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Compositeness of hadron resonances in finite volume
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We develop a theoretical framework to quantify the structure of unstable hadron resonances. With the help
of the corresponding system in a finite volume, we define the compositeness of resonance states which can be
interpreted as a probability. This framework is used to study the structure of the scalar mesons f0(980) and a0(980).
In both mesons, the K̄K component dominates about a half of the wave function. The method is also applied
to the �(1405) resonance. We argue that a single energy level in finite volume represents the two eigenstates in
infinite volume. The K̄N component of �(1405), including contributions from both eigenstates, is found to be
58%, and the rest is composed of the π� and other channels.
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I. INTRODUCTION

It is remarkable that many new hadrons are being observed
in recent high-energy experiments of hadron spectroscopy [1].
The unexpected nature of the newly observed states urges us to
consider exotic configurations of hadrons, such as multiquarks,
gluon hybrids, and hadronic molecules [2,3]. In particular,
the appearance of the near-threshold states is an indication
of the hadronic molecule structure, in which two or more
hadrons form a loosely bound state through the hadron-hadron
interactions. A classical example of the hadronic molecule
is the �(1405) resonance, which is considered to be a K̄N
molecular state [4–12]. Scalar mesons near the K̄K threshold,
f0(980) and a0(980), are also candidates of the meson-meson
molecule [13–20]. To elucidate the nonperturbative dynamics
of the low-energy QCD, it is desired to characterize the internal
structure of hadrons in a quantitative manner.

In this respect, intensive attention is paid to the compos-
iteness of hadrons, which is defined as the overlap of the
hadron wave function with the scattering states. The study
of the compositeness traces back to the discussion on the
field renormalization constant to reveal the composite nature
of the deuteron [21]. In a series of recent studies of the
compositeness of hadrons [19,22–35], it becomes evident that
there is a problem of interpretation of the compositeness of
unstable states [25,31–33,35]. For a stable bound state, the
compositeness can be interpreted as a probability of finding
the molecular component in the bound state, thanks to the
normalization of the wave function [25]. On the other hand, the
compositeness of an unstable resonance is in general complex,
and the probabilistic interpretation is not always guaranteed.

Here we approach the interpretation problem of the com-
positeness of resonances from yet another viewpoint, by
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utilizing the finite-volume system. The complex nature of the
compositeness originates in the wave function of resonances
which diverges at large distance and cannot be normalized
in the standard prescription. In other words, the resonance
wave function does not belong to the standard Hilbert space
[36,37]. In contrast, in the system with a finite spatial volume,
all the eigenfunctions are square integrable with a discrete
eigenvalue. This motivates us to define the compositeness of
resonances using the discrete eigenstates in finite volume. Gen-
eral properties of the eigenstates in a finite-volume system are
comprehensively studied in Refs. [38–40]. Recently, detailed
analyses of the finite-volume energy levels in specific hadron
scatterings are performed, mainly to compare with the lattice
QCD data [41–49]. In particular, with the recent lattice QCD
data in Ref. [50], the structure of �(1405) is discussed [51–53].
The finite-volume effect can also be utilized to estimate the
spatial size of hadron resonances [54].

In contrast to the previous studies, the aim of this paper is
focused on the definition of the compositeness of the resonance
states, by using the finite-volume system. For this purpose,
we first derive the expression of the compositeness of the
discrete eigenstates in finite volume in Sec. II. It is shown
that the compositeness can be written in an analogous form
with the discrete eigenstates in the infinite-volume system, but
can always be interpreted as a probability. Next, in Sec. III, we
propose a definition of the compositeness of resonances, by
identifying the finite-volume eigenstate which represents the
resonance in infinite volume. This prescription is exemplified
in a single-channel scattering model with a resonance. In
Sec. IV, we study the hadron-hadron systems with the new
definition of the compositeness of resonances, in order to
clarify the structure of the scalar mesons f0(980) and a0(980)
and the �(1405) resonance. A summary of this work is given in
the last section. In Appendix A, we discuss the correspondence
of the finite-volume eigenstates with the resonance state in
infinite volume, using the wave function of the eigenstates in
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one-dimensional quantum mechanics. A general discussion on
the number of the finite-volume eigenstates with respect to
the resonance phenomena in infinite volume is presented in
Appendix B.

II. COMPOSITENESS IN FINITE VOLUME

In this section, we derive the expression of the composite-
ness in a finite-volume system, using the effective field theory.
We show that the compositeness can be defined for all the
eigenstates in finite volume, and is always interpreted as a
probability.

A. Effective field theory

The formulation of the compositeness of the discrete
eigenstates in infinite volume has been given in the effective
field theory framework in Refs. [32,35]. Here we derive the
corresponding expressions in a finite-volume system. We in-
troduce the following Hamiltonian for the description of the
s-wave low-energy scattering of the ψφ system to which the
discrete level B0 couples:

H = Hfree + Hint =
∫

�

d3x(Hfree + Hint), (1)

Hfree = 1

2M
∇ψ†(x) · ∇ψ(x) + 1

2m
∇φ†(x) · ∇φ(x)

+ 1

2M0
∇B

†
0(x) · ∇B0(x) + ω0B

†
0(x)B0(x), (2)

Hint = λ0(B†
0(x)ψ(x)φ(x) + φ†(x)ψ†(x)B0(x))

+ v0ψ(x)φ(x)φ†(x)ψ†(x). (3)

The free part of the Hamiltonian Hfree contains the kinetic
terms of the fields ψ , φ, and B0. The strengths of the contact
three-point and four-point interactions are given by λ0 and v0,
respectively.

In Eq. (1), � specifies the spatial volume in which the
system is defined. The infinite-volume system corresponds to
� = R3. Here we consider the finite-volume system in a cubic
box of size L, namely

� = �FV ≡ [0,L]3. (4)

We impose the periodic boundary conditions on the fields,1

ψ(x) = ψ(x + Ln), etc., (5)

with n ∈ Z3. The field operators follow the commutation
relations

[ψ(x),ψ†(x′)} = δ3(x − x′), etc., (6)

where [A,B} ≡ AB − (−)|B||A|BA with |A| being the Grass-
mann parity of the field A. In finite volume, the Fourier com-
ponents of the fields are labeled by the discretized momentum

1Although the eigenenergies quantitatively depend on the choice of
the boundary conditions, the theoretical framework in this section can
be equally applied to different boundary conditions.

pn = (2π/L)n:

ψ(x) = 1

L3

∑
n

eix· pnψ̃( pn), etc., (7)

ψ̃( pn) =
∫

�FV

d3xe−ix· pnψ(x), etc. (8)

The commutation relations are given by

[ψ̃( pn),ψ̃†( pn′)} = L3δnn′ , etc. (9)

The vacuum of the system |0〉 is defined such that ψ̃( pn)|0〉 =
φ̃( pn)|0〉 = B̃0( pn)|0〉 = 0.

B. Eigenstates and compositeness

To define the compositeness, we determine the eigenstates
of the free Hamiltonian Hfree and the full Hamiltonian H . In
contrast to the infinite-volume system, all the eigenstates are
the discrete levels having a real eigenvalue. The eigenstates of
the free Hamiltonian, which are relevant to the present problem
[32,35], are given by

| pn〉 = 1

L3/2
ψ̃†( pn)φ̃†(− pn)|0〉, (10)

|B0〉 = 1

L3/2
B̃0(0)|0〉, (11)

and the eigenvalues are calculated as

Hfree| pn〉 = En| pn〉, (12)

Hfree|B0〉 = ω0|B0〉, (13)

with En = p2
n/(2μ) and μ = mM/(m + M). We note that

the eigenenergy of the discrete state ω0 is independent of
the system size L, while all the eigenenergies En (except for
|n| = 0) scale as ∼L−2:

En = 2π2

μL2
|n|2. (14)

Because | pn〉 represents the two-body ψφ system and cor-
responds to the continuum state in infinite volume, we refer
to it as the scattering state. The |n| = 0 state corresponds to
the scattering state with vanishing relative momentum. The
eigenstates are normalized as

〈 pn| pn′ 〉 = δnn′ , (15)

〈B0|B0〉 = 1. (16)

In contrast to the plane waves in infinite volume, the scattering
states | pn〉 are normalizable in finite volume. The completeness
relation in this sector is given by

1 = |B0〉〈B0| + 1

L3

∑
n

| pn〉〈 pn|, (17)

where the first (second) term is the projection onto the discrete
state (scattering states).

Eigenstates of the full Hamiltonian H = Hfree + Hint are
also discretized. We label the eigenstates by the index m =
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0,1,2, . . . as2

H |�(m)〉 = E(m)|�(m)〉, E(m+1) � E(m), (18)

with the normalization condition

〈�(m)|�(l)〉 = δml. (19)

Because of the completeness relation in Eq. (17), the eigenstate
|�(m)〉 can be expanded by |B0〉 and the scattering states as

|�(m)〉 = c(m)|B0〉 + 1

L3

∑
n

χ (m)( pn)| pn〉, (20)

with the overlap factors χ (m)( pn) = 〈 pn|�(m)〉 and c(m) =
〈B0|�(m)〉. We now define the compositeness X(m) (elemen-
tariness Z(m)) as the overlap of |�(m)〉 with the scattering states
(with the discrete state |B0〉) as

X(m) = 1

L3

∑
n

|χ (m)( pn)|2, (21)

Z(m) = |c(m)|2. (22)

We note that X(m) and Z(m) can be defined for all the eigenstates
|�(m)〉. With Eqs. (17) and (19), we can show that

X(m) + Z(m) = 1, (23)

for each m. This guarantees that the values of the com-
positeness and elementariness are bounded as 0 � X(m) � 1
and 0 � Z(m) � 1, and they are interpreted as probabilities.
We emphasize that the standard normalization in Eq. (19)
is essential for the probabilistic interpretation. The unstable
states cannot be normalized in this form, and the use of the
biorthogonal basis leads to the complex compositeness [25].

C. Closed-form expressions

In the present framework, the Schrödinger equation can be
exactly solved, so that the compositeness and elementariness
in Eqs. (21) and (22) are written in a closed form. Using
the expansion (20), the Schrödinger equation (18) can be
expressed as a coupled-channel equation for c(m) and χ (m)( pn).
By eliminating c(m), we obtain the equation for χ (m)( pn) as

(En − E(m))χ (m)( pn) + v(E(m))
1

L3

∑
n′

χ (m)( pn′) = 0, (24)

with

v(E) = v0 + λ2
0

E − ω0
. (25)

Solving Eq. (24) for χ (m)( pn) with the help of Eq. (23), we can
express the compositeness and the elementariness as

X(m) = I ′
FV(E(m))

I ′
FV(E(m)) − [1/v(E(m))]′

, (26)

Z(m) = −[1/v(E(m))]′

I ′
FV(E(m)) − [1/v(E(m))]′

, (27)

2The eigenstates may have degeneracy due to the internal symme-
tries (such as spin, isospin, etc.) and to the cubic rotation symmetry.

with3

IFV(E) = 1

L3

∑
n

1

E − En
, (28)

and A′ = dA/dE. It can be shown from Eq. (24) that E(m)

satisfies

1 − IFV(E(m))v(E(m)) = 0. (29)

Thus, the eigenenergy is determined by solving Eq. (29). In
the noninteracting limit (v → 0), this condition means

IFV(E(m)) → ∞, (30)

which is satisfied by the eigenenergy of the free Hamiltonian
En, as easily verified from the definition in Eq. (28). Because
the function IFV(E) depends on the box size L, the values
of the eigenenergy E(m) and the compositeness X(m) depend
on L. In Sec. III A, we discuss the prescription to define the
compositeness of resonances by the L dependence of these
quantities.

It is instructive to compare the results with those in infinite
volume in Refs. [32,35]. The compositeness (26) and the
elementariness (27) can formally be obtained by replacing
the loop function G(Eh) by IFV(E(m)) in the corresponding
expressions in infinite volume, where Eh is a discrete eigenen-
ergy. There, the functions v(E) and G(E) can be regarded as
the interaction kernel and the loop function in the scattering
amplitude

T (E) = [1/v(E) − G(E)]−1. (31)

The condition for the eigenenergy (29) can be obtained
from the pole condition of T (E) with the same replacement.
An equivalent expression with Eq. (26) was introduced in
Ref. [52], which was conjectured as the compositeness without
the derivation. Here we explicitly derive this expression from
the overlap with the wave function (21).

This framework can be generalized to the system coupled
with N two-body channels as in Refs. [32,35]. By introducing
channel index i = 1, . . . ,N , the compositeness in channel i is
defined as

X
(m)
i = 1

L3

∑
n

|χ (m)
i ( pn)|2, (32)

where χ
(m)
i ( pn) is the overlap with the scattering state in

channel i. The wave function of an eigenstate is decomposed
into the compositeness X

(m)
i and the elementariness Z(m) as

N∑
i

X
(m)
i + Z(m) = 1. (33)

3Note that the infinite series in Eq. (28) does not converge. In
the following, it is implicit that either the divergence at large |n| is
properly regularized [41], or Eq. (28) is understood as the analytic
continuation of the generalized ζ function [40]. In both cases, its
derivative I ′

FV(E), which is used in the definition of the compositeness,
is convergent and gives the same result.

055213-3



YUJIRO TSUCHIDA AND TETSUO HYODO PHYSICAL REVIEW C 97, 055213 (2018)

Note that the contribution of the missing channel is included in
the elementariness Z(m) [28,35]. The closed-form expression
of the compositeness is given by

X
(m)
i = I ′

FV,i(E
(m))

I ′
FV,i(E

(m)) − [1/veff,i(E(m))]′
, (34)

where IFV,i(E(m)) is the function (28) with the replacement
of En → En,i , and veff,i(E(m)) is the effective interaction
in channel i obtained by the Feshbach projection method
[10,35,55,56]. The eigenenergy E(m) is now determined by
the condition

det[1 − IFV(E(m))v(E(m))] = 0, (35)

with the diagonal matrix IFV,i(E) and the coupled-channel
interaction vij (E) [35]. In the following sections, we utilize
the scattering amplitude with relativistic kinematics. It is
shown in Ref. [28] that the compositeness is expressed by
the generalization of the nonrelativistic kinematics with the
suitable replacement of the loop function. Namely, as long
as the scattering amplitude can be written in the form of
Eq. (31), the expression of the compositeness is obtained by
modifying the kinematics in the loop function G(E). The com-
positeness of the finite volume is thus obtained analogously
with Eq. (34), with the same generalization of the function
IFV,i(E).

III. COMPOSITENESS OF RESONANCES

Here we discuss the method to define the compositeness
of resonances, using the compositeness of the finite-volume
eigenstates given in the previous section. In Sec. III A, we
present the prescription to identify the eigenstate which rep-
resents the resonance and define the compositeness of the
resonance. This prescription is examined by the single-channel
scattering model with one resonance in Sec. III B.

A. Prescription

Let us consider an isolated resonance state in a single-
channel scattering. As demonstrated in Appendix A, the prop-
erty of the resonance is reflected in a finite-volume eigenstate
when the eigenenergy is close to the resonance energy. It is
therefore reasonable to consider X(m)(L) as the compositeness
of the resonance, when the eigenenergy E(m)(L) is near the
resonance energy.4

The resonance energy Eres in infinite volume should how-
ever be defined carefully. First of all, Eres cannot be uniquely
determined, because the finite decay width of the resonance
represents the uncertainty of the energy measurement. We thus
consider the following energy region:

Emin � Eres � Emax, (36)

and regard the states satisfying this as the resonance. Next,
there are two ways to determine Emin and Emax. On one

4In this subsection, we denote the L dependence of X(m) and E(m)

explicitly.

hand, the eigenenergy of the resonance is expressed by the
pole of the scattering amplitude in the complex energy plane.
In this case, we determine Emin = Mres − �res/2 and Emax =
Mres + �res/2, with Mres (−�res/2) being the real (imaginary)
part of the pole energy. On the other hand, the resonance
energy can also be read off from the behavior of the scattering
amplitude on the real axis. In this method, Emin and Emax

are determined by the energies at which the spectrum (i.e.,
the imaginary part of the scattering amplitude) becomes a
half of the peak value. If the resonance is isolated from
other resonances and the nonresonant amplitude is small, then
the resonant Breit-Wigner amplitude dominates so that both
methods give a similar set of (Emin,Emax). However, this is not
always the case. For instance, in the case of �(1405), there are
two complex poles in the relevant energy region, while there
is only one peak structure in the scattering amplitude on the
real axis [9,10]. As shown in Appendix B, the finite-volume
eigenenergies reflect the behavior of the phase shift on the real
energy axis, rather than the poles in the complex energy plane.
This suggests that the latter approach is suitable in the present
purpose with the finite-volume effect to define the region
of the resonance energy. Namely, we determine (Emin,Emax)
from the behavior of the imaginary part of the scattering
amplitude.

For a given set of (Emin,Emax), there are many states
whose eigenenergy satisfies Eq. (36) (see Fig. 2 in Sec. III B
and Fig. 12 in Appendix A). We thus need to consider the
choice of the energy level to determine the compositeness.
Since the infinite-volume system corresponds to the limit
L → ∞, one may naively think that the energy level at large
L should be adopted. This is however not appropriate in
practice, because the energy levels become denser and denser
at large L, and the eigenstates are largely contaminated by
the scattering states. On the other hand, when we decrease the
box size L down to the spatial extent of the wave function,
the finite-volume effect on the wave function largely modifies
the eigenenergy [38,42,54]. Keeping these in mind, let us
examine each eigenstate in finite volume. The ground state
(m = 0) corresponds to the threshold energy E(m)(L) ∼ 0,
and does not usually satisfy Eq. (36). The eigenenergy of
the first excited state E(1)(L) can satisfy Eq. (36), when L
is larger than the spatial extent of the wave function and
smaller than the region where the eigenenergy is affected
by the lowest scattering state with a finite momentum. For
higher excited states (m > 2), Eq. (36) is satisfied between
two noninteracting scattering states. When the width of the
resonance is small, there can be a region in which E(m)(L) is
stable against L. But this is not always guaranteed, even for the
resonance states with the decay width of several tens of MeV
(see Fig. 2 in Sec. III B). Thus, we shall use the first excited
state (m = 1) to determine the compositeness of the resonance.
In this case, we can define the region Lmin � L � Lmax, where
Lmin (Lmax) is determined by the finite-volume effect on the
wave function (coupling to the lowest finite energy scattering
state). Of course, the value of X(1)(L) changes within the region
Lmin � L � Lmax. Because the states satisfying Eq. (36) are
considered to represent the resonance state, we average X(1)(L)
over the region Lmin � L � Lmax in order to determine the
compositeness of the resonance.
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In summary, we propose the following procedure to define
the compositeness of the resonance:

(i) Determine Emin and Emax by the energies at which the
imaginary part of the scattering amplitude in infinite volume
becomes a half of the peak value.

(ii) Determine Lmin by the lower boundary where the
eigenenergy of the first excited state E(1)(L) does not satisfy

Emin � E(1)(L) � Emax, (37)

due to the finite-volume effect on the wave function.
(iii) Determine Lmax by the upper boundary where the

eigenenergy of the first excited state E(1)(L) does not satisfy
Eq. (37) due to the coupling to the lowest finite energy
scattering state.

(iv) Average X(1)(L) in the region Lmin � L � Lmax to
determine the resonance compositeness Xres as

Xres = 1

Lmax − Lmin

∫ Lmax

Lmin

X(1)(L)dL. (38)

Some comments are in order. First, because X(1)(L) is
always real and positive, so is Xres. In addition, because
Z(1)(L) + X(1)(L) = 1 is satisfied at an arbitrary L, we obtain
the relation

Xres + Zres = 1, (39)

with

Zres = 1

Lmax − Lmin

∫ Lmax

Lmin

Z(1)(L)dL. (40)

Namely, Xres and Zres can be interpreted as probabilities.
Second, to determine the compositeness in the above pre-

scription, we need a theoretical model to describe the scattering
amplitude. In this sense, it is important to prepare a successful
model for the relevant scattering process. In general, there are
two approaches to study the compositeness of hadrons. One
is to use the weak-binding relation and its generalizations
[21,32,35], and the other is to evaluate the compositeness
at the pole position [23,24,28]. In the former approach, the
compositeness is determined model-independently by the ex-
perimental observables, but the higher order terms in the near-
threshold expansion provide some uncertainty of the result,
and the applicability is limited to the near-threshold states.
The latter approach determines the compositeness of any
resonances without suffering from the higher order terms,
but the result depends on the scattering model employed.
The present procedure has similarity with the latter approach
because of the use of the theoretical model of the scattering,
although the compositeness is not evaluated in the complex
energy plane.

Third, we should keep in mind that there is no clear
definition of the structure of an unstable particle. As in previous
attempts [25,31–33,35], the above prescription is not an ap-
proximation of some true value of the compositeness. Rather,
we propose a new plausible definition of the compositeness
which can be interpreted as a probability. If the width of
the resonance is too large, the present framework may not
work, because of the ambiguity of the definition of the energy
region (36). This is not a limitation of the framework; it

simply indicates that the “structure” of the resonance state
with a broad width is not well defined. It is natural to expect
that the compositeness is well defined only for a sufficiently
narrow resonance which has a localized wave function (see
Appendix A).

B. Examples in infinite volume

Let us examine the above prescription by calculating the
compositeness of resonances in a single-channel scattering
model. We consider an s-wave scattering of the particles with
masses m and M . Here we adopt the relativistic kinemat-
ics where the total energy is given by W =

√
m2 + p2 +√

M2 + p2 for a given three-momentum p. We construct the
on-shell T matrix T (W ) in the N/D method [8,57,58], which
is equivalent to the solution of the Bethe-Salpeter equation
under the on-shell factorization:

T (W ) = [1/V (W ) − G(W )]−1. (41)

As the interaction kernel V (W ), we adopt the bare-pole type
interaction used in Ref. [54]:

V (W ) = g2
0

W 2 − W 2
0

, (42)

which is specified by the bare mass W0 and the bare coupling
g0. The loop function G(W ) is given by

G(W ) = i

∫
d4q

(2π )4

1

q2 − m2 + i0+
1

(P − q)2 − M2 + i0+ ,

(43)

with P μ = (W,0). Using the dimensional regularization, we
obtain the expression

G(W ) = 1

16π2

[
a(μreg) + ln

mM

μ2
reg

+ M2 − m2

2W 2
ln

M2

m2

+ λ1/2

2W 2
{ln(W 2 − m2 + M2 + λ1/2)

+ ln(W 2 + m2 − M2 + λ1/2)

− ln(−W 2 + m2 − M2 + λ1/2)

− ln(−W 2 − m2 + M2 + λ1/2)}
]
, (44)

where a is the subtraction constant at the regularization
scale μreg and λ = W 4 + m4 + M4 − 2W 2m2 − 2m2M2 −
2M2W 2. For a given W0 > m + M , this model generates a
resonance around W ∼ W0, unless the coupling g0 is too large.
Although the contribution from the bare state is hidden in the
interaction kernel (42), the elementariness can be induced by
the energy dependence of the interaction [28].

We first calculate the scattering amplitude in infinite volume

F (W ) = − 1

8πW
T (W ), (45)

by setting m = 495.7 MeV, M = 938.9 MeV, μreg =
630 MeV, and a(μreg) = −1.95. In order to generate a res-
onance around 2600 MeV, we prepare three models (I–III)
with different sets of the interaction parameters (g0,W0) as

055213-5



YUJIRO TSUCHIDA AND TETSUO HYODO PHYSICAL REVIEW C 97, 055213 (2018)

TABLE I. Interaction parameters (g0,W0) and the pole positions
of the infinite-volume scattering amplitude Wres = Mres − i�res/2 in
models I–III.

Model g0 (MeV) W0 (MeV) Wres (MeV)

I 1000 2600 2600 − 3i

II 3000 2597 2600 − 29i

III 7000 2580 2600 − 165i

summarized in Table I. The scattering amplitudes are shown
in Fig. 1. In each model, the imaginary part of the amplitude
shows a peak structure and the real part crosses zero around
2600 MeV, as a consequence of the resonance. By analytically
continuing the scattering amplitude (41) into the complex
W plane, we search for the resonance pole in the second
Riemann sheet. The pole positions Wres = Mres − i�res/2 are
also summarized in Table I. Three models correspond to a
narrow width case [I, �res ∼ O(1) MeV], a medium width
case [II, �res ∼ O(10) MeV], and a broad width case [III,
�res ∼ O(102) several tens of MeV]. We note that a broader
resonance is generated in the model with a larger bare coupling
g0, because the decay process occurs through the coupling of
the bare state to the scattering state.

C. Examples in finite volume

Next, we put the system in a box of size L with the periodic
boundary condition. The finite-volume eigenenergies W (m) are
obtained by solving

1 − GFV(W (m))V (W (m)) = 0, (46)

with

GFV(W ) = i
1

L3

∑
n

∫
dq0

2π

1

q2
0 − q2

n − m2 + i0+

× 1

(W − q0)2 − q2
n − M2 + i0+ , (47)

where qn = (2π/L)n. In the numerical calculation, we adopt
the form introduced in Refs. [46,54]:

GFV(W ) = Re [G(W )]

+ lim
�→∞

(
1

L3

∑
n

�(� − |qn|)I (W,|qn|)

−P
∫

d3q
(2π )3

�(� − |q|)I (W,|q|)
)

, (48)

I (W,q) = 1

2ω(q)E(q)

ω(q) + E(q)

W 2 − [ω(q) + E(q)]2
, (49)

ω(q) =
√

q2 + m2, E(q) =
√

q2 + M2, (50)

where P stands for the principal value integration. The limit
� → ∞ is understood as the sufficiently large � such that
the result of GFV(W ) does not change with respect to �.
The energy spectra of models I–III in finite volume are
shown in Fig. 2 as functions of the system size L. The
noninteracting eigenenergies Wn = √

m2 + p2
n + √

M2 + p2
n

FIG. 1. Real parts (solid lines) and imaginary parts (dotted lines)
of the scattering amplitude F (W ) in model I (a), model II (b), and
model III (c).

are also shown by dashed lines for comparison. In model I,
the eigenenergies are stable against the change of the box
size L around the resonance energy 2600 MeV. As we have
discussed in Sec. II B, the eigenenergy of the discrete state
(scattering states) is independent of L (scale as L−2). Thus,
the flat L dependence of the full eigenenergy W (m)(L) is
the indication of a narrow resonance state. In models II and
III, although the eigenenergies have sizable L dependence in
between the scattering states, there are avoided level crossings
around 2600 MeV as a consequence of the mixing of the
bare state and the scattering states. In the small L region, the
eigenenergies deviate from 2600 MeV, due to the finite-volume
effect on the wave function. In the present model, Eq. (42)
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FIG. 2. Eigenenergies W (m)(L) in finite volume model I (a),
model II (b), and model III (c). The noninteracting eigenenergies
Wn(L) are shown by dashed lines for comparison.

stands for the zero range interaction, and the interaction range
is provided by the regularization of the loop function. As
discussed in Ref. [8], a(μreg = 630 MeV) ∼ −2 corresponds
to the three-momentum cutoff � ∼ 630 MeV. We thus estimate
the range of the interaction to be 1/� ∼ 0.3 fm. This roughly
corresponds to the value of L at which the finite-volume effect
becomes prominent.

Finally, we calculate the compositeness, following the
prescription presented in Sec. III A. From the imaginary part
of the scattering amplitude, we determine (Wmin, Wmax) as
(2597.2, 2603.5 MeV) for model I, (2571.3, 2628.6 MeV) for
model II, and (2415.0, 2748.6 MeV) for model III. Because

FIG. 3. Compositeness of the first excited state X(1)(L) in model
I (a), model II (b), and model III (c). The shaded areas represent the
region Lmin � L � Lmax.

the resonance is well isolated from other poles in the present
models, the range of W are in fair agreement with the deter-
mination by the pole position, (Mres − �res/2,Mres + �res/2).
The L dependence of the energy of the first excited state then
determines (Lmin,Lmax) as (0.58, 1.01 fm) for model I, (0.58,
1.02 fm) for model II, and (0.56, 1.14 fm) for model III. In
Fig. 3, we show the compositeness of the first excited state

X(1)(L) = G′
FV(W (1))

G′
FV(W (1)) − [1/V (W (1))]′

, (51)

together with the region Lmin < L < Lmax. In this region,
the compositeness X(1)(L) is relatively small, indicating the
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TABLE II. Compositeness of resonance Xres in models I–III.
For comparison, we show X̃ ± U/2 suggested in Ref. [35] and
XR = |X| suggested in Ref. [31], calculated from the complex-valued
compositeness at the pole position.

Model Xres X̃ ± U/2 [35] XR [31]

I 0.0051 0.0001 ± 0.0014 0.0014
II 0.0435 0.0005 ± 0.0128 0.0132
III 0.2266 0.0011 ± 0.0780 0.0790

elementary nature of the resonance. The increase of X(1)(L)
at L ∼ 1.2 fm is understood as the nature transition of the
first excited state from the resonance to the scattering state,
as seen in the energy spectra in Fig. 2. Averaging X(1)(L)
over Lmin < L < Lmax, we obtain the compositeness Xres as
listed in Table II. In all cases, the value of the compositeness is
small, indicating the importance of the bare state contribution.
It can be seen that the narrower resonance has a smaller
compositeness. This is intuitively understood that the state with
a large fraction of the scattering channel is easy to decay.

Let us compare the results with other prescriptions of the
compositeness of resonances. As shown in Refs. [28,31], the
complex-valued compositeness in infinite volume is given by

X = G′(Wres)

G′(Wres) − [1/V (Wres)]′
. (52)

The results are X = −0.001 33 + 0.000 56i (model I), X =
−0.0123 + 0.0049i (model II), and X = −0.0766 + 0.0193i
(model III). In Refs. [32,35], probabilistic interpretations of
these results are presented. By defining

X̃ = 1 − |1 − X| + |X|
2

, U = |X| + |1 − X| − 1, (53)

it is shown that X̃ can be interpreted as the probability, with
the uncertainty of the interpretation given by U/2. In Ref. [31],
XR = |X| is shown to be interpreted as a probability, provided
that the Laurent series around the resonance pole converges
on the real energy axis. We show the results of X̃ ± U/2
and XR in Table II. We see that the general tendency of the
results are consistent with each other, although there are some
quantitative deviations. The deviation increases when the width
of the resonance is large. We emphasize again that the “true
value” of the compositeness of resonance does not exist, but
the convergent result with different methods can be regarded
as a measure of the structure of the resonance. In this sense,
we conclude that the probabilistic interpretation is robust for a
narrow width state, while the conclusion becomes ambiguous
when the resonance has a broad width.

IV. APPLICATION

Now we study the structure of physical hadron resonances.
In Sec. IV A, we introduce the theoretical model to describe
scalar mesons in coupled-channel meson-meson scattering
based on Ref. [54]. We then study the energy spectra in
finite volume and calculate the compositeness of f0(980)
and a0(980) in Sec. IV B. We perform the same analysis for

�(1405) in the meson-baryon scattering [59,60], in the infinite
volume (Sec. IV C) and in the finite volume (Sec. IV D).

A. Scalar mesons in infinite volume

We consider scalar mesons in the s-wave meson-meson
scattering amplitude around the K̄K threshold. In the isospin
I = 0 (I = 1) sector, there exists f0(980) [a0(980)] resonance
in the ππ -K̄K (πη-K̄K) scattering. The meson-meson scat-
tering has been successfully described by combining chiral per-
turbation theory with the unitarization scheme [15–18]. While
there are sophisticated next-to-leading order calculations that
successfully describe the phase shifts of the meson-meson
scattering [17,18], here we use a simple model with the leading
order chiral Lagrangian for the interaction kernel [54], which
reasonably well describes the experimental data and is suited
to apply the present formulation of the finite volume method.
In this framework, the coupled-channel scattering amplitude
Tij (W ) is obtained by Eq. (41) in matrix form:

Tij (W ) = ([V −1(W ) − G(W )]−1)ij . (54)

where the indices i,j represent the meson-meson channel. The
interaction kernel is given by

V11 = m2
π − 2W 2

2f 2
, V12 = −

√
3W 2

4f 2
, V22 = −3W 2

4f 2
,

for the I = 0 channel where i = 1 (2) corresponds to ππ (K̄K)
and

V11 = − mπ

3f 2
, V12 =

√
3/2

18f 2

(
9W 2 − m2

π − 3m2
η − 8m2

K

)
,

V22 = − W 2

4f 2

for the I = 1 channel where i = 1 (2) represents πη (K̄K).
The loop function matrix is given by the diagonal form

Gij (W ) =
(

G1(W ) 0
0 G2(W )

)
, (55)

where Gi(W ) is obtained as the expression in Eq. (44) by
adding the channel index i. The parameters are taken to be
mπ = 138.0 MeV,mK = 495.6 MeV,mη = 547.9 MeV, f =
93.0 MeV, μreg = 1325 MeV, and ai(μreg) = −1 [54].

The scattering amplitude in the K̄K channel FK̄K (W ) =
−T11(W )/(8πW ) is plotted in Fig. 4 for both I = 0 and I = 1
channels. Slightly below the K̄K threshold (W = 991.2 MeV),
a clear resonance shape is seen in each isospin channel. These
correspond to the f0(980) and a0(980) resonances with I = 0
and I = 1, respectively. In the complex energy plane, we find
a pole in the I = 0 amplitude

WI=0
res = 987.0 − 17.7i MeV, (56)

which represents f0(980), and a pole in the I = 1 amplitude

WI=1
res = 979.2 − 53.4i MeV, (57)

which represents a0(980). We note that, in the I = 0 amplitude,
there also exists a pole at WI=0

res = 471.3 − 181.0i MeV, which
represents the f0(500) (or σ ) meson [20]. However, the
scattering amplitude does not exhibit the resonance behavior
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FIG. 4. Real parts (solid lines) and imaginary parts (dashed lines)
of the elastic scattering amplitudes FK̄K (W ) in the I = 0 channel (a)
and in the I = 1 channel (b).

(π/2 crossing of the phase shift) near the f0(500) pole, and
hence our method is not applicable to this state.

B. Scalar mesons in finite volume

We consider this model in a box of size L with the periodic
boundary condition. The finite-volume eigenenergies W (m) are
determined by [47,52]

det[1 − GFV(W (m))V (W (m))] = 0, (58)

with the diagonal matrix diag[GFV,1(W ),GFV,2(W )]. The box
size dependence of the eigenenergies W (m)(L) is shown by
the solid lines in Fig. 5. Shown by the dashed lines are
the noninteracting eigenenergies with Vij → 0. Note that
there are two kinds of the noninteracting energy levels,
Wn,1 =

√
m2

1 + p2
n +

√
M2

1 + p2
n and Wn,2 =

√
m2

2 + p2
n +√

M2
2 + p2

n. In the I = 0 channel, these correspond to the
ππ scattering states and the K̄K scattering states, which
accumulate to the ππ and K̄K threshold energies Wππ =
276.0 MeV and WK̄K = 991.2 MeV in the limit L → ∞,
respectively. The results of the energy spectra are compatible
with previous works, Figs. 1 and 2 in Ref. [44] and Fig. 1 in
Ref. [45]. In both isospin sectors, we observe a plateau of the
eigenenergy around 980 MeV, representing the scalar meson
resonance. In these cases, there is one-to-one correspondence
between the resonance pole in the infinite volume and the
plateau of the eigenenergy in the finite volume.

FIG. 5. Eigenenergies W (m)(L) in finite volume in the ππ -K̄K

sector in I = 0 channel (a) and the πη-K̄K sector I = 1 channel (b)
(solid lines) in 1.4 fm < L < 5 fm. The noninteracting eigenenergies
Wn,1(L) and Wn,2(L) are shown by dashed lines for comparison.

We evaluate the compositeness of f0(980) and a0(980) from
the finite volume eigenstates. We choose the first excited state
in the I = 1 sector as discussed in Sec. III A. On the other hand,
in the I = 0 sector, the first excited state does not exhibit the
plateau corresponding to f0(980), because the noninteracting
eigenenergy of the ππ scattering reaches 980 MeV around
∼2.7 fm. We thus choose the plateau region of the second
excited state to evaluate the compositeness of f0(980). The L
dependence of the compositeness of the second excited state in
the I = 0 channel X(2)

i (L) and Z(2)(L) are shown in Fig. 6, and
those of the first excited state in the I = 1 channel in Fig. 7.
In both cases, we observe that the property of the eigenstate is
dominated by the channel 1 component (ππ in I = 0 and πη in
I = 1) at large L, because the eigenenergy eventually follows
the scaling of the ππ/πη scattering state. We note that the
elementariness Z(1)(L) in the I = 1 sector becomes negative
at small L region. The negative value of the elementariness,
even for a stable bound state, is known to occur with the energy-
dependent interaction Vij (W ) [61], because of the emergence
of the negative norm states [62].

With the imaginary part of the K̄K scattering amplitude in
Fig. 4, we determine (Wmin,Wmax) = (953.9,990.7 MeV) for
I = 0 and (Wmin,Wmax) = (913.5,1000.2 MeV) for I = 1. As
seen in Fig. 4, the width of a0(980) is broader than f0(980),
and therefore a0(980) has a larger energy region than that of

055213-9



YUJIRO TSUCHIDA AND TETSUO HYODO PHYSICAL REVIEW C 97, 055213 (2018)

FIG. 6. Compositeness of the second excited state X(2)
ππ (L) (a)

and X
(2)
KK̄

(L) (b) and the elementariness Z(2)(L) (c) in the I = 0
scalar meson sector. The shaded areas represent the region Lmin �
L � Lmax.

f0(980). These energy regions correspond to the regions of L
as (Lmin,Lmax) = (1.93,2.11 fm) for I = 0 and (Lmin,Lmax) =
(1.45, 4.25 fm) for I = 1. These regions are shown by the
shaded areas in Figs. 6 and 7. Averaging over these regions,
we obtain the compositeness Xres,i and the elementariness Zres

of f0(980) and a0(980) as summarized in Tables III and IV. In
both cases, the K̄K component dominates roughly half of the
wave function, i.e., 46% in f0(980) and 57% in a0(980).

For comparison, we also evaluate the compositeness at the
pole position in infinite volume. For f0(980), we obtain Xππ =
0.01 + 0.01i, XK̄K = 0.74 − 0.11i, and Z = 0.25 + 0.10i.

FIG. 7. Compositeness of the first excited state X(1)
πη(L) (a) and

X
(1)
KK̄

(L) (b) and the elementariness Z(1)(L) (c) in the I = 1 scalar
meson sector. The shaded areas represent the region Lmin � L �
Lmax.

TABLE III. Compositeness of the f0(980) resonance Xres,i and
the elementariness Zres obtained in this work. For comparison, we
show X̃i and Z̃ defined in Eq. (59) evaluated at the pole position.

Channel This work Residue at Wres

ππ 0.36 0.02
K̄K 0.46 0.72
Others 0.18 0.26
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TABLE IV. Compositeness of the a0(980) resonance Xres,i and
the elementariness Zres obtained in this work. For comparison, we
show X̃i and Z̃ defined in Eq. (59) evaluated at the pole position.

Channel This work Residue at Wres

πη 0.24 0.09
K̄K 0.57 0.37
Others 0.19 0.54

For a0(980), we obtain Xπη = −0.06 + 0.10i, XK̄K = 0.38 −
0.29i, and Z = 0.68 + 0.18i. To interpret the complex-valued
compositeness, we follow Ref. [33] to define real-valued
quantities

X̃i = |Xi |
U + 1

, Z̃ = |Z|
U + 1

, (59)

U =
∑

i

|Xi | + |Z| − 1, (60)

which is the generalization of the single-channel version pro-
posed in Refs. [32,35]. The results of X̃i and Z̃ are summarized
in Tables III and IV. The results of f0(980) show a similar
tendency with this work, the dominance of the K̄K component.
The value of the K̄K compositeness of f0(980) also reasonably
agrees with other estimation in Ref. [31] XR

K̄K
= 0.65+0.27

−0.26. On
the other hand, for a0(980), the evaluation by the residue of
the pole shows the dominance of the elementary component,
in contrast to the K̄K dominance of the finite volume method.
This discrepancy may partly be caused by the broader width of
the a0(980) than f0(980). It may also reflect the unclear nature
of the a0(980) pole; the determination of the pole position of
a0(980) is still controversial [32,35], and some analysis claims
that a0(980) is not a state but a threshold cusp phenomena.

C. �(1405) in infinite volume

The properties of the �(1405) resonance have been suc-
cessfully reproduced in chiral SU(3) dynamics [6–11], where
the interaction kernel derived in chiral perturbation theory
is iterated in the scattering equation to obtain the coupled-
channel meson-baryon scattering amplitude with strangeness
S = −1 and isospin I = 0. The subtraction constants in the
loop functions are determined by the total cross sections of
the K−p elastic and inelastic scatterings and the threshold
branching ratios. In addition, the K−p scattering length has
recently been determined by the measurement of the kaonic
hydrogen by SIDDHARTA [63–65]. Thanks to the accurate
constraints by SIDDHARTA, it is now possible to discuss
�(1405) at the quantitative level. In fact, the meson-baryon
scattering amplitude is constructed by achieving χ2 per degree
of freedom ∼1 with all experimental data [59,60].

In this work, we employ the effective Tomozawa-Weinberg
(ETW) model introduced in Ref. [60] for the description of
the �(1405) resonance. This is a simple two-channel (K̄N
and π�) model with the leading order chiral interaction, but
reasonably well reproduces the results of the full next-to-
leading order (NLO) calculation including the SIDDHARTA

FIG. 8. Real parts (solid lines) and imaginary parts (dashed lines)
of the elastic scattering amplitudes FK̄N (W ) (a) and Fπ�(W ) (b).

result. The interaction kernel to be used in Eq. (54) is given by

Vij (W ) = − Cij

8fifj

NiNj (2W − Mi − Mj ), (61)

where Ni = √
Ei + Mi , Ei = (W 2 − m2

i + M2
i )/2W is the

energy of the baryon in channel i, fi is the decay constant of the
meson in channel i, and (mi,Mi) are the masses of the meson
and baryon in channel i, respectively. For the K̄N (i = 1) and
π�(i = 2) channels, the coupling strengths are given by

Cij = 2

(
3 −√

3/2

−√
3/2 4

)
. (62)

We use (m1,M1) = (495.6,938.9 MeV), (m2,M2) =
(138.0,1190.5 MeV), f1 = 109.0 MeV, f2 = 92.4 MeV,
μreg = 1000 MeV, a1(μreg) = −1.79 × 10−3 × 16π2 − 1,
and a2(μreg) = 1.81 × 10−3 × 16π2 − 1.5

We calculate the elastic scattering amplitudes FK̄N (W ) =
−T11(W )/(8πW ) and Fπ�(W ) = −T22(W )/(8πW ) as shown
in Fig. 8. We observe a resonance behavior corresponding to

5In the original paper [60], the ETW model was constructed with
physical hadron masses with isospin symmetry breaking effect. Here
we use the masses in the isospin symmetric limit, which is sufficient
for the present purpose.
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FIG. 9. Eigenenergies W (m)(L) in finite volume in the K̄N -π�

sector (solid lines) in 2 fm < L < 8 fm (a) and 4 fm < L < 14 fm (b).
The noninteracting eigenenergies Wn,1(L) and Wn,2(L) are shown by
dashed lines for comparison.

�(1405) in each amplitude. The scattering length of the K̄N
channel is obtained as aI=0

K̄N
= −FK̄N (m1 + M1) = 1.485 −

0.755i fm, in good agreement with the NLO result [32].
By analytically continuing the scattering amplitude in the
complex energy plane, we find two poles in the most adjacent
Riemann sheet to the real energy axis between the K̄N and
π� thresholds. The positions of poles are found to be

W I
res = 1423.3 − 21.7i MeV, (63)

W II
res = 1371.2 − 65.3i MeV, (64)

which are consistent with the results of the NLO amplitude in
Refs. [59,60]. In this way, we have obtained a reliable scattering
model which successfully reproduces the experiential data.
We see that two complex eigenstates are associated with one
resonance structure [9].

D. �(1405) in finite volume

As in Sec. IV B, we put this model in a box of size L.
The eigenenergies W (m)(L) of the ground state (m = 0) to the
seventh excited state (m = 7) are shown in Fig. 9 as functions
of the system size L, together with the noninteracting eigenen-
ergies (dashed lines). In Fig. 9(a), the energy of the first excited

TABLE V. Compositeness of the �(1405) resonance Xres,i and
the elementariness Zres obtained in this work. For comparison, we
show X̃i and Z̃ defined in Eq. (59) evaluated at each pole position.

Channel This work Residue at W I
res Residue at W II

res

K̄N 0.56 0.75 0.14
π� 0.24 0.15 0.39
Others 0.20 0.10 0.47

state W (1)(L) shows a flat L dependence around 1.4 GeV,
indicating the existence of a resonance. The qualitative feature
of the energy levels is consistent with the energy levels found
in other models (see Fig. 3 of Ref. [43], Fig. 3 of Ref. [44], and
Fig. 1 in Ref. [47]). At larger L [Fig. 9(b)], the noninteracting
π� scattering energies Wn,2 cross 1400 MeV, and the full
eigenenergies W (m)(L) show avoided level crossings, although
the signature is not very obvious. These behaviors indicate
the existence of one energy level corresponding to �(1405).
Although the finite-volume energy levels were studied in
Refs. [44,47,52], the relation between the number of complex
poles and that of the finite-volume energy levels was not
clarified. As we show in Appendix B, the number of the discrete
eigenstates in finite volume is determined by the number of π/2
crossing of the phase shift δ. Because the scattering amplitude
is related to the phase shift as F = (e2iδ − 1)/(2ik), δ = π/2
corresponds to Re F = 0 and Im F = 1/k �= 0. In Fig. 8, this
occurs only once in between the π� and K̄N thresholds.6

Thus, there is one finite-volume eigenstate which represents
�(1405), in spite of two complex poles in infinite volume.
In other words, the single finite-volume eigenstate represents
both the resonance eigenstates in the infinite volume.

We determine the compositeness of �(1405) from the
first excited state in finite volume. In Fig. 10, we show
X

(1)
K̄N

(L), X
(1)
π�(L), and Z(1)(L) as functions of L. We first

determine the resonance energy from the imaginary part of
the K̄N scattering amplitude, which leads to (Wmin, Wmax) =
(1385.2,1430.2 MeV). The corresponding region of L for the
first excited state is found to be (Lmin, Lmax) = (2.48,7.35 fm).
Averaging X

(1)
i (L) and Z1(L) over this region, we obtain the

compositeness and elementariness shown in Table V. The
K̄N channel occupies 58% of the wave function and is the
main component of �(1405). At the same time, π� channel
(26%) and other components (16%) are also necessary to
form �(1405).7 We note that the values of X

(1)
K̄N

(L), X
(1)
π�(L)

gradually change within the region (Lmin < L < Lmax) as
shown in Fig. 10. This can be interpreted as a consequence

6The real part of the π� amplitude crosses zero again around W =
1430 MeV, but the imaginary part also vanishes simultaneously. This
corresponds to δ = 0 which is not the signal of a resonance. However,
the appearance of δ = 0 has a different significance; for instance, it is
related to the Castillejo-Dalitz-Dyson pole [35,66] and the Ramsauer-
Townsend effect [67].

7The contribution from the two-body channels which are not
included in the model space (such as η�) is represented by Zres [28].
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FIG. 10. Compositeness of the first excited state X
(1)
K̄N

(L) (a) and

X
(1)
π�(L) (b) and the elementariness Z(1)(L) (c). The shaded areas

represent the region Lmin � L � Lmax.

of the existence of two complex poles with different nature in
infinite volume. This point can be further clarified below.

For comparison, we also evaluate the compositeness at the
pole position in infinite volume. At the higher energy pole po-
sition W I

res, we obtain XK̄N = 0.97 + 0.10i, Xπ� = −0.03 −
0.20i, and Z = 0.07 + 0.10i. The results at W II

res are XK̄N =
−0.20 − 0.17i, Xπ� = 0.42 + 0.58i, and Z = 0.78 − 0.41i.
The results of X̃i and Z̃ by Eq. (59) are summarized in Table V.
The value of the K̄N compositeness at W I

res reasonably agrees
with other studies; X̃K̄N = 1.0+0.0

−0.4 [35] and XR
K̄N

= 0.82+0.36
−0.17

[31]. The eigenstate at W I
res is dominated by the K̄N channel

about 80%, while the state at W II
res consists of three components

with comparable magnitudes. The comparison of the results in
Table V suggests that the compositeness determined from the
finite-volume eigenstate includes the contribution from both
poles. This is in accordance with the fact that the finite-volume
eigenenergy represents the two complex poles in infinite
volume. Quantitatively, W I

res has a larger contribution to Xres,
presumably because it is closer to the real axis than W II

res.
The peak structure of the K̄N amplitude is not identical with

that in the π� amplitude, because of the double-pole nature of
�(1405) [9]. If we determine the resonance energy by the π�
amplitude, we find (Wmin, Wmax) = (1353.4,1413.0 MeV) and
(Lmin, Lmax) = (1.79,13.79 fm). The resonance energy region
is lower than that in the K̄N amplitude, and the range of
L is increased. By calculating the compositeness, we obtain
Xres,K̄N = 0.31, Xres,π� = 0.53, and Zres = 0.16. Namely, the
relative importance of the π� component increases. It is
natural to expect that the π� amplitude puts more weight on
the pole W II

res which has a larger π� compositeness X̃π� . In
other words, the channel dependence of the resonance energy
is an indication of the double-pole nature of �(1405). Note
however that the imaginary part of the pole position W II

res is
not small, and the quantitative interpretation of the structure is
somewhat ambiguous for the W II

res pole, because of the larger
U in Eq. (60).

V. SUMMARY

In this paper, the composite structure of hadron resonances
is discussed by using the finite-volume system. It is shown that
all the eigenstates in finite volume have a well-defined compos-
iteness which can be interpreted as a probability. By identifying
the finite-volume eigenstate which reflects the property of the
resonance from the volume dependence of the eigenenergy, we
define the compositeness of the resonance. In single-channel
scattering models, we show that our prescription gives results
in accordance with other proposals to quantify the structure of
resonances.

As an application, we study the compositeness of the scalar
mesons f0(980) and a0(980) and the �(1405) resonance. We
find that the dominant component of f0(980) and a0(980)
is the K̄K molecular contribution, which amounts to about
half of their wave function. For the �(1405) resonance, we
show that a single finite-volume eigenstate is responsible, in
spite of the two complex eigenstates in infinite volume. The
K̄N component is found to be 58%, and the π� and other
components also contribute to the structure of �(1405). In
contrast to the previous works which focus on the individual
complex eigenstate, our results reflect the structure of �(1405)
as a whole, including the contribution from both poles. Given
the recent works which shows that the higher energy pole W I

res
is dominated by the K̄N molecular structure about ∼80%
[31,35], the present results indicate the importance of the
coupled-channel dynamics for the description of �(1405) as
discussed in Ref. [10].
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APPENDIX A: WAVEFUNCTIONS OF RESONANCES AND
EIGENSTATES IN FINITE SIZE SYSTEM

In Sec. III A, we argue that the property of a resonance
in infinite volume is reflected in the finite-volume eigenstate
whose eigenenergy is close to the resonance energy. Here
we explicitly demonstrate this statement using a potential
problem in one-dimensional quantum mechanics. We consider
the Schrödinger equation (by setting h̄ = 1 and the mass
M = 1),8 (

−1

2

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x), (A1)

where E and ψ(x) are the eigenenergy and the wave function
of the eigenstate.

Here we adopt the barrier potential [37]

V (x) =
⎧⎨
⎩

∞ x � 0
0 0 < x � b

−V0 b < x

, (A2)

with V0 > 0.9 This is equivalent to the repulsive rectangular
potential with the shift of the origin of the energy. Because
the boundary condition is imposed only at x = 0, there are
scattering state solutions which form a continuum spectrum
with real E > −V0. The wave function of the scattering state
is analytically given by

ψ(x) =
{

sin(kx) 0 � x � b

A(k)e−iq(x−b) + B(k)eiq(x−b) b < x
, (A3)

A(k) = 1

2

(
sin(kb) + i

k

q
cos(kb)

)
, (A4)

B(k) = 1

2

(
sin(kb) − i

k

q
cos(kb)

)
, (A5)

with k = √
2E and q = √

2(E + V0) =
√

k2 + 2V0. Note that
the wave function of the scattering state is not normalizable.
Here we fix the amplitude of the wave function in the interac-
tion region 0 � x � b to be unity.

A discrete eigenenergy is given by the pole of the S matrix
which is defined by the ratio of the amplitude of the outgoing
wave to that of the incoming wave in the asymptotic region as
S(k) = B(k)/A(k). There is a pole of B(k) at E = −V0, but
A(k) also diverges at this point and S(k) = −1 is finite. Thus,
the discrete eigenstates are determined by the zeros of A(k),
namely,

tan(kresb) = −i
kres√

k2
res + 2V0

. (A6)

8In this unit, all quantities are measured by the dimension of length.
9The following discussion can be performed by using other poten-

tials which vanish at large x. For instance, one can use the attractive
square well potential with a finite barrier, which is more similar to
the physical situation studied in the main text. It is straightforward to
perform the similar analysis using the resonance eigenenergies and
wave functions in Ref. [68].

FIG. 11. Wave function |ψ(x)|2 as a function of x near the
resonance [(a) Ẽ = 0.985] and wave function off the resonance
positions [(b) Ẽ = 2.500].

It is clear that no solution is found with a real kres. There
are however solutions with complex kres through the ana-
lytic continuation, which represent resonances. We define the
dimensionless eigenenergies10

Ẽ(m) =
(

kresb

π

)2

, Re [Ẽ(m+1)] > Re [Ẽ(m)]. (A7)

With V0 = 100b−2, the first three eigenenergies are obtained
as

Ẽ(0) = 0.985 − 0.139i, (A8)

Ẽ(1) = 3.946 − 0.544i, (A9)

Ẽ(2) = 8.891 − 1.186i. (A10)

The resonance phenomena can be seen in the behavior of the
wave function of the scattering state with a real energy. We
plot the wave function |ψ(x)|2 near the lowest resonance Ẽ =
(2b2/π2)E = 0.985 = Re [Ẽ(0)] in Fig. 11. For comparison,
we also plot the wave function at Ẽ = 2.500 which is in
between the two resonances. The wave function is localized
in the interaction region 0 � x � b when the energy is close
to the resonance position [Fig. 11(a)], and it behaves as a plane
wave when the energy is away from the resonances [Fig. 11(b)].

10The normalization of Ẽ is chosen such that the eigenenergies in
the V0 → ∞ limit are given by Ẽ(m) = (m + 1)2 [37].
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FIG. 12. Energy spectrum of the barrier potential in Eq. (A11) as
a function of the size L. Dashed lines represent the noninteracting
energies.

Next, we consider the eigenstates in the corresponding
finite system of size L. We impose the Dirichlet boundary
condition for the wave function ψFS(L) = 0. This is equivalent
to consider the potential

VFS(x) =
⎧⎨
⎩

∞ x � 0, L � x

0 0 < x � b

−V0 b < x < L

. (A11)

Because of two boundary conditions at x = 0 and x = L, the
eigenmomentum is discretized to satisfy

tan(kFSb) = kFS

qFS
tan [qFS(b − L)], (A12)

where qFS =
√

k2
FS + 2V0. This equation has solutions with

real kFS, from which the dimensionless eigenenergies are
defined as

Ẽ
(m)
FS =

(
kFSb

π

)2

, Ẽ
(m+1)
FS > Ẽ

(m)
FS . (A13)

Because the system size L is included in Eq. (A12), the
eigenenergies Ẽ

(m)
FS depend onL. In the noninteracting limit, the

eigenmomentum should be k
(m)
FS,nonint. =

√
π2m2/L2 − 2V0.11

The discrete energy spectrum as a function of L is shown
in Fig. 12 with V0 = 100b−2. For comparison, we plot the
noninteracting levels Ẽ

(m)
FS,nonint. = b2m2/L2 − 2V0b

2/π2 by
the dashed lines. We observe a clear plateau of the energy
levels around the lowest resonance energy Re [Ẽ(0)] = 0.985,
while the plateau structures of the higher resonances are not
very obvious.

The wave function of an eigenstate with kFS is given by

ψFS(x) =
{

C(kFS) sin(kFSx) 0 � x � b

D(kFS) sin [qFS(x − L)] b < x � L
, (A14)

11Because we regard 0 < x � b as the interaction region, the
noninteracting limit is defined by VFS(x) = −V0 for 0 < x � L. Note
the factor 2 difference of the coefficient of πm/L from the periodic
boundary condition.

FIG. 13. Wave function |ψFS(x)|2 as a function of x near the
resonance [(a) L = 1.875b, Ẽ

(5)
FS � 0.986] and wave function off the

resonance positions [(b) L = 1.728b, Ẽ
(5)
FS � 2.500].

C(kFS) =
[
b

2
− sin(2kFSb)

4kFS
+ sin2(kFSb)

sin2 [qFS(b − L)]

×
(

−b − L

2
+ sin [2qFS(b − L)]

4qFS

)]−1/2

, (A15)

D(kFS) = sin(kFSb)

sin [qFS(b − L)]
C(k), (A16)

which is normalized as∫ L

0
|ψFS(x)|2dx = 1. (A17)

In Fig. 13, we compare the wave function |ψFS(x)|2 near the
resonance (L = 1.875b, Ẽ

(5)
FS � 0.986) and that off the reso-

nance (L = 1.728b, Ẽ
(5)
FS � 2.500). As in the infinite system,

the wave function is localized when the eigenenergy is close
to the resonance energy.

Now we are in a position to discuss the consequence of the
resonance phenomena in the eigenstates in the finite system.
From Figs. 11 and 13, we see that the resonance phenomena
is characterized by the localization of the wave function in
the interaction region. To quantify this property, we define the
localization parameter R as the ratio of the squared amplitude
of the wave function in the interaction region (0 � x � b) to
the outside region (b � x). From the wave function in the
infinite system ψ(x) in Eq. (A3), the localization parameter
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FIG. 14. Localization parameter RFS of the m = 2 state in the
finite system. Horizontal lines represent the localization parameters
of the first three resonance states in the infinite system.

is given by

R(k) = 1

4|A(k)|2 = 1

sin2(kb) + k2

q2 cos2(kb)
. (A18)

The wave function in the finite system ψFS(x) in Eq. (A14)
gives

RFS(kFS) =
∣∣∣∣C(kFS)

D(kFS)

∣∣∣∣
2

= sin2 [qFS(b − L)]

sin2(kFSb)
. (A19)

If the wave function is well localized in the interaction region,
the value of R becomes large. On the other hand, if the wave
function behaves as a scattering state, we obtain R ∼ 1.

To characterize the resonance structure in the infinite sys-
tem, we define the real-valued resonance momentum

k(m) ≡ π

b

√
Re [Ẽ(m)]. (A20)

The localization parameters of the three lowest resonances with
V0 = 100b−2 is calculated as

R(k(0)) = 21.33, (A21)

R(k(1)) = 6.079, (A22)

R(k(2)) = 3.254. (A23)

This result shows that the localization is prominent when the
width of the resonance is narrow. This explains the behavior
of the energy spectrum in Fig. 12 where the eigenenergy in
the finite system shows a weak L dependence near the narrow
resonance. Because the wave function is well localized near
the narrow resonance, the energy levels are less affected by the
modification of the boundary.

In Fig. 14, we plot RFS of the m = 2 state as a function of the
system size L. We see that the value of RFS is close to R when
the eigenenergy in the finite system approaches the resonance
energy (L ∼ 1.455b for m = 0, L ∼ 1.210b for m = 1 and
L ∼ 1.006b for m = 2). This feature is observed not only in
the narrow state (m = 0) but also in the broader states (m =
1,2). In fact, it follows from Eq. (A12) that the ratio of the

localization parameters becomes unity when kFS → k(m):

RFS(kFS)

R(k(m))

∣∣∣∣
kFS→k(m)

= sin2 [qFS(b − L)]

[
1 + k(m)2

q(m)2
cot2(k(m)b)

]∣∣∣∣
kFS→k(m)

(A24)

= sin2[q(m)(b − L)][1 + cot2[q(m)(b − L)]] (A25)

= 1, (A26)

with q(m) =
√

k(m)2 + 2V0. In this way, we find that the char-
acteristic localization of the resonance wave function is well
reflected in the finite-system eigenstate which has a similar
energy with Re [Ẽ(m)].

APPENDIX B: NUMBER OF EIGENSTATES
IN FINITE VOLUME

In Sec. IV D, we have seen that there is a single finite-volume
eigenstate which represents the �(1405) resonance, although
the number of the complex eigenstates in infinite volume is 2.
In this Appendix, we show that the number of the resonance
eigenstates in finite volume is determined by the behavior of
the phase shift on the real energy axis, rather than the poles in
the complex energy plane.

We use Lüscher’s formula which relates the finite-volume
eigenenergies EFV with the infinite-volume phase shift δ(E)
as [39–41]√

2μEFV cot δ(EFV) = − 2

μ
IFV(EFV), (B1)

IFV(E) = 1

L3

∑
n

1

E − En
, (B2)

where μ is the reduced mass of the system and En =
2π2|n|2/(μL2) is the noninteracting eigenenergy. Any
eigenenergy EFV in finite volume satisfies this equation. In
the lattice QCD simulation, this formula is used to determine
the infinite-volume phase shift from the QCD eigenenergies
measured in finite volume. Here we use it to study the finite-
volume eigenenergy EFV for a given phase shift δ(E). For
later convenience, we choose the range of the phase shift as
−π/2 < δ � π/2, so that the sign of δ coincides with that of
cot δ.

Before we get started, let us recall the properties of the
function IFV(E). Taking the energy derivative of Eq. (B2), we
obtain

I ′
FV(E) = − 1

L3

∑
n

1

(E − En)2
< 0, (B3)

namely, IFV(E) is a monotonically decreasing function. From
Eq. (B2), it also follows that IFV(E) has a simple pole at
E = En. Near the pole energy, a single term ∝1/(E − En)
dominates, so we obtain for an infinitesimal ε > 0,

IFV(En ± ε) = ± 1

L3ε
. (B4)

Combining Eqs. (B3) and (B4), we find that there must be a
zero of IFV(E) in between two neighboring poles.
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FIG. 15. Schematic illustration of the infinite-volume phase shift
(solid lines), the eigenenergies of the free Hamiltonian in finite volume
(circles), and the eigenenergies of the full Hamiltonian in finite volume
(crosses).

Now we study the eigenenergy for a given phase shift. First,
consider the noninteracting case with δ = 0 in the relevant
energy region. In this case, cot δ → ∞, so Eq. (B1) indicates
that I (EFV) → ∞. Because of the poles of IFV(E), this gives
the noninteracting eigenenergies

EFV = En (noninteracting), (B5)

as expected. Next, we consider a weakly interacting case with
0 < |δ| � 1 for some energy region. The eigenenergies in this
region are slightly shifted as EFV = En + �En. If �En is
sufficiently smaller than the level spacing from the nearest En,
we use Eq. (B4) to obtain√

2μEFV

δ
= − 2

μL3�En
, (B6)

which means that

EFV = En −
√

2

μL2|n|δ (weakly interacting). (B7)

In other words, for a weakly attractive (repulsive) phase shift
δ > 0 (δ < 0), the eigenenergy decreases (increases) from
the noninteracting value (see Fig. 15). In fact, this behavior
generally holds for a finite δ and �En, when the sign of δ is
unchanged. This is because the magnitude of the energy shift
|�En| is bounded by the zero of IFV(E). Thus, as long as the

FIG. 16. Schematic illustration of the behaviors of√
2μE cot δ(E) (solid lines) and −2IFV(E)/μ (dotted lines) as

functions of E with two cases explained in the text. The eigenenergies
of the free (full) Hamiltonian is denoted by the circles (crosses).

sign of the phase shift is kept fixed in a given energy region, the
number of eigenstates coincides with that of the noninteracting
scattering states and there is no energy level in addition to the
shifted scattering states.

Now we consider that δ changes the sign from positive to
negative between two neighboring eigenenergies of the free
Hamiltonian, E1

n and E2
n > E1

n as

δ
(
E1

n

)
> 0, δ

(
E2

n

)
< 0. (B8)

To make the situation clear, we assume that L is sufficiently
large and the phase shift varies monotonically in the region
E1

n < E < E2
n. According to Eq. (B7), the full eigenenergy is

shifted down (up) from E1
n (E2

n). The behavior of δ(E) between
E1

n and E2
n can be classified into two cases:

(1) dδ(E)/dE < 0 and the phase shift changes the sign at
δ = 0.

(2) dδ(E)/dE > 0 and the phase shift changes the sign at
δ = π/2.

Case (1) corresponds to the smooth change of the sign
of the interaction from attractive to repulsive, while case (2)
corresponds to the existence of a sharp resonance. Noting that
cot δ → ∞ at δ → 0 and cot δ = 0 at δ = π/2, we expect the
behaviors of

√
2μE cot δ(E) in cases (1) and (2) as shown in
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Fig. 16. On the other hand, from Eq. (B3), −2IFV(E)/μ is a
monotonically increasing function. Because the finite-volume
eigenenergy is obtained by Eq. (B1), we find that there is no
eigenstate in the region E1

n < E < E2
n for case (1), except

for very rapid energy dependence of δ(E). For case (2), the
function

f (E) ≡
√

2μE cot δ(E) −
[
− 2

μ
IFV(E)

]
(B9)

is continuous and monotonic in E1
n < E < E2

n and f (E1
n +

ε) < 0 < f (E2
n − ε). Thus, there must be f (Er ) = 0 in E1

n <
Er < E2

n by the intermediate value theorem. This means that if
and only if the phase shift crosses δ = π/2 in infinite volume,
there appears one finite-volume eigenstate in addition to those
shifted from the noninteracting eigenstates. When the phase
shift crosses π/2 twice in the relevant energy region, two
additional energy levels appear in finite volume. In this way, the
number of additional eigenstates in finite volume is determined

by the behavior of the phase shift on the real energy axis, rather
than the number of poles in the complex energy plane.

In the case of �(1405), the phase shift of the π� scattering
crosses π/2 only once between the K̄N and π� thresholds,
although there are two complex poles in the K̄N -π� energy
region (see Sec. IV C). Thus, in finite volume, the number of
energy levels representing the resonance in addition to the
scattering states is 1. We note that it is possible to increase
the accuracy of the determination of the scattering amplitude
by the use of the asymmetric box and the moving frame [47].
The twisted boundary conditions also allows one to determine
the phase shift at different eigenmomenta [69]. Even in these
cases, what is determined by the finite-volume eigenenergies
is the phase shift on the real energy axis, and the amplitude
in the complex energy plane is accessible only through the
analytic continuation, which requires a parametrization of the
amplitude. To pin down the pole structure in the complex
energy plane, a detailed analysis of the system is required,
as discussed in Ref. [47].
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