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The electromagnetic responses obtained from Green’s function Monte Carlo (GFMC) calculations are based
on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from
its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive
cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to
intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon
momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model.
In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive
electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A
very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical
setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an
accurate description of nuclear dynamics in which relativistic effects are fully accounted for.
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I. INTRODUCTION

The analysis of neutrino-nucleus interactions in the broad
kinematic region relevant for the present [1–4] and future
[5,6] generation of neutrino oscillation experiments requires
an accurate understanding of nuclear dynamics. The relevance
of nuclear models is critical to the reconstruction of the initial
neutrino energy, even in experiments where both near and
far detectors are present [7]. Recent experimental studies of
neutrino-nucleus interactions have provided ample evidence of
the inadequacy of the relativistic Fermi gas model, routinely
employed in event generators, to describe the observed cross
section. The complexity of nuclear dynamics and the variety
of reaction mechanisms are such that ab initio calculations of
nuclear structure and electroweak interactions with nuclei are
necessary [8].

Within nuclear ab initio approaches the nucleus is treated
as an assembly of nucleons interacting with each other via
two- and three-body effective potentials [9–15]. The interac-
tion with external electroweak probes is described by one-
and two-body effective currents that are consistent with the
nuclear interaction. Hence, properties of few-body nuclear
systems, such as the nucleon-nucleon (NN) scattering data
and the binding energies of light nuclei, ultimately constrain
the current operators [16]. This is particularly apparent for the
electromagnetic longitudinal current, which is connected to the
nuclear potential through the continuity equation.

The Green’s function Monte Carlo (GFMC) approach is
an ab initio method that allows a very accurate description
of the structure and low-energy transitions of A � 12 nuclei
[17]. More recently, exploiting integral transform techniques,
the GFMC method has also been applied to the calculation of
the electromagnetic response functions of 4He and 12C, giving

a full account of the dynamics of the constituent nucleons in
the quasielastic sector. Once two-body currents are accounted
for, GFMC predictions are in very good agreement with
experimental data [18,19]. However, considering that explicit
pion degrees of freedom are not taken into account the strength
seems to be somewhat too large beyond the pion threshold.

As a matter of fact, at higher momentum transfer the appli-
cability of GFMC to electroweak scattering and in particular
to the analysis of neutrino-nucleus scattering is hampered by
its nonrelativistic nature. While leading relativistic corrections
are included in the current operators, the quantum mechan-
ical framework is nonrelativistic. The strategy introduced in
Ref. [20] to account for relativistic kinematics in nonrelativis-
tic calculations can only be reliably applied to independent
particle models of nuclear dynamics.

The inclusion of relativistic corrections in a more sophisti-
cated approach was first discussed in Ref. [21]. The authors
argued that performing the nonrelativistic calculation in a
specific reference frame can minimize the error introduced by
the approximate treatment of relativistic effects. In addition,
the frame dependence of nonrelativistic results can be reduced
using the so-called two-fragment model to obtain, in a relativis-
tically correct way, the kinematic inputs of the nonrelativistic
dynamical calculation . This approach has been successfully
employed in the ab initio calculation of the electromagnetic
longitudinal [21] and transverse [22–25] response functions
of 3He at intermediate momentum transfers (up to |q| =
700 MeV).

Following Ref. [21], in this work we gauge the role of rela-
tivistic effects in the original GFMC electromagnetic response
functions of 4He by studying their frame dependence with and
without the two-fragment model.
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The GFMC calculations of the response functions and cross
sections by neutral-current scattering of neutrinos off 12C have
been recently presented in Ref. [26]. In that work, the neutral
current differential cross sections have been computed for
a single value of the momentum transfer, |q| = 570 MeV,
as a function of the energy loss ω. On the other hand,
experimental electron- and neutrino-nucleus cross sections are
commonly given for fixed values of the incoming beam energy
and scattering angle. Their direct evaluation requires one to
perform GFMC calculations of the nuclear response functions
for several values of |q|, whose computational cost exceeds
the current availability. In this work we developed a novel
algorithm suitable to compute the double-differential cross
sections of electron-4He scattering through an efficient inter-
polation of the available nuclear responses. The latter exploits
the scaling features of the GFMC electromagnetic response
functions, which have been recently investigated in Ref. [27].
Using this algorithm and employing the relativistic treatment
mentioned above we perform an extensive comparison of our
results with the electron scattering data, for initial electron
energies ranging from 0.3 to 1.1 GeV.

In Sec. II we briefly review the formalism connecting
the electron-nucleus cross section to the longitudinal and
transverse response functions and discuss the main elements
of their calculation within the GFMC approach. In addition
we make a comparison to results obtained with the Lorentz
integral transform (LIT) method [28,29]. In Sec. III we review
the approach of Ref. [21] to account for relativistic effects
and study the frame dependence of the GFMC responses, as
well as its reduction with the two-fragment model. Section IV
is devoted to the calculation of the electron-4He differential
cross sections and to the comparison with experiment. Finally,
in Sec. V we draw our conclusions.

II. FORMALISM

In the one-photon-exchange approximation, the inclusive
double-differential electron-nucleus cross section can be writ-
ten in terms of the two response functions RL(q,ω) and
RT (q,ω), describing interactions with longitudinally (L) and
transversely (T) polarized virtual photons

d2σ

dEe′d�e

=
(

dσ

d�e

)
M

[AL RL(|q|,ω) + AT RT (|q|,ω)], (1)

where

AL =
(

q2

q2

)2

, AT = −1

2

q2

q2
+ tan2 θe

2
, (2)

and
(

dσ

d�e

)
M

=
[

α cos(θe/2)

2Ee′ sin2(θe/2)

]2

(3)

is the Mott cross section. In the above equation α � 1/137
is the fine structure constant, E′

e and θe are the final lepton
energy and scattering angle, respectively, q and ω are energy
and momentum transferred by the electron to the target nucleus,
and q2 = ω2 − q2.

The longitudinal and transverse response functions are
expressed in terms of the nuclear current matrix elements

Rα(|q|,ω) =
∑
f

〈0|j †
α(q,ω)|f 〉〈f |jα(q,ω)|0〉

× δ(ω − Ef + E0), (4)

where |0〉 and |f 〉 represent the nuclear initial ground state
and final bound or scattering state of energies E0 and Ef ,
and jα(q,ω) (α = L,T ) denotes the longitudinal and trans-
verse components of the electromagnetic current. For mod-
erate momentum transfer, corresponding to |q| � 500 MeV,
nonrelativistic nuclear many-body theory can be applied to
consistently describe the initial and the final scattering states
in the quasielastic peak region. To this aim, a nonrelativistic
reduction of the electromagnetic currents, which includes one-
and two-body terms consistent with the nuclear Hamiltonian,
is performed. The explicit expressions for the electromagnetic
currents employed in this work can be found in Ref. [30].

A. GFMC approach to response functions

Following the strategy adopted in Refs. [18,19,31], instead
of attempting a direct calculation of each individual transition
amplitude |0〉 → |f 〉, we exploit integral transform techniques
to reduce the problem to a ground-state one. In particular, we
evaluate the inelastic Euclidean responses, defined through the
following Laplace transform of the electromagnetic response
functions:

Eα(|q|,τ ) =
∫ ∞

ω+
el

dωRα(|q|,ω)e−ωτ , (5)

where ωel is the energy of the recoiling ground state. Besides
the energy-conserving δ function, the response functions de-
pend upon ω through the electromagnetic form factors of the
nucleon and N -to-	 transition in the currents. We artificially
remove these dependences by evaluating the form factors at the
quasielastic peak q2

qe = ω2
qe − q2. Exploiting the completeness

of the final states of Eq. (4), the inelastic Euclidean responses
can be written as the following ground-state expectation value:

Eα(|q|,τ ) = 〈
0|j †
α(q,ωqe)e−(H−E0)τ jα(q,ωqe)|
0〉

− |Fα(q)|2 e−τωel , (6)

where Fα(q) is the longitudinal elastic form factor and H
the nuclear Hamiltonian. For its potential part we use the
Argonne v18 (AV18) [32] NN potential and Illinois-7 (IL7) [33]
three-nucleon force (3NF). The Simon [34], Galster [35], and
Höhler [36] parametrizations are used for the proton electric,
neutron electric, and proton and neutron magnetic form factors,
respectively.

In order to reduce the computational cost and to evaluate the
terms in the currents that depend upon the momentum of the
nucleon, we use our best variational trial wave function |
T 〉
for |
0〉. Hence, the response functions are those obtained from
|
T 〉 rather than those from the evolved GFMC wave function.
However, the sum rule results of Ref. [37] indicate that this is
indeed a good approximation.

The calculation of this ground-state expectation value is car-
ried out in two steps. At first the unconstrained imaginary-time
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FIG. 1. Longitudinal electromagnetic response functions of 4He
at |q| = 300 MeV obtained inverting the Laplace and Lorentz integral
transforms compared to the experimental data of Ref. [31].

propagation of |
T 〉 is performed and stored. Then, the states
obtained from jα(q,ωqe)|
T 〉 are propagated in imaginary
time and the scalar product of e−(H−E0)τ jα(q,ωqe)|
T 〉 with
〈
T |j †

α(q,ωqe) is performed on a grid of τi values (for more
details see Refs. [15,18,31]). The inversion of the Laplace
transform, needed to retrieve the response functions, is per-
formed exploiting maximum entropy techniques, as described
in Ref. [19].

B. Comparison with Lorentz integral transform results

To test the reliability of the GFMC calculation and in
particular of the inversion procedure, in Fig. 1 we compare
the longitudinal response function of 4He divided by the
proton electric form factor squared with that obtained in
Refs. [38,39] employing the LIT method. The latter was
computed representing |0〉 and the LIT states 
̃ (see Ref. [28])
in terms of hyperspherical harmonics. The Hamiltonian used
in that case was the NN AV18 potential and the Urbana IX
(UIX) 3NF. The agreement with experimental data, taken from
Ref. [31] is remarkably good. The two theoretical curves are
also in very good agreement. The small discrepancies can be
ascribed to (i) the different 3NF models employed, (ii) the very
narrow isoscalar monopole resonance contribution (see [40])
that was subtracted from the LIT, (iii) the spin-orbit correction
in the longitudinal current operator that is only included in
the GFMC results, and (iv) the use of a variational Monte
Carlo ground state. Finally, it has to be noted that resolving the
low-energy transfer region of the response requires imaginary-
time evolution to large values of τ , which is hampered by the
fermion sign problem.

At |q| = 500 MeV the difference between LIT and GFMC
results becomes somewhat more pronounced. It mainly con-
sists of a slightly shifted quasielastic peak position. We checked
that the origin of the difference is not due to an inversion
problem. In fact, in addition to the standard LIT inversion
method [41], we used the maximum entropy technique to invert
the LIT. We did not find significant differences in the resulting
RL. It remains the object of further future investigations as
to whether the differences can be explained by items (i)–(iv)
mentioned above.

FIG. 2. GFMC longitudinal electromagnetic response function of
4He at |q| = 700 MeV. Experimental data are from Ref. [31].

III. INCLUSION OF RELATIVISTIC EFFECTS

In Fig. 2 we compare the GFMC longitudinal response
function of 4He divided by the proton electric form factor of
Ref. [36] squared with the corresponding experimental data
for |q| = 700 MeV. We notice a slight shift of the position
of the quasielastic peak to higher ω and an overestimation
of its width. Here one has to take into account that although
relativistic corrections up to order q2/m2, where m is the
mass of the nucleon, are included in the current operator
for RL, the quantum mechanical approach—and hence the
kinematics—is nonrelativistic. Strategies allowing to tackle
relativistic corrections do exist in mean-field approaches [20];
however, an inclusion of relativistic effects in a fully interacting
nuclear many-body system is highly nontrivial. To cope with
this problem, in the following, we will use the approach
mentioned in the Introduction.

In Refs. [21–25], it was proposed that one should perform
the nonrelativistic calculation in a specific reference frame,
where relativistic effects are as small as possible. For example,
in electron-nucleon scattering one prefers the Breit system,
where the initial nucleon is moving with −q/2. A generaliza-
tion to the quasielastic region in electron-nucleus scattering,
which is dominated by a one-nucleon knockout, leads to the
so-called active nucleon Breit (ANB) frame, where the target
nucleus moves with a momentum of −A q/2. In this frame,
any of the A nucleons composing the nucleus in the initial
state has a momentum of about −q/2, while the knocked-out
nucleon carries a momentum � q/2 after the reaction. In any
other reference frame the involved momenta are higher. For
example, in the laboratory (LAB) system the knocked-out
nucleon has a momentum of about q, hence relativistic effects
can be minimized using the ANB system.

Since experiments are carried out in the LAB system, it is
necessary to transform the results from the ANB (or any other
frame where one performs the nonrelativistic calculation) to
the LAB frame. For reference frames moving with respect to
the LAB frame along the q direction, as is the case for the ANB
frame, the responses transform as follows:

RL(|q|,ω) = q2

(qfr)2

√
M2

T + (
Pfr

i

)2

MT

RL(|qfr|,ωfr), (7)
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RT (|q|,ω) =
√

M2
T + (

Pfr
i

)2

MT

RT (|qfr|,ωfr). (8)

In the above equations MT is the mass of the target nucleus
while |qfr| and ωfr are the momentum transfer and the energy
transfer pertaining to the reference frame under consideration,
namely,

qfr = Pfr
f − Pfr

i , ωfr = Efr
f − Efr

i , (9)

where the total nonrelativistic energies Efr
i/f are given by

Efr
i =

(
Pfr

i

)2

2MT

+ ε0, Efr
f =

(
Pfr

f

)2

2MT

+ εf , (10)

with Pfr
i/f indicating the center-of-mass momenta in the spec-

ified reference frame. Since in a nonrelativistic calculation
the intrinsic system does not depend on the center-of-mass
momentum, the intrinsic energies εf and ε0 are assumed to be
frame independent.

At first, we perform GFMC calculations for a number
of momentum transfers of the intrinsic response functions,
defined as

Rint
α (|qfr|,ωint) =

∑
f

〈0|j †
α(qfr,ωint)|f 〉

× 〈f |jα(qfr,ωint)|0〉δ(ωint − εf + ε0). (11)

The direct calculation of the response functions in the LAB
frame is simply achieved by taking qfr = q and ωint = ω −
q2/(2MT ). On the other hand, to determine the responses in
the LAB frame from Eqs. (7) and (8), |q|fr and ωfr are computed
with the appropriate Lorentz transformation from |q| and ω.
If |qfr| does not correspond to any of the tabulated momentum
transfers, the response RL/T (|qfr|,ωfr) is obtained interpolating
the intrinsic response function using the procedure described
in Sec. IV for ωint = ωfr − (Pfr

f )2/(2MT ) + (Pfr
i )2/(2MT ).

Two-fragment model

Relativistic effects in the kinematics can be included em-
ploying the two-fragment model of Ref. [21]. This relies on
the assumption that the quasielastic reaction is dominated by
the break-up of the nucleus into two fragments, namely a
knocked-out nucleon and a remaining (A − 1) system in its
ground state. This assumption enables one to connect ωfr to
the intrinsic excitation energy εf used in the nonrelativistic
calculation in a relativistically correct way. It has to be noted
that the two-fragment model is adopted only for determining
the kinematic input of a calculation where the full nuclear
dynamics of the system is taken into account.

At this point, we recall that within nonrelativistic theory it is
not possible to work simultaneously with the correct relativistic
energy and momentum of a two-fragment system. As pointed
out in [21], a clue comes from the two-nucleon case. In fact, NN
potential models are constructed describing the two-nucleon
relative scattering momentum p12 in a relativistically correct
way, whereas the Schrödinger equation is solved for the “fake”
nonrelativistic kinetic energy E12 = p2

12/2μ12, where μ12 is

the reduced mass of the two nucleons. (The same approach is
also used in deuteron electrodisintegration, see, e.g., [42]).

Proceeding analogously to the NN potential case, the
two-fragment kinematical model can be summarized by the
following points:

(a) The choice of the frame defines Pfr
i , and accordingly also

the initial relativistic hadron energy

Efr
i =

√
M2

T + (
Pfr

i

)2
. (12)

(b) The momenta of the knocked-out nucleon and the
spectator system are set equal to pfr

N and pfr
X, respectively.

The corresponding relative and center-of-mass momenta are
obtained as

pfr
f = μ

(
pfr

N

m
− pfr

X

MX

)
, (13)

Pfr
f = pfr

N + pfr
X, (14)

where MX and μ are the mass of the spectator system and the
reduced mass, respectively.

(c) For reference frames moving with respect to the LAB
frame along the qfr direction, Pfr

f is directed along qfr . In
addition, for a quasielastic reaction one can safely assume that
also pfr is directed along qfr . Therefore pfr

f and Pfr
f have the

same direction. Under this assumption, pfr
f can be obtained

from the relativistically correct final state energy of the hadron
system

E
f r
f =

√
m2 + (

pfr
f + (μ/MA−1)Pfr

f

)2

+
√

M2
A−1 + (

pfr
f − (μ/m)Pfr

f

)2
. (15)

(d) For each value of ωfr and qfr , one obtains P fr
f and Efr

f

from Eq. (9). The relativistic relative momentum of the two
fragments is determined by plugging Eq. (15) into Eq. (9).
This then leads to the determination of the intrinsic energy

εf =
(
pfr

f

)2

2μ
+ εA−1

0 , (16)

where (pfr
f )2/2μ is the relativistically “fake” kinetic energy and

εA−1
0 the ground-state energy of the spectator system. Finally,

the response function of the two-body fragment model can be
computed interpolating the intrinsic response of Eq. (11) at

ωint =
(
pfr

f

)2

2μ
− ε0 + εA−1

0 . (17)

As further discussed in [21] one also has to rescale the
response functions [see Eqs. (9)–(11) therein]. At this point
one transforms the results to the LAB system as described
above for the case without the two-fragment model.

Using the LIT method, the two-fragment model has been
applied to the calculation of the 3He longitudinal [21] and
transverse response functions [24,25]. Meson exchange and 	
isobar currents as well as relativistic corrections of order q2/m2

for the one-body charge and current operators were included.
There it was shown that the large frame dependence of the
results is almost eliminated by the use of the two-fragment
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FIG. 3. Frame dependence of the GFMC longitudinal (a) and
transverse (b) electromagnetic response functions of 4He at |q| =
700 MeV.

relativistic kinematics, even considering momentum transfers
up to |q| = 700 MeV. In particular a considerable shift of the
quasielastic peak was found for all reference frames but the
ANB one. An excellent description of experimental 3He(e,e′)
data is achieved when making the calculation in the ANB frame
supplementing it with the two-fragment model.

In this work, we have calculated the GFMC electromagnetic
responses of the four-body system in the same reference frames
as in [21,24,25]. For |q| = 700 MeV we obtain the results
shown in Fig. 3(a) for the longitudinal and Fig. 3(b) for the
transverse channels. As in the three-body case, a rather strong
frame dependence can be noticed, indicating that relativistic
effects play a non-negligible role at this value of the momentum
transfer. The corresponding results obtained employing the
two-fragment model are displayed in Fig. 4. The position of the
quasielastic peak of the electromagnetic responses no longer
depends upon the reference frame and coincides with that of
the ANB frame of Fig. 3. While in the longitudinal channel the
different curves are almost coincident, the transverse responses
still suffer a residual frame dependence, leading to different
heights of the quasielastic peak. This has to be ascribed to the
fact that, at variance with Ref. [24], the subleading relativistic
corrections in the transverse current operator are neglected in
the GFMC calculations. Our results are consistent with the
findings of Ref. [43], where the role of relativistic effects in the
kinematics and in the current operator is separately analyzed.
In the LAB frame using relativistic currents brings about a

FIG. 4. Same as Fig. 3, but considering two-body relativistic
kinematics for the final state energy.

reduction of the strength of the transverse response compared
to the nonrelativistic ones. This effect is expected to be smaller
in the ANB frame, where the ω-dependent correction in the
current considered in Ref. [24] vanishes at the quasielastic
peak.

There is a fairly good agreement between theory and
experiment for the position of the quasielastic peak, in both
the longitudinal and the transverse channels. As for the peak
heights, in the longitudinal case our calculations slightly over-
estimate the experimental data, consistently with Ref. [21] for
the 3He case. In the transverse channel, for the afore-mentioned
missing relativistic corrections in the current operator, only
the ANB predictions can be meaningfully compared with
experiments. Here, excess strength from meson-exchange two-
body currents is needed to bring GFMC results in agreement
with experiments even in the quasielastic peak region.

IV. FROM RESPONSE FUNCTIONS TO CROSS SECTIONS

The calculation of the inclusive electron-nucleus scattering
cross section of Eq. (1) requires the knowledge of RL and RT

for several values of ω and |q|. Hence, due to the sizable com-
putational effort required to accurately invert the Euclidean
response for a given value of |q|, the direct evaluation made
with Eq. (1) is not feasible within GFMC. To circumvent
these difficulties, we developed a novel interpolation algorithm
based on the scaling of the nuclear responses. The latter has
been introduced and widely analyzed in the framework of the
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FIG. 5. One-body longitudinal (a) and transverse (b) electromag-
netic response functions of 4He for |qi | = 300, 400, 500, 600, and
700 MeV as a function ψ ′

nr given in Eq. (18).

global relativistic Fermi gas (GRFG) model [44,45]. Scaling
of the first kind occurs when the response functions divided
by an appropriate factor, which accounts for single-nucleon
physics, no longer depend on q and ω, but only upon a
specific function of them, which defines the scaling variable
ψ . Recently, the authors of Ref. [27] carried out an analysis of
the scaling features of the GFMC electromagnetic response
functions of 4He and 12C, retaining only one-body current
contributions. Their results show that scaling is fulfilled,
provided that the nonrelativistic scaling variable ψnr is used.
The latter is obtained from the nonrelativistic reduction of the
energy-conserving δ function of Eq. (4), assuming that the
scattering process takes place on a single nucleon and using
the free energy spectrum for the initial and final states. In this
work, we introduce a constant shift in the energy transfer in
the definition of the scaling variable

ψ ′
nr = pF

(
ω − Es

|q| − |q|
2m

)
. (18)

In the above equation, pF is the Fermi momentum, and Es

is empirically chosen to account for binding effects in both
the initial and final states. In the present analysis of the 4He
nucleus, we use pF = 180 MeV and Es = 15 MeV. However,
the results are quite insensitive to small variations of these
parameters.

Figure 5(a) shows the longitudinal and Fig. 5(b) the
transverse response functions of 4He divided by the proton

FIG. 6. Same as in Fig. 5, but including one- and two-body terms
in the electromagnetic current.

electric form factor squared for |qi | = 300, 400, 500, 600, and
700 MeV as a function ψ ′

nr. In both channels the curves
corresponding to different values of the momentum transfer
peak around ψ ′

nr = 0 and the height of the quasielastic peaks
is a monotonic function of |q|. In the longitudinal case, shown
in Fig. 5(a), the highest and the lowest peak correspond to
|q| = 300 and 700 MeV, respectively. On the other hand, in the
transverse channel, displayed in Fig. 5(b), the response func-
tions are smaller as |q| decreases. In Fig. 6 both one- and two-
body terms in the electromagnetic current have been included.
Meson-exchange current contributions only appreciably affect
the transverse channel, leading to a sizable enhancement of the
response functions. Nevertheless, the behavior of the curves in
both panels is analogous to that of Fig. 5.

To evaluate Eq. (1) we fix Ee and θe, the initial electron beam
energy and scattering angle, respectively, and use Ee′ = Ee −
ω for the energy of the outgoing electron. The four-momentum
transfer is then written as

Q2 = −q2 = 4Ee(Ee − ω) sin2 θe

2
. (19)

For a given value of ω, the response functions have to be
evaluated at |q| =

√
ω2 + Q2. To this aim, we first compute

ψ ′
nr as in Eq. (18). Then, the set of RL,T (ψ ′

nr,qi) is interpolated
at |q|. By looking at Figs. 5 and 6, it becomes evident why it is
more convenient to interpolate the different response functions
when the latter are given as a function of ψ ′

nr and |q| rather than
ω and |q|. For a given value of ψ ′

nr the curves corresponding
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FIG. 7. Double-differential electron-4He cross sections for different values of incident electron energy and scattering angle. The dotted-black
and dashed-blue lines correspond to GFMC calculations where only one-body and one- plus two-body contributions in the electromagnetic
currents are accounted for. The red-solid line indicates one- plus two-body current results obtained in the ANB frame, employing the two-body
fragment model to account for relativistic kinematics. The experimental data are taken from Ref. [46].
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to the different |qi | are indeed almost perfectly aligned and
monotonic functions of |q|, largely improving the accuracy of
the interpolation procedure.

In Fig. 7 we compare with experimental data the electron-
4He inclusive double-differential cross sections obtained from
the GFMC responses for various kinematic setups, correspond-
ing to different values of Ee and θe. The dotted-black and
dashed-blue curves correspond to retaining only one-body
terms or both one- and two-body terms in the current operators.
The red-solid curves—which account for the contribution of
one- plus two-body current operators—have been obtained
computing the cross section in the ANB frame employing the
two-fragment model to account for relativistic kinematics, and
boosting back to the LAB frame.

Our findings are consistent with those of Ref. [18], as we
observe that the two-body currents generate a large excess of
strength over the whole ω spectrum, largely improving the
agreement with experimental data. The difference between
the red and blue curves is clearly visible for Ee = 961,
1080 MeV and θe = 37.5◦, where Q2 � 3 GeV2 at the
quasielastic peak. In these two kinematic setups, the inclusion
of relativistic corrections lead to a shift in the position of the
quasielastic peak and a reduction of its width. The latter effect
is needed to not overestimate the experimental data once the
resonance production mechanism is accounted for.

V. CONCLUSIONS

The electromagnetic longitudinal responses of 4He ob-
tained with the GFMC have been successfully benchmarked
with some LIT results from the literature [38,39]. For |q| =
300 MeV we have found a very good agreement between the
two theoretical ab initio approaches. We have checked that
the small discrepancies, which become more pronounced at
|q| = 500 MeV, are not due to problems pertaining to the
inversion procedure. They are likely to be ascribed to various
smaller differences in the calculations listed in Sec. II B.

We have gauged the relativistic effects in the GFMC
electromagnetic response functions at relatively high value of
the momentum transfer, |q| = 700 MeV. To this aim, we have
computed the response functions in different reference frames,
boosting the results back to the LAB frame. We observe sizable
differences in the position and strength of the quasielastic peak.
The two-fragment model of Ref. [21], suitable for realistic
models of nuclear dynamics, has been employed to account for
relativistic kinematics. This method has proven to provide fully

satisfactory results in the longitudinal channel. As for the
transverse channel, residual frame dependence in the strength
of the quasielastic peak is likely to be due to the missing
higher-order relativistic corrections in the transition operator.
This is consistent with the findings of Refs. [24,43] and their
inclusion will be the subject of future work.

A novel algorithm to reliably and efficiently interpolate the
GFMC response functions for arbitrary values of |q| and ω has
been devised. This algorithm relies on the first-kind scaling
features of the GFMC responses, which have been analyzed
in Ref. [27]. It has to be noted that scaling violations do not
prevent its application. On the other hand, if scaling were
exactly fulfilled, the algorithm would only require the GFMC
calculation of the response functions for a single value of |q|.

We have employed the interpolation algorithm to perform
the first ab initio calculation of the double-differential cross
section of the inclusive electron-4He scattering. The extensive
comparison with experimental data demonstrates that two-
body currents generate an excess of strength that is necessary to
correct the cross section, even in the quasielastic peak region.
Relativistic corrections, only appreciable for larger values of
the lepton energy and scattering angles, lead to a shift in the
position of the quasielastic peak and a reduction of its width.
Our findings indicate that relativistic effects are primarily
kinematical in nature and can easily be accounted for in the
GFMC or any nuclear ab initio approach, provided that the
many-body calculations are carried out in a proper reference
frame. Therefore the fact that neutrino fluxes in current and
planned experiments cover a broad energy range extending to
several GeVs does not invalidate per se the results obtained
within the nonrelativistic approach.
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