk = (K − k3)/2. g(p) is
the Yamaguchi-type form factor g(p) = �2/(p2 + �2), where
� is called a cutoff parameter. λφφ and λψφ are the coupling
constants of the two-body interactions in the two-body and
three-body channels, respectively. In the two-body channel we
take the coupling constants of the two-body interactions of
φ2φ3 and φ3φ1 to be the same, λφφ , but that of φ1φ2 to be zero.
λψ-φφ is the ψ-φ1φ2 coupling constant.

Bound-state poles lie on the real physical energy axis below
the threshold, which can be directly studied by the eigenvalue
equation of the kernel of the modified effective AGS equations

Z′(E)T (E)|n〉 = ηn(E)|n〉. (72)

However, resonance poles are located in the fourth quadrant
of the unphysical energy sheet,1 which can be exposed only
after analytic continuation of the eigenvalue equation [Eq. (72)]
is performed onto the unphysical complex energy sheet. For
this purpose we adopt the method of contour rotation. See, for
example, Refs. [54,55].

The contour rotation is done by rotating the integration
contour as follows:

3∑
j=1

∫ ∞

0
q2

j dqjZ
′(Eqiqj )τj

(
E − mj − q2

j

2Mj

)
φ(qj )

= η(E)φ(qi),

1It is known that the two-body channel has a square root singularity,
(	2 − E)1/2, and the three-body channel has a logarithmic singularity,
(E − 	3)2 log(	3 − E) [53], where we take the two-body threshold
energy, 	2, and the three-body threshold energy, 	3, independently
for explanation. We consider the complex energy sheet with π/2 <

arg(	2 − E)1/2 < 3π/2 and π < Im log(	3 − E) < 3π , which is
directly connected to the real physical energy arg(	2 − E)1/2 = π/2
and Im log(	3 − E) = π , by rotating the energy clockwise and we
simply refer to it as the “unphysical energy sheet.”
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⇒
3∑

j=1

∫ ∞

0
e−3iθ q2

j dqjZ
′(Ee−iθ qie

−iθ qj )τj

×
(

E − mj − e−2iθ q2
j

2Mj

)
φ(e−iθ qj ) = η(E)φ(e−iθ qi).

(73)

Since we adopt a Yamaguchi-type form factor, the rotation
angle θ in the momentum plane is restricted to θ � π

2 and
therefore an angle of rotation of the branch cut in the
complex energy sheet is restricted to be less than π . This
causes no problem since we are interested in resonances lying
on the fourth quadrant of the unphysical complex energy
sheet.

After performing analytical continuation, we two-
dimensionally discretize the fourth quadrant of the complex
energy sheet with the interval 0.00025 and calculate the
Fredholm determinant,

∏
n (1 − ηn(E)), of the kernel,

Z(E)T (E), at each grid. We then identify the complex energy,
at which the Fredholm determinant takes a minimum, as an
approximate pole energy, regarding discretization intervals as
errors.

Here we summarize how we take the parameters of the
model. We assume the masses of φi to be the same and
take them as the unit of the energy, m1 = m2 = m3 = 1. The
physical mass of ψ is therefore M ′ = 2 in our unit. It is useful
to define dimensionless coupling constants fφφ and fψφ as
fφφ = π

2 μφφλφφ� and fψφ = π
2 μψφλψφ�, where μφφ and

μψφ are reduced masses of φφ and ψφ, respectively. When
fφφ � −1 (fψφ � −1) the two-body system, φ2φ3 or φ3φ1

(ψφ3) has a bound state. Matrix elements of the effective
interactions, two-body and three-body T -matrices, and driving
terms are presented in Appendix B. We fix the off-diagonal
coupling constant, λψ-φφ , to be

√
4π × 0.1 in our unit for

simplicity, while we change the diagonal coupling constants;
i.e., we take 6 values, −0.15, −0.2, −0.25, −0.3, −0.35, and
−0.4, for fφφ , and 10 to 15 values between −1.11 and −1.41
for fψφ .

In Table I, we summarize obtained complex pole energies
vs. coupling constants, fφφ and fψφ . Then, in Fig. 4 (Fig. 5), we
plot locations of poles in the unphysical complex energy sheet
with error bars explained above for different values of fψφ

(fφφ) with fφφ (fψφ) fixed. We also show the curve determined
by the equation

c + E log (−E) = 0, (74)

where c is a real parameter, which corresponds to the inverse
scattering length in the s-wave two-body scattering. When
the pole is located in the fourth quadrant of the unphysical
complex energy plane, the real and imaginary parts of Eq. (74),
respectively, become

c + Re E log (Re E) = 0, Im E = πRe E/ log (Re E),
(75)

where higher-order terms of Im E/Re E are neglected.
In Figs. 4 and 5 one sees that the calculated results are

consistent with the analytic formula, Eqs. (74) or (75), near
the degenerate threshold within error bars. In Figs. 4 and 5 the

trajectories of poles seem slightly unsmooth. This might be due
to the slow convergence of the integral equation when poles
lie close to the rotated branch cut. However, the deviations are
still within errors.

We see that the S-matrix pole approaches the threshold
from the fourth quadrant of the unphysical complex energy
sheet as the absolute value of the coupling constant, fψφ

(fψψ ), increases. We also see that when poles lie close to
the threshold, that is, when Re E � 0.001, they all lie on
the curve, c + E log (−E) = 0. This is consistent with the
analytical study of Ref. [56]. The S-matrix pole behavior
near the threshold in the system is therefore universal in
the sense that it is described by the unique one-parameter
equation c + E log (−E) = 0 irrespective of details of the
specific parameter sets.

This behavior of the S-matrix pole near the threshold is
different from either the two-body or three-body scattering.
In the two-body scattering the T -matrix near the threshold is
represented in the form of the effective range expansion and
the pole is given as a solution of the equation

− 1

a�

+ r�

2
p2 + · · · − ip2�+1 = 0

(
E = p2

2μ

)
, (76)

where � is the relative angular momentum, and p and μ are the
relative momentum and the reduced mass of the two particles,
respectively. From Eq. (76) the behavior of the pole momentum
in the unphysical complex energy sheet is given as

p ∼ −i/a0 (� = 0), (77)

p ∼ ±
√

2

a�r�

− i
2�

a�
�r

�+1
�

(� � 1). (78)

If � = 0, the S-matrix pole approaches the threshold from
the negative axis in the unphysical complex energy sheet
and becomes a bound state as the interaction becomes more
attractive. If � � 1, the pole approaches the threshold from the
fourth quadrant of the unphysical complex energy sheet, which
manifests itself as a resonance if it lies close enough to the real
axis, and becomes a bound state as the interaction becomes
more attractive. Figures 6 and 7 illustrate trajectories of poles
of � = 0 and � � 1, respectively, both in the physical and in
the unphysical complex energy sheet.2

In the three-body scattering, the T -matrix near the threshold
behaves as in the two-body scattering with � replaced by L =
L + 3

2 , where L is the sum of two relative angular momenta
in the three-body system [48]. Therefore, the behavior of the
S-matrix pole in the three-body scattering is similar to that of
the two-body scattering with � � 1 and resonances can exist
irrespective of the relative angular momenta.

It should be noted that in the degenerate two-body and three-
body coupled-channels system the S-matrix pole approaches
the degenerate threshold from the fourth quadrant of the

2The above argument implicitly assumes that the energy dependence
of the interaction is not strong. If the energy dependence of the
interaction is very strong, even the two-body system with � = 0 can
have resonances. See, for instance, Ref. [57].
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FIG. 4. The S-matrix pole trajectories near the thresholds in a degenerate two-body and three-body coupled-channels system: (a) fφφ =
−0.15, (b) −0.20, (c) −0.25, (d) −0.30, (e) −0.35, and (f) −0.40. Each point in each figure corresponds to different fψφ . The solid curve is a
trajectory determined by the equation c + E log (−E) = 0, or equivalently c + Re E log (Re E) = 0 and Im E = πRe E/ log (Re E). We can
see that poles approach the thresholds from the fourth quadrant of the unphysical complex energy sheet. We can also see that when poles lie
very close to the thresholds, they all lie on the solid curve irrespective of parameter sets.

unphysical complex energy sheet even though the two-body
system is in the s wave, which is different from that of
the two-body s-wave scattering. Therefore, if poles lie close
enough to the real axis, they might appear as resonances.

IV. SUMMARY AND DISCUSSION

In this paper, we studied the S-matrix pole behavior
near the threshold for the degenerate two-body and three-
body coupled-channels system. To that end, we formulated
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FIG. 5. The S-matrix pole trajectories near the thresholds in a degenerate two-body and three-body coupled-channels system: (a) fψφ =
−1.33, (b) −1.35, and (c) −1.37. Each point in each figure corresponds to different fφφ . The solid curve is a trajectory determined by the
equation c + E log (−E) = 0, or equivalently c + Re E log (Re E) = 0 and Im E = πRe E/ log (Re E). We can see that poles approach the
thresholds from the fourth quadrant of the unphysical complex energy sheet. We can also see that when poles lie very close to the thresholds,
they all lie on the solid curve irrespective of parameter sets.

two-body and three-body coupled-channels scattering equa-
tions as effective three-body scattering equations, effective
AGS equations, by the Feshbach projection method. In the

(a) (b) 

FIG. 6. The S-matrix pole trajectory: s-wave. (a) The unphysical
complex energy sheet and (b) The physical complex energy sheet.

effective AGS equations, effects induced by the coupling to
the two-body channel are embedded as effective interactions
in the three-body channel. Even in the absence of elementary

(a) (b)

FIG. 7. The S-matrix pole trajectory: higher partial wave. (a)
The unphysical complex energy sheet and (b) The physical complex
energy sheet.
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three-body interactions, the coupling to the two-body channel
generates effective three-body interactions.

We solved the eigenvalue equation of the kernel of the scat-
tering equations instead of solving the equations themselves
to obtain the S-matrix pole energy. However, we faced the
problem of an unphysical singularity when we naively tried
to solve the eigenvalue equation. Namely, it turns out that the
solution of the eigenvalue equation has an unphysical branch
point due to the fact that the physical mass of a particle is
different from the bare one. The full transition amplitudes
of course have only the physical singularities; i.e., they have
a physical branch point with the physical mass but not an
unphysical branch point with the bare mass. We showed that
this problem is resolved by an appropriate reorganization of
the scattering equations and the mass renormalization. In a
word, we included the counterterms which appear in higher-
order terms of the scattering equations into the kernel of
the scattering equations, which is an input of the eigenvalue
equation.

We numerically solved the modified eigenvalue equation
and obtained the S-matrix pole behavior near the thresholds
for various parameters. The S-matrix pole approaches the
threshold from the fourth quadrant of the unphysical energy
sheet, which manifests itself as a resonance if it lies close
enough to the real axis, and becomes a bound state as the
interaction becomes more attractive. The behavior of the
obtained numerical results is consistent with the universal be-
havior c + E log (−E) = 0 analytically obtained in Ref. [56].
This behavior is different from the two-body or three-body
scatterings and is characteristic in the degenerate two-body and
three-body coupled-channels system. This behavior, however,
is analogous to the two-body system with non-vanishing an-
gular momentum or the three-body system in the sense that the
states appear either as bound states or as resonances but never as
virtual states. This generally holds in the degenerate two-body
and three-body coupled-channels system independent of the
parameters taken in the calculation, which can be interpreted as
an appearance of the effective generalized angular momentum
barrier as in the three-body system.

In this paper we considered an ideal situation with exactly
degenerate two-body and three-body thresholds, which is unre-
alistic. To what extent would what we have found in the present
paper survive when two-body and three-body thresholds are
not exactly degenerate? Let 	2 and 	3 be the threshold en-
ergies of the two-body and three-body channels, respectively,
and Ep be the resonance energy. If |Ep − min {	2,	3}| 

|	2 − 	3|, then what we have found would survive as a
leading order approximation, while if |Ep − min {	2,	3}| �
|	2 − 	3|, then the upper threshold would become irrelevant
and the behavior of the resonance would be governed by the
lower threshold.

The characteristic behavior predicted in this paper for the
degenerate two-body and three-body coupled-channels system
may be observed in the cold atom system in which the
interaction can be controlled by applying external fields or

(approximately) in the hadronic systems where two-body and
three-body thresholds are (approximately) degenerate.
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APPENDIX A: MODIFIED KERNEL IN THE PRESENCE
OF Vφ1φ2

In Sec. II, we derived the modified kernel by reorganizing
the Feynman diagrams order-by-order with respect to Vψφ3 , the
interaction between ψφ3. There, we ignored the elementary
interaction between φ1φ2 denoted as Vφ1φ2 to simplify the
argument. In this Appendix, we present a detailed derivation
of the modified kernel taking also Vφ1φ2 into account and by
explicitly summing each term in the effective AGS equations as
a geometric series. In the following, we suppress the argument
of energy E for notational simplicity.

1. The self-energies in higher-order terms
in the effective AGS equations

In this section, we see how the self-energies appear in
higher-order terms of the effective AGS equations and how
the corresponding counterterms are added to it. Derivation of
the modified kernel is given in the next section.

In the presence of Vφ1φ2 , the self-energy can be decomposed
into two parts, one that contains the φ1φ2 interaction, which
we denote as �V , and the other that does not, denoted as �0:

� = �0 + �V . (A1)

Its diagrammatic representation is given as

= +

=

t̂3Σ

t̂3 + + · · · .
φ1

φ2

,

(A2)

When it comes to considering the self-energies which appear
in higher-order terms of the effective AGS equations, it is
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convenient to write t3 in the following form:

t3 = t̂3 + (
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2G

ψφ3Vφ1φ2-ψ
(
G

φφφ
0 t̂3 + 1

)
,

(A3)

where t̂3(E) is defined by

t̂3 = V3
1

1 − G
φφφ
0 V3

. (A4)

Diagrammatic representation of t3 is given as

(A5)

For notational simplicity, we rewrite Z4 as follows:

Z4 = z41, z4 = G
φφφ
0 Vψ-φ1φ2GVφ1φ2-ψG

φφφ
0 , (A6)

where we defined G by

G = G
ψφ3
0 tψφ3

1

1 − G
ψφ3
0 �0tψφ3

G
ψφ3
0 , (A7)

and tψφ3 by

tψφ3 = Vψφ3 + Vψφ3

1

E − H
Q
0 − Vψφ3

Vψφ3 , (A8)

whose diagrammatic representation is

(A9)

z4t3z4, which appears in higher-order terms of the effective AGS equations, is written as

(A10)

The corresponding �0 for the first term in the above is actually included in the second term of z4 as

tψφ tψφ tψφ+ + · · · .z4 = (A11)

Combining the second term of the above equation with the first term of Eq. (A10), we obtain

(A12)
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The corresponding counterterms are as follows:

(A13)

Another way the self-energies appear in higher-order terms of the effective AGS equations is in ones like Z0T Z4, which
contains the matrix elements G

φφφ
0 t3z4 which are rewritten as

G
φφφ
0 t3z4 = G

φφφ
0

(
t̂3 + (

1 + t̂3G
φφφ
0

)
Vψ-φ1φ2G

ψφ3Vφ1φ2-ψ
(
G

φφφ
0 t̂3 + 1

))
G

φφφ
0 Vψ-φ1φ2GVψ-φ1φ2G

φφφ
0

= G
φφφ
0

(
t̂3G

φφφ
0 Vψ-φ1φ2 + (

1 + t̂3G
φφφ
0

)
Vψ-φ1φ2G

ψφ3�
)GVψ-φ1φ2G

φφφ
0 , (A14)

whose diagrammatic representation is given below:

++t̂3 Σ Σt̂3 . (A15)

The corresponding counterterms are, therefore,

Gφφφ
0 1 + t̂3G

φφφ
0 Vψ-φ1φ2G

ψφ3Δ GVψ-φ1φ2G
φφφ
0 = . (A16)

Having seen what sort of self-energies appear in higher-order
terms of the effective AGS equations, we find a way to put
those counterterms into one of the driving terms Z4 and define
the modified one in the next section.

2. Reorganization of the effective AGS equations
and the modified kernel

In the following, we perform the mass renormalization and
reorganize scattering processes in the effective AGS equations
so as to keep the structure of the equations the same while
the counterterms in higher-order terms of the equations are
included into the kernel of the equations.

The self-energies appearing in higher-order terms of the
effective AGS equations are generated when one of the driv-
ing terms, Z4, and one of the two-body T -matrices, t3, are
multiplied. We therefore sum up t3 first so that the additional
self-energy does not appear in higher-order terms as discussed
in detail below.

As we saw in Sec. II, the transition amplitude X is reorga-
nized as

X = 1

1 − ZT
Z = X3

1

1 − T̄3X3
. (A17)

Noting that Z0T3Z0 = 0, we can simplify X3 as

X3 = Z0 + Z0T3Z0 + (1 + Z0T3)W3(T3Z0 + 1), (A18)

where we defined W3 by

W3 = Z4
1

1 − T3Z4
. (A19)

We note that the additional self-energy does not appear when T̄3

and X3 are multiplied. W3 is channel independent, W3 = w31,
where w3 is defined by

w3 = z4 + z4t3z4 + · · · = z4
1

1 − t3z4
. (A20)

w3 can be expressed in some ways. Substituting an expression
in Eq. (44), w3 is written as
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(A21)

Substituting the definition of G [Eq. (A7)], we obtain the following expression:

(A22)

Noting that

G
ψφ3
0 (� + �Gψφ3�)Gψφ3

0 = Gψφ3 − G
ψφ3
0 , (A23)

we obtain another expression:

(A24)

Substituting the definition of tψφ3 , we have the most intuitive expression of w3:

(A25)

The intermediate factor t�ψφ3
= Vψφ3/(1 − Gψφ3Vψφ3 ) is represented in terms of the renormalized quantities as follows:

t�ψφ3
= t ′ψφ3

+ t ′ψφ3

(
Gψφ3 − G

′ψφ3
0

)
t ′ψφ3

+ · · ·

= t ′ψφ3
+ t ′ψφ3

G
′ψφ3
0 (� + 	 + (� + 	)Gψφ3 (� + 	))G

′ψφ3
0 t ′ψφ3

+ · · · , (A26)

where we introduced the renormalized free Green function

G
′ψφ3
0 =

(
E − M ′ − m3 − p2

3

2M ′ − k2
3

2m3

)−1

, (A27)

and another two-body T -matrix,

t ′ψφ3
= Vψφ3 + Vψφ3G

′ψφ3
0 Vψφ3 + · · · . (A28)

Its Green function is the bare one instead of the dressed one. w3 is therefore written in terms of the renormalized quantities as

w3 = G
φφφ
0 Vψ-φ1φ2G

ψφ3
0 t ′ψφ3

1

1 − (
Gψφ3 − G

′ψφ3
0

)
t ′ψφ3

G
ψφ3
0 Vφ1φ2-ψG

φφφ
0

= G
φφφ
0 Vψ-φ1φ2G

ψφ3
0 t ′ψφ3

1

1 − G
′ψφ3
0 (� + 	 + (� + 	)Gψφ3 (� + 	))G

′ψφ3
0 t ′ψφ3

G
ψφ3
0 Vφ1φ2-ψG

φφφ
0
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= G
φφφ
0 Vψ-φ1φ2G ′ 1

1 − (
�V + �G

ψφ3
� �

)G ′ Vφ1φ2-ψG
φφφ
0

= G
φφφ
0 Vψ-φ1φ2G ′ 1

1 − Vφ1φ2-ψG
φφφ
0 t3G

φφφ
0 Vψ-φ1φ2G ′ Vφ1φ2-ψG

φφφ
0 , (A29)

where we defined G ′ by

G ′ = G
′ψφ3
0

(
t ′ψφ3

+ t ′ψφ3
G

′ψφ3
0 (�0 + 	 + 	Gψφ3� + �Gψφ3	 + 	Gψφ3	)G

′ψφ3
0 t ′ψφ3

+ · · · )G′ψφ3
0

= G
′ψφ3
0

(
t ′ψφ3

+ t ′ψφ3

(
Gψφ3 − G

′ψφ3
0 − G

′ψφ3
0 (�V + �Gψφ3�)G

′ψφ3
0

)
t ′ψφ3

+ · · · )G′ψφ3
0 . (A30)

Its diagrammatic expression is given as

+

+ +

+

+ · · ·

=

= +

+

+ · · · ,

t̂12 Σ Σ−= − −

tψφ

Σ Σ

tψφ

tψφ

tψφ

tψφ

tψφ

tψφ

tψφ

tψφ

tψφ tψφ

tψφ tψφ tψφ

. (A31)

With G ′ defined above, w3 is written as

w3 = G
φφφ
0 Vψ-φ1φ2G ′Vφ1φ2-ψG

φφφ
0 + G

φφφ
0 Vψ-φ1φ2G ′Vφ1φ2-ψG

(3)
0 t3 G

φφφ
0 Vψ-φ1φ2G ′Vφ1φ2-ψG

φφφ
0 + · · · . (A32)

We can see that the counterterms in higher-order terms of the effective AGS equations are now put into G ′ while keeping the form
of the effective AGS equations the same.

We have been focused on the intermediate part of the scattering processes. We next discuss the left- and right-most parts of
the scattering processes which have the channel-dependent structure. Explicit expressions for the left- and right-most structures
of the last term in W3 are

1 + Z0T3 =

⎛
⎜⎝

1 0 G
φφφ
0 t3

0 1 G
φφφ
0 t3

0 0 1

⎞
⎟⎠, T3Z0 + 1 =

⎛
⎜⎝

1 0 0

0 1 0

G
φφφ
0 t3 G

φφφ
0 t3 1

⎞
⎟⎠. (A33)

The explicit matrix expression for (1 + Z0T3)W3(T3Z0 + 1) is therefore⎛
⎜⎝

(
1 + G

φφφ
0 t3

)
w3

(
t3G

φφφ
0 + 1

) (
1 + G

φφφ
0 t3

)
w3

(
t3G

φφφ
0 + 1

) (
1 + G

φφφ
0 t3

)
w3(

1 + G
φφφ
0 t3

)
w3

(
t3G

φφφ
0 + 1

) (
1 + G

φφφ
0 t3

)
w3

(
t3G

φφφ
0 + 1

) (
1 + G

φφφ
0 t3

)
w3

w3
(
t3G

φφφ
0 + 1

)
w3

(
t3G

φφφ
0 + 1

)
w3

⎞
⎟⎠. (A34)

Noting that the left- and the right-most factors of w3 are G
φφφ
0 Vψ-φ1φ2 and Vφ1φ2-ψG

(3)
0 , we obtain(

1 + G
φφφ
0 t3

)
G

φφφ
0 Vψ-φ1φ2 = G

φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2

(
1 + Gψφ3�

)
, (A35)

Vφ1φ2-ψG
φφφ
0

(
t3G

φφφ
0 + 1

) = (�Gψφ3 + 1)Vφ1φ2-ψ
(
G

φφφ
0 t̂3 + 1

)
G

φφφ
0 . (A36)

The (1,1) component, for example, is then written as

G
φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2 (1 + Gψφ3�)Gψφ3

0 t�ψφ3
G

ψφ3
0 (�Gψφ3 + 1)Vφ1φ2-ψ

(
G

φφφ
0 t̂3 + 1

)
G

φφφ
0

= G
φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2G

ψφ3 t�ψφ3
Gψφ3Vφ1φ2-ψ

(
G

φφφ
0 t̂3 + 1

)
G

φφφ
0 . (A37)

Similarly, the (1,3) component is written as

G
φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2G

ψφ3 t�ψφ3
G

ψφ3
0 Vφ1φ2-ψG

φφφ
0 , (A38)

and the (3,1) component as

G
φφφ
0 Vψ-φ1φ2G0t

�
ψφ3

Gψφ3Vφ1φ2-ψ
(
G

φφφ
0 t̂3 + 1

)
G

φφφ
0 . (A39)
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The diagrammatic representation of each matrix element is given as

(A40)

We now rewrite them in terms of the renormalized quantities as we did in the previous paragraph. For example, the (1,3) component
is written as

G
φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2G

ψφ3 t�ψφ3
G

ψφ3
0 Vφ1φ2-ψG

φφφ
0

= G
φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2 (1 + Gψφ3 (� + 	))G

′ψφ3
0 t�ψφ3

G
ψφ3
0 Vφ1φ2-ψ. (A41)

We include the counterterm by modifying the left-most part of the kernel as

G
φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2 (1 + Gψφ3	)G ′Vφ1φ2-ψG

φφφ
0 . (A42)

For the (3,1) component, we modify the kernel as

G
φφφ
0 Vψ-φ1φ2G ′(	Gψφ3 + 1)Vφ1φ2-ψ

(
G

φφφ
0 t̂3 + 1

)
G

φφφ
0 , (A43)

and for the (1,1) component as

G
φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2 (1 + Gψφ3	)G ′(	Gψφ3 + 1)Vφ1φ2-ψ

(
G

φφφ
0 t̂3 + 1

)
G

φφφ
0 . (A44)

Each component of the modified driving term is as follows:

(Z′
4)ij = G

φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2 (1 + Gψφ3	)G ′(	Gψφ3 + 1)Vφ1φ2-ψ

(
G

φφφ
0 t̂3 + 1

)
G

φφφ
0 (i,j = 1,2),

(Z′
4)i3 = G

φφφ
0

(
1 + t̂3G

φφφ
0

)
Vψ-φ1φ2 (1 + Gψφ3	)G ′Vφ1φ2-ψG

φφφ
0 (i = 1,2),

(Z′
4)3j = G

φφφ
0 Vψ-φ1φ2G ′(	Gψφ3 + 1)Vφ1φ2-ψ

(
G

φφφ
0 t̂3 + 1

)
G

φφφ
0 (j = 1,2),

(Z′
4)33 = G

φφφ
0 Vψ-φ1φ2G ′Vφ1φ2-ψG

φφφ
0 . (A45)

The diagrammatic representation of each component is given
in Fig. 8.

FIG. 8. A diagrammatic representation of the modified kernel.

APPENDIX B: JACOBI MOMENTA AND EXPLICIT
EXPRESSIONS FOR THE MATRIX ELEMENTS

IN THE EFFECTIVE AGS EQUATIONS

1. Jacobi momenta

In a three-body system, it is convenient to introduce the
Jacobi momenta defined by

P = k1 + k2 + k3, (B1)

qi = (mj + mk)ki − mi(kj + kk)

mi + mj + mk

, (B2)

pi = mkkj − mj kk

mj + mk

, (B3)

where i,j,k are cyclic permutations of 1,2,3 and ki is a
momentum of φi in Cartesian coordinates. In the following, we
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consider the problem in the three-body center-of-mass frame;
that is, we set

P = 0. (B4)

The other two Jacobi momenta then become

qi = ki , (B5)

pi = mkkj − mj kk

mj + mk

. (B6)

We also introduce reduced masses as follows:

M−1
i = (mj + mk)−1 + m−1

i , (B7)

μ−1
φj φk

= m−1
j + m−1

k . (B8)

With this notation we introduced, the kinetic energy in the
three-body channel in the center-of-mass frame is written as

3∑
i=1

(
mi + k2

i

2mi

)

=
3∑

i=1

mi + P 2

2
∑3

i=1 mi

+ q2
i

2Mi

+ p2
i

2μφj φk

=
3∑

i=1

mi + q2
i

2Mi

+ p2
i

2μφj φk

. (B9)

We denote the center of mass and the relative momentum
in the two-body channel as

P = K3 + k3, (B10)

p = m3K3 − Mk3

M + m3
. (B11)

We denote the reduced mass of ψφ3 as μψφ3 :

(μψφ3 )−1 = M−1 + m−1
3 , (B12)

where we placed a superscript on the mass of ψ since its mass
shifts from the bare one by the coupling to the φ1φ2 two-body
state. The kinetic energy in the two-body channel in the center-
of-mass frame is therefore written as

M + K2
3

2M
+ m3 + k2

3

2m3

= M + m3 + P2

2(M + m3)
+ p2

2μψφ3

= M + m3 + p2

2μψφ3

. (B13)

In Sec. III, we perform a numerical calculation in the case
where the two-body and three-body thresholds are degenerate,

M ′ = m1 + m2, (B14)

where we introduced the physical mass of ψ , M ′. We briefly
discuss how each kinetic quantities are related in that case. If
two thresholds are degenerate, we have

K3 = k1 + k2, (B15)

which leads to

P = k1 + k2 + k3 = K3 + k3 = P . (B16)

That is, the three-body center-of-mass frame is also the two-
body center-of-mass frame. The relative momentum between
the pair φ1φ2 and φ3 is then

q3 = (m1 + m2)k3 − m3(k1 + k2)

m1 + m2 + m3

= M ′k3 − m3K3

M ′ + m3
= −p. (B17)

In a word, the relative momentum between φ3 and φ1φ2 is equal
(up to sign) to the relative momentum between ψ and φ3.

2. Elementary, effective interactions, T matrices, and kernels

In this section, we present explicit expressions for the ele-
mentary and the effective interactions and its matrix elements.
Matrix elements of Z0(E) and (unmodified) Z4(E) are also
presented.

Elementary interactions between φjφk are of the form

Vφj φk
=

∫ ∞

0
q2

i dqi |qig〉λφj φk
〈qig|, (B18)

and those coupling ψ and φ1φ2 are

Vψ-φ1φ2 =
∫ ∞

0
q2

3dq3�|q3〉〈q3g|, (B19)

and an interaction between ψφ3 is

Vψφ3 = |g〉λψφ3〈g|, (B20)

where |g〉 is the Yamaguchi-type form factor. The effective
interactions are therefore

Ui(E) = Vφj φk
=

∫ ∞

0
q2

i dqi |qig〉λφj φk
〈qig| (i = 1,2),

(B21)

U3(E) = Vφ1φ2 + Vψ-φ1φ2G
ψφ3
0 (E)Vφ1φ2-ψ

=
∫ ∞

0
q2

3dq3|q3g〉(λφ1φ2 + �G
ψφ3
0 (Eq3)�

)〈q3g|,
(B22)

U4(E) = Vψ-φ1φ2G
ψφ3
0 (E)tψφ3 (E)Gψφ3

0 (E)Vφ1φ2-ψ

=
∫ ∞

0
q2

3dq3q
′2
3 dq ′

3�|q3g〉Gψφ3
0 (Eq3)〈q3|tψφ3 (E)|q ′

3〉

×G
ψφ3
0 (Eq ′

3)〈q ′
3g|�. (B23)

As we saw in the previous Appendix, when it comes to consid-
ering the modified kernel in the presence of the elementary
interactions between φ1φ2, it is convenient to express the
two-body T -matrix of φ1φ2 as follows:

t3(E) = t̂3(E) + (
1 + t̂3(E)Gφφφ

0 (E)
)

×Vψ-φ1φ2G
ψφ3 (E)Vφ1φ2-ψ

(
G

φφφ
0 (E)t̂3(E) + 1

)
,

(B24)
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which becomes

t3(E) =
∫

q2
3dq3|q3g〉(τ̂3(Eq3)

+ (1 + τ̂3(Eq3)L(3)(Eq3))�Gψφ3 (Eq3)

×�(L(3)(Eq3)τ̂3(Eq3) + 1))〈q3g|. (B25)

We defined a one-loop integral in the three-body channel,

L(3)(Eq3) =
∫

p2
3dp3 g2(p3)Gφφφ

0 (Eq3p3), (B26)

where |g〉 is the Yamaguchi-type form factor

〈p|g〉 = g(p) = �2

p2 + �2
, (B27)

and we introduced the two-body Green function,

G
ψφ3
0 (Eq3) =

(
E − M ′ − m3 − q2

3

2μψφ3

)−1

. (B28)

Since Vψφ3 is separable, the T -matrix is expressed as follows:

tψφ3 (E) = |g〉τψφ3〈g|,
(
τψφ3 (E)

)−1 = (
λψφ3

)−1 − π

2

μψφ3�
3

(k + i�)2 , (B29)

where k is the relative momentum between ψ and φ3 defined
by

E = M ′ + m3 + k2

2μψφ3

. (B30)

It is convenient to define a dimensionless coupling constant,
which we denote as fψφ3 :

fψφ3 = λψφ3

π

2
μψφ3�. (B31)

tψφ3 (E) has a bound-state pole for fψφ3 � −1 and a virtual-
state pole for fψφ3 � −1. The effective three-body interaction
U4(E) is then written as

U4(E) =
∫ ∞

0
q2

3dq3q
′2
3 dq ′

3�|q3g〉Gψφ3
0 (Eq3)g(q3)τψφ3 (E)g

× (q ′
3)Gψφ3

0 (Eq ′
3)〈q ′

3g|�. (B32)

Since we assume separable interactions for two-body interac-
tions among φ1φ2φ3, the two-body T -matrices are expressed
as follows:

ti(E) =
∫ ∞

0
q2

i dqi |qig〉τi(Eqi)〈qig|, (B33)

where

(τi(Eqi))
−1 = U−1

i (Eqi) −
∫ ∞

0
p2

i dpi g2(pi)G
φφφ
0 (Eqipi)

= U−1
i (Eqi) − π

2

μφj φk
�3

(ki(Eqi) + i�)2 , (B34)

and

E = mi + mj + mk + k2
i (Eqi)

2μφj φk

+ q2
i

2Mi

. (B35)

ki is clearly the relative momentum between φjφk . We also
present dimensionless coupling constants in the three-body
channels as follows:

fφj φk
= λφj φk

π

2
μφj φk

�. (B36)

The three-body T -matrix is written as follows:

t4(E) = U4(E) + U4(E)Gφφφ
0 (E)U4(E) + · · ·

=
∫

q2
3dq3q

′2
3 dq ′

3 �|q3g〉Gψφ3
0 (Eq3)g(q3)τψφ3

× 1

1 − 〈g|Gψφ3
0 (E)�0(E)Gψφ3

0 (E)|g〉τψφ3 (E)

× g(q ′
3)Gψφ3

0 (Eq ′
3)〈q ′

3g|�. (B37)

The three-body T -matrix is written as follows:

t4(E) = U4(E) + U4(E)Gφφφ
0 (E)U4(E) + · · ·

=
∫

q2
3dq3q

′2
3 dq ′

3 �|q3g〉Gψφ3
0 (Eq3)g(q3)τψφ3

× 1

1 − V(E)τψφ3 (E)
g(q ′

3)Gψφ3
0 (Eq ′

3)〈q ′
3g|�,

where we defined

V(E) = 〈g|Gψφ3
0 (E)�0(E)Gψφ3

0 (E)|g〉. (B38)

3. The unmodified and the modified kernels

The unmodified kernels of the AGS equations are therefore

Z0(E) = G
φφφ
0 (E)δ̄, (B39)

Z4(E) = G
φφφ
0 (E)t4(E)1G

φφφ
0 (E), (B40)

K(E) = (Z0(E) + Z4(E))T (E). (B41)

The modified Z4(E) are obtained as follows. First, we replace
V(E) with

〈g|Gψφ3
0 (E)

(
�(E) + �(E)Gψφ3 (E)	 + 	Gψφ3 (E)�(E)

+	Gψφ3 (E)	
)
G

ψφ3
0 (E)|g〉, (B42)

which can also be written as follows:

〈g|Gψφ3 (E) − G
ψφ3
0 (E) − G

ψφ3
0 (E)�(E)Gψφ3 (E)

×�(E)Gψφ3
0 (E)|g〉. (B43)

For notational simplicity, we denote the above quantity as
V(E). Second, we also replace the left-most structure with the
following,

Vψ-φ1φ2 ⇒ Vψ-φ1φ2 + δ̄I3
(
1 + t̂3(E)Gφφφ

0 (E)
)

×Vψ-φ1φ2G
ψφ3 (E)	

= V (32)′ , (B44)

and the right-most structure with the corresponding one,

Vφ1φ2-ψ ⇒ 	Gψφ3 (E)V (23)(Gφφφ
0 (E)t̂3(E) + 1

)
I3δ̄ + Vψ-φ1φ2

= V (23)′ . (B45)
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An explicit expression for the modified driving term Z′
4(E) is

therefore obtained as follows:

Z′
4(E) =

∫
q2

3dq3q
′2
3 dq ′

3 G
φφφ
0 (E)V (32)′G

ψφ3
0 (E)|g〉τψφ3 (E)

× 1

1 − V(E)
〈g|1G

ψφ3
0 (E)V (23)′G

φφφ
0 (E). (B46)

Matrix elements of the driving terms

In this section, we present an explicit expression of the
matrix elements of the kernel. Z0(Eqiqj ) is represented as
follows:

Z0(Eqiqj ) = 〈qjg|δ̄ijG
φφφ
0 (E)|qjg〉

= δ̄ij

2

∫ 1

−1
dx

g(pi)g(pj )

E − q2
i

2mi
− q2

j

2mj
− (qi+qj )2

2mk

, (B47)

where x and δ̄ij are defined by

x = q̂i · q̂j, δ̄ij = 1 − δij . (B48)

pi and pj are the absolute values of relative momenta between
φjφk and φkφi , respectively, whose explicit expressions are

pi =
∣∣∣∣− mj

mj + mk

qi − qj

∣∣∣∣, pj =
∣∣∣∣qi + mk

mk + mi

qj

∣∣∣∣.
(B49)

Matrix elements of the unmodified Z4(Eq3q
′
3) are given as

Z4(Eq3q
′
3)

= 〈q3g|Gφφφ
0 (E)t4(E)Gφφφ

0 (E)|q ′
3g〉

=
∫

p2
3dp3 g(p3)Gφφφ

0 (Eq3p3)�g(p3)Gψφ3
0 (Eq3)g

× (q3)τψφ3 (E)
1

1 − V(E)τψφ3 (E)
g(q ′

3)Gψφ3
0 (Eq ′

3)

×
∫

p′2
3 dp′

3 g(p′
3)�G

φφφ
0 (Eq3p3)g(p′

3). (B50)

Other matrix elements of the unmodified Z4(E) are obtained
in a straightforward way.

As we saw in the previous section, we need to perform the
reorganization of the AGS equations and one of the kernel
Z4(E) needs to be replaced by the modified one. V(E) is
modified as

V(E) =
∫

q2
3dq3

(
Gψφ3 (Eq3) − G

ψφ3
0 (Eq3) − G

ψφ3
0 (Eq3)

× (�V (E) + �(E)G�(E)�(E))Gψφ3
0 (Eq3)

)
.

(B51)

For matrix elements Z4(Eqiqj ) (i = 1,2), the left-most struc-
ture of Z4(E) is modified as∫ ∞

0
p2

3dp3 g(p3)Gφφφ
0 (Eq3p3)

(
�g(p3)

+ (
1+τ̂3(E)Gφφφ

0 (Eq3p3)
)
�g(p3)Gψφ3 (Eq3)	

)
. (B52)

Similarly, for matrix elements Z4(Eqiqj ) (j = 1,2) the right-
most parts are modified as∫ ∞

0
p2

3dp3
(
g(p3)� + 	Gψφ3 (Eq3)g(p3)

×�
(
G

φφφ
0 (Eq3p3)τ̂3(E) + 1

))
G

φφφ
0 (Eq3p3)g(p′

3).

(B53)
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