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Characterizing the astrophysical S factor for 12C + 12C fusion with wave-packet dynamics
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A quantitative study of the astrophysically important subbarrier fusion of 12C + 12C is presented. Low-energy
collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular
picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-
energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding
the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain
some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline
towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the
nuclear molecule, which need to be included in the present approach.
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I. INTRODUCTION

The physics of low-energy nuclear reactions is crucial for
understanding the chemical evolution of the Universe [1]. For
instance, 12C + 12C fusion at very low energies (∼1.5 MeV)
plays a key role in stellar carbon burning, whose cross section
is commonly determined by extrapolating high-energy fusion
data [2–7]. Direct fusion measurements are very difficult to
carry out at very low center-of-mass (c.m.) energies (�3 MeV),
with the observed resonant structures making the extrapolation
very uncertain [8–10]. The reliability of current extrapolation
models is also limited by uncertainties associated with the
treatment of quantum tunneling for heavy ions [11].

The 12C + 12C fusion cross sections at very low energies are
critical for modeling energy generation and nucleosynthesis
during the carbon burning phase of stellar evolution of massive
stars (M � 8M�) [9,10]. These cross sections also deter-
mine the ignition conditions for type-Ia supernova explosions
[8,12]. Variations of the fusion rate in its traditional range
of uncertainty moderately affect nucleosynthesis in the actual
type-Ia explosion event [13]. This situation would change if
resonant structures in the low-energy range of the fusion cross
sections existed [2]. Such structures were observed at higher
energies and are associated with molecular states [3–7]. The
possible existence of these states at very low energies can
significantly affect nucleosynthesis in type-Ia supernova [14]
as well as superbursts on accreting neutron stars [15]. It is
therefore important to go beyond the traditional potential-
model approach for averaged cross-sections, to understand the
nature of these molecular phenomena and their occurrence at
very low energies.

The fusion of 12C + 12C at energies below the Coulomb bar-
rier has been recently addressed with the conventional coupled-
channels model [16,17]. These calculations suggest important
effects on the fusion cross section of both the low-lying energy
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spectrum of 24Mg and the Hoyle state of 12C [18]. In contrast
to experimental observations [3–7], these theoretical fusion
excitation curves are smooth, without resonant structures.
Several questions arise from this. What is the origin of the
resonant structures in the experimental fusion excitation func-
tion? Is this due to a mechanism connected with the physics of
the intermediate (nuclear molecule) structure [19]? Why has
the conventional coupled-channels model not explained the
resonant structures? These important questions are addressed
in the present paper.

The key role of intermediate structure in fusion can also be
addressed with a novel quantum dynamical model that deals
with specific alignments between the 12C nuclei [20]. Con-
clusive results of this model based on wave-packet dynamics
[21,22] are reported in the present paper. The present method
directly solves the time-dependent Schrödinger equation with
a collective Hamiltonian, without the traditional expansion in
a basis of energy eigenstates, which is used in the conventional
coupled-channels model. Despite this, the numerically calcu-
lated total wave function accounts for all the coupled-channel
effects. We present a description of the model and methods,
followed by results and a summary.

II. MODEL AND METHODS

A. General aspects of the time-dependent wave-packet method

The time-dependent wave-packet (TDWP) method involves
three steps:

(i) the definition of the initial wave function �(t = 0);
(ii) the propagation �(0) → �(t), dictated by the time

evolution operator, exp (−iĤ t/h̄), where Ĥ is the total
Hamiltonian that is time-independent;

(iii) after a long propagation time, the calculation of
observables (cross sections, spectra, etc.) from the
time-dependent wave function, �(t).

2469-9985/2018/97(5)/055802(8) 055802-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.97.055802&domain=pdf&date_stamp=2018-05-14
https://doi.org/10.1103/PhysRevC.97.055802


ALEXIS DIAZ-TORRES AND MICHAEL WIESCHER PHYSICAL REVIEW C 97, 055802 (2018)

-10

-5

 0

 5

 10

 2  4  6  8  10  12

 V
 (M

eV
)

R (fm)

EE
EP
PP

FIG. 1. Specific cuts in the collective potential-energy landscape
of the 12C + 12C system as a function of the internuclear distance
and three alignments: Equator-Equator (EE), Equator-Pole (EP),
Pole-Pole (PP). The EE alignment (dashed line) facilitates the access
by tunneling to the potential pockets. All the alignments coexist and
compete with each other, the kinetic energy operator driving the
system towards either reseparation or fusion in the potential pocket
of the PP alignment (solid line) [25].

The wave function and the Hamiltonian are represented in
a multidimensional grid. In this work, these are considered
a function of a few collective coordinates that include the
internuclear distance, thus reducing the complexity of the
quantum many-body reaction problem. Moreover, the wave
function is not expanded in any intrinsic basis (e.g., rotational
or vibrational states of the individual nuclei), but it is calculated
directly. The irreversible process of fusion at small internuclear
distances is described with an absorptive potential for fusion.
The heavy-ion collision is described in the rotating center-of-
mass frame within a nuclear molecular picture [19].

Expressions for the kinetic-energy operator and the col-
lective potential-energy surface, which form the collective
Hamiltonian Ĥ = T̂ + V̂ , are provided in Appendixes A and
B, respectively. Appendix C describes the time propagator.

B. Total collective Hamiltonian

Figure 1 shows specific cuts in the collective potential-
energy landscape of the 12C + 12C system as a function of
both the internuclear distance and the alignment between the
two oblate 12C nuclei [23]. The potential curves are presented
for fixed orientation of the 12C-nuclei symmetry axes relative
to the internuclear axis, the three axes being coplanar in Fig. 1.
All the alignments between the 12C nuclei are included in the
dynamical calculations below. The potential energy weakly
depends on the angle between crossed symmetry axes of the
12C nuclei. The overlap between the 12C nuclei is small at
the orientation-dependent potential pockets. The collective
potential energy has been calculated using the finite-range
liquid-drop model with both universal parameters [24] and
nuclear shapes from a realistic two-center shell model [25,26].
Although shell and pairing corrections to the potential are not
included, the volume conservation of the compact dinuclear
shapes [25] guarantees that the effects of nuclear incompress-
ibility on the potential are included. The observed oblate
deformation of 12C [23] (β2 = −0.5 and moment of inertia
I = 0.67 h̄2 MeV−1 which is derived from the experimental 2+

excitation energy [E2+ = h̄2

2I
2(2 + 1) = 4.44 MeV]) results in

a continuum of Coulomb barriers and potential pockets, which
are distributed over a broad range of radii. The lowest barrier
(dashed line) favors the initial approach of 12C nuclei which
must re-orientate to get trapped in the deepest pocket of the po-
tential (solid line) where fusion occurs [25]. In transit to fusion,
the 12C + 12C nuclear molecule can populate quasistationary
(doorway) states belonging to the shallow potential pockets of
the nonaxial symmetric configurations. These doorway states
may also decay into scattering states, instead of feeding fusion,
as the 12C nuclei largely keep their individuality within the
molecule [25]. The complex motion of the 12C + 12C system
through the potential energy landscape is driven by the kinetic
energy operator that includes the Coriolis interaction [27]
between the total angular momentum of the dinuclear system
and the intrinsic angular momentum of the 12C nuclei. We use
an exact expression of the kinetic energy operator [28].

C. Initial conditions and time propagation

Having determined the total collective Hamiltonian of the
12C + 12C system in terms of the radial coordinate R and the
spherical coordinate angles of the 12C symmetry axis relative
to the internuclear axis θi and φi , the time propagation of an
initial wave function has been determined using the modified
Chebyshev propagator for the evolution operator as described
in Appendix C. The initial wave function is determined when
the 12C nuclei are far apart in their ground states (jπ = 0+),
the radial and the internal coordinates being decoupled:

�0(R,θ1,k1,θ2,k2) = χ0(R) ψ0(θ1,k1,θ2,k2), (1)

where ki are conjugate momenta of the φi azimuthal angles,
so Eq. (1) is in a mixed representation. Because the radial
and internal coordinates are strongly coupled when the 12C
nuclei come together, the product state is only justified asymp-
totically. ψ0(θ1,k1,θ2,k2) is the internal symmetrized wave
function due to the exchange symmetry of the system:

ψ0(θ1,k1,θ2,k2) = [ζj1,m1 (θ1,k1)ζj2,m2 (θ2,k2)

+(−1)J ζj2,−m2 (θ1,k1)ζj1,−m1 (θ2,k2)]

/
√

2 + 2 δj1,j2δm1,−m2 , (2)

where ζj,m(θ,k) =
√

(2j+1)(j−m)!
2 (j+m)! P m

j (cos θ ) δkm, P m
j are asso-

ciated Legendre functions, and J denotes the total (even)
angular momentum. The functions ζj,m(θ,k) describe the
individual 12C nuclei as quantum rigid rotors. In the 12C ground
state, j1 = j2 = 0 and m1 = m2 = 0. The radial component
in Eq. (1), χ0(R), is considered a Gaussian wave packet
that contains different translational energies, so an energy
projection method is required.

D. Energy projection method and transmission coefficients

The energy-resolved transmission coefficients can be ob-
tained using a window operator [29]. The key idea is to calcu-
late the energy spectrum of the initial and final wave functions,
the initial spectrum corresponding to a Gaussian distribution
centered at the mean energy E0. The energy spectrum is
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P(Ek) = 〈�|�̂|�〉, where �̂ is the window operator [29]

�̂(Ek,n,ε) ≡ ε2n

(Ĥ − Ek)2n + ε2n
, (3)

Ĥ is the system asymptotic Hamiltonian when the 12C nuclei
are well separated, and n determines the shape of the win-
dow function. As n is increased, this shape rapidly becomes
rectangular with very little overlap between adjacent energy
bins with centroid Ek , while the bin width remains constant
at 2ε [29]. The spectrum is constructed for a set of Ek where
Ek+1 = Ek + 2ε. Thus, scattering information over a range
of incident energies can be extracted from a time-dependent
numerical wave function. In this work, n = 2 and ε = 50 keV
[29]. Solving two successive linear equations for the vector |χ〉:

(Ĥ − Ek +
√

i ε)(Ĥ − Ek −
√

i ε) |χ〉 = |�〉, (4)

yields P(Ek) = ε4 〈χ |χ〉. The state |χ〉 represents the
scattering state with a definite energy Ek . Equation (4) is
solved for both the initial and final wave functions.

The transmission coefficients are obtained from

T (Ek) = −(8/h̄vk) ε4 〈χ |Im(
Ŵ

)|χ〉
P initial(Ek)

, (5)

where vk = √
2Ek/μ is the asymptotic relative velocity, μ

is the reduced mass, and Im(Ŵ ) < 0 denotes the strong,
imaginary Woods-Saxon potential centered at the minimum
of the PP potential pocket in Fig. 1 (solid line), which operates
very weakly at the potential pockets of the nonaxial symmetric
configurations. The strong repulsive core of the real potentials
for nonaxial symmetric dinuclear configurations hinders the
effect of the imaginary fusion potential on the potential
resonances formed in the corresponding real potential pockets.

E. Role of fusion absorption

The functional form of the imaginary fusion potential
is W = W0/[1 + exp((R − RPP

min)/a0w)], where the strength
W0 = −50 MeV, the diffuseness a0w = 0.2 fm, and RPP

min =
3.7 fm. This imaginary potential is usually employed in the
coupled-channels model to simulate fusion and is equivalent
to the use of the ingoing-wave boundary condition (IWBC)
[22,30]. As a simple example, Fig. 2 shows the transmission-
coefficient excitation function for 16O + 16O central collisions,
which are determined by two methods: solving the stationary
Schrödinger equation with IWBC [31] (solid line) and employ-
ing Eq. (5) (symbols). The good agreement between the two
methods demonstrates the reliability of Eq. (5).

Using the present method, Fig. 3 shows the effective trans-
mission coefficient for head-on collisions of 12C + 12C through
the Coulomb barriers presented in Fig. 1. The calculations are
carried out using the fusion imaginary potential centered either
at RPP

min (solid line) or around the potential pockets for nonaxial
symmetric dinuclear configurations (dotted line), demonstrat-
ing the crucial role of this fusion absorption in the appearance
of resonant structures in the fusion excitation function. The
results shown in Fig. 3 do not change if the strength of the
absorption is reduced by a factor of 2. Figure 3 demonstrates
how increasing the range of the imaginary fusion potential af-
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FIG. 2. Transmission-coefficient excitation function for 16O +
16O central collisions through the Coulomb barrier of the Broglia-
Winther potential [31], calculated with the two methods indicated.
The barrier height is ∼10 MeV.

fects a potential resonance for J = 0. As expected, the resonant
structure of the transmission coefficient for fusion disappears.

F. Fusion cross sections and the astrophysical S factor

The fusion cross section σfus(E) is calculated taking into
account the identity of the interacting nuclei and the parity of
the radial wave function (only even partial waves J are in-
cluded), i.e., σfus(E) = πh̄2/(μE)

∑
J (2J + 1)TJ (E), where

E is the incident c.m. energy and TJ is the partial transmission
coefficient. The S factor is S(E) = σf us(E)E exp(2πη), where
the Sommerfeld parameter η = (μ/2)1/2Z1Z2e

2/(h̄E1/2) and
Zi = 6 is the 12C charge number.

III. NUMERICAL DETAILS AND RESULTS

The model calculations are performed on a five-dimensional
grid, i.e., a Fourier radial grid (R = 0–1000 fm) with 2048
evenly spaced points [32], and for the angular variables,
(θ1,k1) and (θ2,k2), a grid based on the extended Legendre
discrete-variable representation (KLeg-DVR) method [33].
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FIG. 3. The same as in Fig. 2, but for 12C + 12C central collisions.
The calculations are performed with the present method using the
fusion imaginary potential centered at two different radii as indicated.
The resonant structure disappears when this absorption operates
around the potential pockets of dinuclear configurations other than
the PP configuration in Fig. 1 (comparing the dotted and solid lines).
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FIG. 4. (a) Energy-resolved fusion cross sections for different
values of the mean energy E0 of the initial wave function. The energy
components far from E0 have small amplitudes, and the associated
cross sections are very inaccurate. Only the overlapping parts of these
excitation curves determine the physical, converged fusion excitation
function. (b) Angular momentum decomposition of the converged
fusion excitation function that shows some bumps originating from
specific partial waves.

The KLeg-DVR grid-size is determined by the values of the 12C
intrinsic jmax and kmax [33], which are set as 4, and this grid also
supports odd j values. The initial wave packet was centered at
R0 = 400 fm, with width σ = 10 fm, and was boosted toward
the collective potential-energy landscape with the appropriate
kinetic energy for the mean energy E0 required. In this work,
�t = 10−22 s, and in the absence of the imaginary potential
the norm of the wave function is preserved with an accuracy
of ∼10−14. All the parameters for the grid and the initial wave
packet guarantee the convergence of the calculated fusion cross
sections [22].

The energy-resolved fusion cross sections are provided by
a few wave-packet propagations with E0 = 3,4 and 6 MeV
and total angular momenta up to J = 6h̄, as shown in Fig. 4.
Figure 4(a) shows the convergence relative to E0 of the energy-
resolved fusion excitation function, while Fig. 4(b) presents
the angular momentum decomposition of the converged fusion
excitation curve. It can be seen that the converged fusion curve
shows, at energies slightly below the nominal Coulomb barrier
(∼6.5 MeV), three maxima caused by specific partial waves.
The total angular momenta up to J = 4h̄ determine the sub-
Coulomb fusion cross sections which monotonically decline
towards stellar energies.
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FIG. 5. The astrophysical S-factor excitation function for 12C +
12C. Measurements [2–7] (symbols) are compared to model calcula-
tions (dashed and solid lines), indicating that molecular structure and
fusion are interconnected.

The sub-Coulomb S-factor excitation function for 12C +
12C is presented in Fig. 5 which shows key features as follows:

(1) The observed resonant structures in the 4–6.5 MeV
energy window are qualitatively reproduced by the
present model calculations (solid line). The positions of
the theoretical maxima are shifted by ∼0.3 MeV with
respect to the experimental maxima, and that position
is determined by the features (depth and curvature) of
the potential pockets for nonaxial symmetric configu-
rations. Those pockets support intermediate molecular
states. Figure 6 shows the first quasibound molecular
states in the effective real potentials for specific partial
waves. Although these effective potentials are not used
in solving the time-dependent Schrödinger equation,
they are useful for understanding the formation of
molecular resonance states. These effective potentials
are determined by folding the potential energy (in-
cluding the centrifugal energy) of nonaxial symmetric
configurations with the probability density of the initial
wave-function in Eq. (2). A scattering phase-shift
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FIG. 6. The effective real potentials for nonaxial symmetric
molecular configurations and the scattering phase-shift analysis (plot
inserted) for specific partial waves. The occupation of these potential
resonances (circles in plot inserted) causes the structures in the
S-factor excitation function in Fig. 5.
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analysis (plot inserted in Fig. 6) provides values of
4.45 MeV (J = 0), 5.10 MeV (J = 2), and 6.56 MeV
(J = 4) which are consistent with the positions of
the theoretical maxima in Figs. 4(b) and 5. Unlike
the conventional coupled-channels method, the present
method keeps these molecular resonance states visible
through the treatment of absorption as demonstrated in
Fig. 3.

(2) At deep subbarrier energies (E < 4 MeV), the S fac-
tor of the present model (solid line) is smooth and
slightly underestimates the experimental data. Some
experimental data [2,4,5] show a resonant structure
around 3.1 MeV which is not explained by the present
model. There are great variations among data sets. More
accurate measurements are required at the astrophysi-
cally important energy region, E � 3 MeV, which are
challenging and are currently being studied [34–36].
The predicted smooth S factor around the Gamow
peak (∼1.5 MeV) would moderately change the present
abundance distributions in type-Ia supernova [14], and
would require a closer look at the hydrodynamics of
superbursts to enhance the energy output [15].

(3) For comparison, a potential-model calculation has
been carried out. It is based on solving the stationary
Schrödinger equation with IWBC for each partial wave
and alignment between the 12C nuclei, and averaging
the partial transmission coefficients over all the align-
ments. The S-factor excitation curve (dashed line) is
smooth, like those resulting from the coupled-channel
model in Refs. [16,17]. Comparing the dashed to
the solid line, it is observed that the effects of the
intermediate structure on fusion are crucial.

The degree of agreement between the present model calcu-
lations and the experimental data in Fig. 5 may be improved by
(i) using a more complete potential-energy landscape that in-
cludes both shell and pairing corrections which may modify the
features of the potential pockets, and (ii) releasing and treating
explicitly the alpha-particle degrees of freedom which should
lead to the fragmentation of the obtained resonant structures
[37]. We include the effects of the Coriolis interaction in the
present calculations, and these effects are very weak for the
relevant partial waves (<1%).

Multiplying the collective potential-energy landscape in
Fig. 1 by a global factor of 0.98 slightly improves the position
of the calculated resonant structures relative to those observed
in the 4–6.5 MeV energy window by ∼0.1 MeV, as shown
in Fig. 7 (dotted line). There remains a mismatch of ∼0.2
MeV that cannot be removed by the potential renormalization.
However, reducing the curvature of the potential pockets in
Fig. 1 by 15% significantly improves the location of the
predicted resonant structures (thin solid line). Some dynamical
effects that are not yet included in the model may yield
additional resonant structures in the S factor. For instance,
we use an oblately deformed rigid-rotor model for the 12C
nuclei, but in reality they may also be vibrating [18]. Both
the vibrations and the rotation-vibration interaction affect the
resonance energies of the molecular states [38]. Cluster effects
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FIG. 7. The same as in Fig. 5, but the present model calculations
are shown for (i) two global factors that multiply the collective
potential-energy landscape in Fig. 1, and (ii) a reduction by 15%
of the curvature of the potential pockets. This last greatly improves
the location of the predicted resonant structures (thin solid line).

in the nuclear molecule (e.g., 20Ne + alpha and 23Na + p) can
also be very important.

Coupled-channels calculations and the TDWP method

In contrast to the simplified coupled-channels model of
Ref. [39] that uses a weak absorption, the sophisticated
coupled-channels calculations of Refs. [16,17], which are also
conventional but use strong absorption, do not produce any
resonant structure. This indicates the importance of treating
explicitly the dynamics of the intermediate (nuclear molecule)
configurations inside the radius of the nominal Coulomb
barrier. Weak absorption may allow that kind of treatment
[39], which also requires the inclusion of highly excited
states in the individual 12C nuclei, well beyond their first
2+ excited states [40]. The conventional coupled-channels
model [16,17,39,40] does not address specific alignments
between the 12C nuclei, but uses an average over all the
alignments, i.e., there is an integration over orientation angles
in the coupling potentials. Unconventional coupled-channels
calculations could deal with specific dinuclear configurations
[41]. The present model is based on the TDWP method which is
novel in this field, allowing one to address more physical details
about the dynamics of compact dinuclear configurations: (i) the
implicit orientation-dependent fusion absorption, justified with
the two-center shell model [25], provides a weak absorption
for most intermediate (nuclear molecule) configurations, and
(ii) these configurations are treated naturally. The fact that
(i) is absent from the conventional coupled-channels model
is the main reason why the coupled-channels model has
not reproduced resonant structures but average trends of the
subbarrier fusion excitation function for 12C + 12C.

IV. SUMMARY

The present quantum dynamical model indicates that
molecular structure and fusion are closely connected in the
12C + 12C system, suggesting that the fusion excitation func-
tion monotonically declines towards stellar energies. The
fusion imaginary potential for specific alignments between
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the 12C nuclei is crucial for understanding the appearance
of resonances in the fusion cross section. In contrast to
other commonly used methods, such as the potential model
and the conventional coupled-channels approach, these new
calculations reveal three resonant structures in the S factor
for fusion. The structures correlate with similar structures in
the data. The structures in the data that are not explained are
possibly due to cluster effects in the nuclear molecule, which
need to be included in the new approach. This method is a
suitable tool for extrapolating the cross section predictions
towards stellar energies.
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APPENDIX A: COLLECTIVE KINETIC-ENERGY
OPERATOR

The collision of two arbitrarily oriented, deformed nuclei
can be described in the rotating center-of-mass frame with
five collective coordinates: the internuclear distance R and the
(θ1,φ1) and (θ2,φ2) spherical angles of the nuclei symmetry
axis. Using a mixed representation for the internal angular-
momentum operators ĵi (i.e., coordinate representation for the
polar angles θi and a momentum representation ki , replacing
the azimuthal angles φi), the exact kinetic-energy operator in
the rotating frame is [28]

2T̂

h̄2 = − 1

μ

∂2

∂R2
+

(
1

I1
+ 1

μR2

)
ĵ 2

1 +
(

1

I2
+ 1

μR2

)
ĵ 2

2

+ 1

μR2

[
ĵ1,+ĵ2,− + ĵ1,−ĵ2,+ + J (J + 1)

− 2k2
1 − 2k1k2 − 2k2

2

] − C+(J,K)

μR2
(ĵ1,+ + ĵ2,+)

− C−(J,K)

μR2
(ĵ1,− + ĵ2,−), (A1)

where μ is the reduced mass for the radial motion, Ii

is the rotational inertia of the nuclei, J is the total an-
gular momentum with projection K = k1 + k2, C±(J,K) =√

J (J + 1) − K(K ± 1), and ĵ 2
i = − 1

sin θi

∂
∂ θi

sin θi
∂

∂ θi
+

k2
i

sin2 θi
, and ĵi,± = ± ∂

∂ θi
− ki cot θi . When the ĵi,± operators

act on the ki component of the wave function, the outcomes
emerge in its ki ± 1 component. The last two terms in Eq. (A1)
describe the Coriolis interaction that changes the K quantum
number. The 12C nuclei keep their individuality within most
dinuclear configurations, as demonstrated in Ref. [25].

APPENDIX B: COLLECTIVE POTENTIAL-ENERGY
SURFACE

Macroscopic nuclear and Coulomb energies of a dinuclear
system can be determined within the finite-range liquid-drop

model [24]. The nuclear component reads as

En = − cs

8π2r2
0

∮
S

∮
S ′

f (σ ) (
σd 
S)(
σd 
S ′)

= − cs

8π2r2
0

∮
T

∮
T ′

f (σ ) 
σ
(

∂
r
∂φ

× ∂
r
∂z

)
dφdz

∗ 
σ
(

∂ 
r ′

∂φ′ × ∂ 
r ′

∂z′

)
dφ′dz′, (B1)

where f (σ ) = {2 − [( σ
a

)2+2 σ
a

+ 2]e− σ
a }σ−4 and 
σ = 
r − 
r ′.

The vectors 
r ≡ [P (z,φ)cosφ,P (z,φ)sinφ,z] and 
r ′ ≡
[P (z′,φ′)cosφ′,P (z′,φ′)sinφ′,z′] determine the position of the
nuclear surface elements d 
S and d 
S ′, respectively. These are
characterized by cylindrical coordinates [zmin � z � zmax and
0 � φ � 2π define the T integration region] where P (z,φ)
denotes the distance from the surface elements to the z axis
that contains the origin of the coordinate system. P (z,φ) is
determined using the volume-conserving nuclear shapes of the
two-center shell model [25,26].

In terms of P (z,φ), σ and En in Eq. (B1) are

σ 2 = P 2(z,φ) + P 2(z′,φ′) − 2 P (z,φ)P (z′,φ′)

∗ cos(φ − φ′) + (z − z′)2, (B2)

En = − cs

8π2r2
0

∮
T

∮
T ′

f (σ )

{
P (z,φ)

[
P (z,φ)

−P (z′,φ′) cos(φ − φ′) − ∂P (z,φ)

∂z
(z − z′)

]

− ∂P (z,φ)

∂φ
P (z′,φ′) sin(φ − φ′)

}

∗
{
P (z′,φ′)

[
P (z′,φ′) − P (z,φ) cos(φ − φ′)

+ ∂P (z′,φ′)
∂z′ (z − z′)

]

+ ∂P (z′,φ′)
∂φ′ P (z,φ) sin(φ − φ′)

}
dzdz′dφdφ′. (B3)

For axial-symmetric nuclear shapes P = P (z), Eq. (B3)
yields the Krappe-Nix-Sierk formula [42].

The Coulomb energy reads as

EC = − ρ2
0

12

∮
S

∮
S ′

σ−1 (
σd 
S)(
σd 
S ′), (B4)

where ρ0 = Ze(4πr3
0 A/3)−1 is a constant charge density, and

the integrals in Eq. (B4) are determined like in Eq. (B1).
Equations (B1) and (B4) correspond to a uniform sharp-

surface distribution of given shape. The authors of Ref. [43]
provided expressions for an arbitrarily shaped diffuse-surface
nuclear density distribution, whose diffuseness correction to
the above nuclear and Coulomb energies is also included in
the present work.

The above formulas provide total self-energies. The total
collective potential energy is V = En + EC , whose interaction
component is determined by subtracting the total self-energy
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of the two individual nuclei. When the two interacting nuclei
do not overlap with each other [24], the constant parameters are
cs = [cs(1)cs(2)]1/2, r2

0 = r01r02, ρ2
0 = ρ01ρ02, where cs(i) =

as[1 − κs(
Ni−Zi

Ni+Zi
)
2
]. In this work, the constants of Ref. [24] are

used, i.e., as = 21.13 MeV, κs = 2.30, e2 = 1.4399764 MeV
fm, a = 0.68 fm, and r01 = r02 = r0 = 1.16 fm.

APPENDIX C: MODIFIED CHEBYSHEV PROPAGATOR

The formal solution of the time-dependent Schrödinger
equation at t + �t is

�(t + �t) = exp

(
−i

Ĥ �t

h̄

)
�(t). (C1)

The time evolution operator is represented as a convergent
series of polynomials Qn [44]:

exp

(
−i

Ĥ �t

h̄

)
≈

∑
n

an Qn(Ĥnorm). (C2)

In Eq. (C2), the time-independent Hamiltonian is renormalized
so that its spectral range is within the interval [−1,1], the
domain of the polynomials, by defining

Ĥnorm = (H̄ 1̂ − Ĥ )

�H
, (C3)

where H̄ = (λmax + λmin)/2, �H = (λmax − λmin)/2, λmax,
and λmin are, respectively, the largest and smallest eigenvalues
in the spectrum of Ĥ supported by the grid, and 1̂ denotes the
identity operator. The expansion coefficients in Eq. (C2) read as

an = in(2 − δn0) exp

(
−i

H̄ �t

h̄

)
Jn

(
�H �t

h̄

)
, (C4)

where Jn are Bessel functions of the first kind. Since Jn(x)
exponentially goes to zero with increasing n for n > x, the
expansion (C2) converges exponentially for n > �H�t/h̄.
With a suitable approximation for the spectral range of the
Hamiltonian, the expansion (C2) numerically represents the
time evolution operator.

This representation of the time evolution operator requires
the action of Qn(Ĥnorm) on the wave function �(t). The Qn

polynomials obey the recurrence relations [44]

e−γ̂ Qn−1(Ĥnorm) + eγ̂ Qn+1(Ĥnorm)

−2ĤnormQn(Ĥnorm) = 0, (C5)

with the initial conditions Q0(Ĥnorm) = 1̂ and Q1(Ĥnorm) =
e−γ̂ Ĥnorm. Here, γ̂ is an operator related to the absorbing
optical potential Ŵ that can be written as [44]

Ŵ = �H [cos ξ (1 − cosh γ̂ ) − i sin ξ sinh γ̂ ], (C6)

where ξ = arcos ( E−H̄
�H

), and E denotes the collision energy. If
there is no absorption (γ = 0 implies W = 0), the Qn polyno-
mials in expression (C5) will be the Chebyshev polynomials
and the expansion (C2) will correspond to the Chebyshev
propagator [32]. Chapter 11 in Ref. [45] provides a survey of
techniques for solving the time-dependent Schrödinger equa-
tion, which are distinguished by the numerical implementation
of the time evolution operator (C1).
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