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The reaction K−d → π�n is studied within a Faddeev-type approach, with emphasis on the specific kinematics
of the E31 experiment at J-PARC, i.e., K− beam momentum of pK = 1 GeV/c and neutron angle of θn = 0◦.
The employed Faddeev approach requires as main input amplitudes for the two-body subsystems K̄N → K̄N

and K̄N → π�. For the latter, results from recently published chiral unitary models of the K̄N interaction are
utilized. The K̄N → K̄N amplitude itself, however, is taken from a recent partial-wave analysis. Because of the
large incoming momentum of the K−, the K̄N interaction is probed in a kinematical regime where those chiral
potentials are no longer applicable. A comparison of the predicted spectrum for various π� charge channels with
preliminary data is made and reveals a remarkable agreement as far as the magnitude and the line shape in general
is concerned. Noticeable differences observed in the π� spectrum around the K̄N threshold, i.e. in the region of
the �(1405) resonance, indicate a sensitivity to the details of the employed K̄N → π� amplitudes and suggest
that pertinent high-precision data could indeed provide substantial constraints on the structure of the �(1405).
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I. INTRODUCTION

Modern and systematic approaches that exploit the (ap-
proximate) chiral and SU(3) flavor symmetries of the un-
derlying QCD Lagrangian have significantly improved our
understanding of the K̄N interaction for energies in the
vicinity of its threshold; see Refs. [1–3] for recent overviews.
Nonetheless, some essential questions remain. One of them is
the detailed pole structure of the �(1405), a resonance which
is located below but not far from the K̄N threshold. Another
closely connected topic is the possible existence of (so-called)
quasibound states of the K−NN system [4,5] and/or of kaons
with heavier nuclei. A summary of predictions and references
to the various works can be found in Refs. [6,7].

Though chiral SU(3) dynamics provides strong constraints
on the K̄N interaction, there are still fairly large differences
in the actual results and predictions, as one can easily see
from scanning through the pertinent literature. This reflects
the complexity of the underlying physics and is due to the fact
that K̄N cannot be considered as an isolated system. Possible
couplings to the π� and π� systems, whose thresholds are just
about 100–200 MeV lower, strongly influence the dynamics.
Most of the available experimental information comes from
studies of K−p induced reactions (K−p elastic scattering,
K−p → K̄0n, K−p → π0�, and K−p → π�). Thus, only
isospin combinations of the amplitudes are constrained by
data but not the individual amplitudes themselves. As a
consequence, there are large variations between the isospin
I = 1 K̄N (K−n) amplitudes around and below the threshold,
as exemplified, e.g., in Fig. 2 of Ref. [2], despite that all
considered interactions are constrained from chiral SU(3)
dynamics. Actually even for K−p there is agreement only

for energies at and above the threshold (cf. the same figure),
owing to experimental information on the level shift and width
of kaonic hydrogen [8], and the aforementioned data for K−p
elastic scattering. The differences in the energy dependence
below the threshold reflect variations in the position of the two
poles that are a characteristic feature of the �(1405) within
chiral approaches [9–14] (but appear also in conventional
meson-exchange dynamics [15–17]). Here specifically the pole
with the lower mass is prone to the very details of how chiral
SU(3) dynamics is implemented and has been predicted to be
basically anywhere between the π� and K̄N thresholds [1–3].

Currently there are major experimental efforts to provide
further constraints on the K̄N interaction. One of them con-
cerns plans for measuring the level shift of K−d atoms in
order to pin down the I = 1 K̄N amplitude [18]. Access to the
energy dependence of the amplitudes below the K̄N threshold
and thus to quantitative information on the pole structure of
the �(1405) is possible in studies of the π� system. Several
experiments with that aim have been already performed over
the past few years. Specifically, this concerns measurements of
the π� invariant mass spectrum in photon-induced [19,20] and
electron-induced [21] production on the proton, in the reaction
pp → pK+π� [22,23], and finally in K− induced reactions
on a proton [24] or deuteron target [25,26].

In the present work, we focus on the reaction K−d → π�n
which is the objective of the E31 experiment at J-PARC
[27]. The experiment is performed for specific kinematics,
namely for a K− beam momentum of pK = 1 GeV/c and a
neutron angle of θn = 0◦. Preliminary data for the reaction
channels K−d → π±�∓n, K−d → π0�0n, and K−d →
π−�0p have been already presented at conferences [26]
and in proceedings [25] and final results are to be expected
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FIG. 1. Mechanisms considered in the calculation of the reaction
K−d → π�n: (a) K̄0n → π� rescattering and (b) K−p → π�

rescattering.

soon. Thus, there is a strong motivation to catch up with this
development and to perform calculations that are sophisticated
enough to facilitate a sensible confrontation of theoretical
predictions with empirical information. In the context of the
E31 experiment, this implies that the three-body character of
the reaction has to be accounted for and the formalism best
suited for that is the one proposed by Faddeev. Indeed, in the
past some calculations for K−d → π�n have been presented
based on a Faddeev-type approach [28–30], whereas others
[31–34], including our own initial study [31], took into account
only the first terms in the multiscattering expansion, which are
depicted in Fig. 1.

Among the studies of the reaction K−d → π�n, the most
instructive one so far is certainly the work of Kamano and
Lee [34]. Their calculation, based on the diagrams depicted in
Fig. 1, revealed that the K̄N → K̄N amplitude that appears
in the first step of the two-step process (tI in Fig. 1) plays
an essential role. In particular, this study demonstrated that
higher partial waves have to be included in this amplitude in the
calculation of K−d → π�n. Only then reaction cross section
with a magnitude comparable to the experiment are obtained.
Truncating the K̄N amplitude to the s waves, so far done in
K−d → π�n calculations based on chiral potentials, not least
because in general those models generate s waves only, leads
to a gross underestimation of the empirical information [30].

In the present K−d calculation, we take this important
aspect into account and include higher partial waves in the
K̄N → K̄N amplitude. Furthermore, we go beyond the two-
step approximation of our earlier study [31] and treat the K̄NN
three-body scattering process rigorously. Since we want to
investigate to what extent the π� invariant mass spectrum
around the K̄N threshold is sensitive to the details of the K̄N
interaction, i.e., to the structure of the �(1405), we employ
different chiral potentials taken from the literature, notably
the ones of Cieplý and Smejkal [35] and Ohnishi et al. [30].
Both incorporate the so-called Weinberg-Tomozawa term, i.e.,
the leading-order piece of the effective chiral meson-baryon

Lagrangian. Furthermore, we consider the chiral interaction
proposed by Oset et al. [10] which we had used in our initial
studies of the reaction K−d → π�n [29,31].

The paper is structured in the following way: Our calcu-
lations are performed within a Faddeev-type approach and
the details of the employed formalism are outlined in Sec. II.
Further details can be found in two appendixes. In Sec. III,
we summarize information about the employed input for the
two-body amplitudes K̄N → K̄N and K̄N → π�. Some
characteristic results of these two-body amplitudes are like-
wise provided. Our results for the reaction K−d → π�n
are given and discussed in Sec. IV. The paper ends with a
summary.

II. FORMULATION OF THE K−d → π�n REACTION

A. Faddeev equations

We derive the K−d → π� n amplitude based on the Fad-
deev equations for the K̄NN − π�N coupled system. The
nucleon which appears in the π�N system can be either of
the two present in the K̄NN system. Clearly, the K̄NN part
of the wave function has to be antisymmetrical under exchange
of the two nucleons, and hence the part describing π�N must
reflect it. This feature can be formulated explicitly by the
generalized Pauli principle introduced in Ref. [36].

Let us first write down the Faddeev equations for a meson
numbered 1 and two baryons numbered 2 and 3:

|ψ (23)〉 = |φ〉 + G0 t23 ( |ψ (12)〉 + |ψ (13)〉), (1)

|ψ (12)〉 = G0 t12 ( |ψ (23)〉 + |ψ (13)〉), (2)

|ψ (13)〉 = G0 t13 ( |ψ (23)〉 + |ψ (12)〉), (3)

where φ indicates an incoming wave, and tij are the two-body
transition operators embedded in the three-particle space. The
total wave function ψ is the sum of the three components:

|ψ〉 = |ψ (23)〉 + |ψ (12)〉 + |ψ (13)〉 .

For the K̄NN − π�N system, we introduce particle
labels, in addition to the usual space and spin labels,
in the form of | aαβ〉 [36]. The particle labels denote
{aαβ} = {KNN,π�N,πN�}, and the state | aαβ〉 stands for
|a〉1 |α〉2 |β〉3. The completeness relation in that particle space
is given by

|K̄NN〉 〈K̄NN | + |π�N〉 〈π�N | + |πN�〉 〈πN�| = 1.

Using the basis above, one can construct a fully symmetric
Hamiltonian with regard to two baryons and a corresponding
antisymmetric wave function (for more details, see Ref. [36]).

Let us impose antisymmetry, P23 |ψ〉 = − |ψ〉, where the
operator P23 indicates the permutation of particles 2 and 3.
Then we have the antisymmetric relations between the Faddeev
components:

P23 |ψ (23)〉 = − |ψ (23)〉 , P23 |ψ (12)〉 = − |ψ (13)〉 .

Taking particle representations for the Faddeev equations (1)–
(3) with the above antisymmteric relations, one can derive
the following coupled equations for the five independent
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components:

ψ
(23)
K̄NN

= φK−d + G0(K̄NN) tNN (23)(1 − P23) ψ
(12)
K̄NN

, (4)

ψ
(12)
K̄NN

= G0(K̄NN) tK̄N,K̄N (12)
(
ψ

(23)
K̄NN

− P23 ψ
(12)
K̄NN

)
+G0(K̄NN) tK̄N,π�(12)

(
ψ

(23)
π�N + ψ

(13)
π�N

)
, (5)

ψ
(12)
π�N = G0(π�N) tπ�,K̄N (12)

(
ψ

(23)
K̄NN

− P23 ψ
(12)
K̄NN

)
+G0(π�N) tπ�,π�(12)

(
ψ

(23)
π�N + ψ

(13)
π�N

)
, (6)

ψ
(23)
π�N = G0(π�N) t�N (23)

(
ψ

(12)
π�N + ψ

(13)
π�N

)
, (7)

ψ
(13)
π�N = G0(π�N) tπN (13)

(
ψ

(12)
π�N + ψ

(23)
π�N

)
, (8)

where the components are defined as, for example, ψ
(23)
K̄NN

=
〈K̄NN | ψ (23)〉.

It is a standard procedure [36,37] to extract various partial
breakup amplitudes from each individual kernel part of the set
(4)–(8). Those are introduced into Eqs. (1)–(3) as

|ψ (23)〉 = |φ〉 + G0 T (23) |φ〉 , (9)

|ψ (ij )〉 = G0 T (ij ) |φ〉 , (ij ) = (12),(13) . (10)

Projecting these equations onto particle states, one can
derive the following coupled equations for partial breakup
amplitudes which have the same structure as the set (4)–(8):

T
(23)
K̄NN

= tNN (23) G0(K̄NN) (1 − P23) T
(12)
K̄NN

, (11)

T
(12)
K̄NN

= tK̄N,K̄N (12) φd

+ tK̄N,K̄N (12) G0(K̄NN)
(
T

(23)
K̄NN

− P23 T
(12)
K̄NN

)
+ tK̄N,π�(12) G0(π�N)

(
T

(23)
π�N + T

(13)
π�N

)
, (12)

T
(12)
π�N = tπ�,K̄N (12) φd

+ tπ�,K̄N (12) G0(K̄NN)
(
T

(23)
K̄NN

− P23 T
(12)
K̄NN

)
+ tπ�,π�(12) G0(π�N)

(
T

(23)
π�N + T

(13)
π�N

)
, (13)

T
(23)
π�N = t�N (23) G0(π�N)

(
T

(12)
π�N + T

(13)
π�N

)
, (14)

T
(13)
π�N = tπN (13) G0(π�N)

(
T

(12)
π�N + T

(23)
π�N

)
, (15)

where the partial amplitudes are defined as, for example,
T

(23)
K̄NN

= 〈K̄NN | T (23)|φ〉, and φd is the deuteron wave func-
tion. The breakup amplitude into the “physical” π�N channel
is obtained by

T (K−d → π�N )

= 〈π�N |1 − P23√
2

(T (12) + T (23) + T (13))| φ〉

=
√

2
{
T

(12)
π�N + T

(23)
π�N + T

(13)
π�N

}
. (16)

B. Technicalities and relativity

Here we explain some details concerning the numerical
treatment and relativity in solving the Faddeev-type equations
(11)–(15). Let us illustrate them, taking one of the kernel parts
of Eq. (12), for example,

T
(12)
K̄NN

= tK̄N,K̄N (12) G0(K̄NN)
( − P23 T

(12)
K̄NN

)
. (17)

We work in the three-body center-of-mass (c.m.) system
throughout this paper, denote the momentum of particle i by
�q i (i = 1,2,3), and use the partial-wave projected momentum
space basis

|k q α〉 ≡ |k q ; (ls)j (λ s3)js J 〉, (18)

where α indicates various angular momenta in a jJ coupling:
two-body quantum numbers (ls)j , quantum numbers referred
to the third particle (λ s3)js , and total angular momentum J . In
the nonrelativistic case, k and q correspond to the magnitudes
of standard Jacobi momenta, but now in a relativistic gener-
alization, �k and −�k are momenta of particle 1 and 2 in the
c.m. frame of the two-particle subsystem, and �q indicates the
third particle momentum �q3. The momentum �k is related to the
three-body c.m. momenta �q1 and �q2 in a compact expression
[38] by

�k = ε2 �q1 − ε1 �q2

ε1 + ε2
, (19)

where εi = (ωi + ui)/2, ωi ≡
√

q2
i + m2

i , and ui ≡√
k2 + m2

i .
Projecting Eq. (17) onto the basis above, we obtain〈

k q α
∣∣ T (12)

K̄NN

〉
=

∑
α′

∫
k′2dk′ 〈k α| t12(q)| k′α′〉

× 1

W − ω3(q) − ω12(q,k′) + iε

×
∑
α′′

∫
k′′2dk′′

∫
q ′′2dq ′′ 〈k′q α′| P23| k′′q ′′α′′〉

× ( − 〈
k′′q ′′α′′ ∣∣ T (12)

K̄NN

〉 )
, (20)

where W denotes the total energy, and ω3(q) =√
q2 + m2

3, ω12(q,k′) ≡
√

q2 + W 2
12, and W12 ≡√

k′2 + m2
1 +

√
k′2 + m2

2. The permutation matrix element

〈k′q α′| P23| k′′q ′′α′′〉 on the right-hand side describes a
rearrangement between different types of basis states | k′q α′〉
and P23 | k′′q ′′α′′〉, which is evaluated as

〈k′q α′ | P23| k′′q ′′α′′〉

=
∫ 1

−1
dx

δ(q ′′ − χ )

q ′′2
δ(k′′ − π )

k′′2 Rα′α′′ (k′q x) , (21)

where χ and π are shifted momenta given by

χ =
√

k′2 + (ρ q)2 − 2k′ρq x, (22)

π =
√

(ρ ′′k′)2 + (1 − ρ ′′ρ)2q2 − 2ρ ′′k′(1 − ρ ′′ρ)q x. (23)

The derivation of Eq. (21) including the expressions of
Rα′α′′ (k′q x), ρ, and ρ ′′ are given in Appendix A. Note that
in the relativistic case, ρ and ρ ′′ are no longer constants but
depend on k′, q, and x.

In Eq. (20), together with Eq. (21), four integrations over k′,
k′′, q ′′, and x are left, but we perform the k′′ and x integrations
analytically using the two δ functions, which enables us [39]
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to avoid the complicated singularity pattern (with moving log-
arithmic singularities) in standard approaches. The resulting
form is〈

k q α
∣∣ T (12)

K̄NN

〉 =
∑
α′

∫ ∞

0
k′dk′ 〈k α| t12(q)| k′α′〉

× 1

W − ω3(q) − ω12(q,k′) + iε

×
∑
α′′

∫ k′+ ρ− q

|k′− ρ+ q|
q ′′dq ′′ 1

ρ q fr

Rα′α′′ (k′q x0)

× ( − 〈
π χ α′′ ∣∣T (12)

K̄NN

〉 )
, (24)

where x0 and the factor fr , which is special in the relativistic
case, are functions of k′, q, and q ′′, while ρ− and ρ+ are func-
tions of k′ and q. Those expressions are given in Appendix B.
Note that only a simple pole in the k′ variable appears
positioned at k0 which satisfies the relation√

(W − ω3(q))2 − q2 =
√

k2
0 + m2

1 +
√

k2
0 + m2

2 ,

giving the zero of the energy denominator. This new prescrip-
tion of keeping the k′ andq ′′ integrations, which was introduced
in Sec. 2.2 of Ref. [39] and is extended here to the relativistic
case, greatly reduces the numerical complications.

Finally, we mention that the boosted two-body t-matrix
〈k α| t12(q)| k′α〉 describes transitions in the moving frame
with the magnitude of the momentum given by the modulus
|�q1 + �q2| = |− �q |. Following the procedure of a Poincaré
invariant few-body model developed in Ref. [40], it is related
to the t matrix 〈k α| tcm

12 | k′α〉 defined in the c.m. frame of the
two particles 1 and 2 as

〈k α| t12(q)| k′α〉 = W12(k) + W12(k′)
ω12(q,k) + ω12(q,k′)

〈k α| tcm
12 | k′α〉 ,

(25)

where W12(k) ≡
√

k2 + m2
1 +

√
k2 + m2

2, and the

two-body energy for 〈k α| tcm
12 | k′α〉 is determined as√

[W − ω3(q)]2 − q2. The expression (25) only holds for
half-off-shell t matrices (see Eq. (48) of Ref. [40]) but at
this stage we use it also for fully off-shell t matrices as an
approximation. The prescription for fully off-shell t matrices
has been studied in Refs. [40] and [41].

III. EMPLOYED TWO-BODY AMPLITUDES

There is an abundance of studies of the K̄N interaction
that start out from an effective chiral Lagrangian—either at
leading order or up to next-to-leading order, and considering
the coupling to the π� and π� channels or even to all meson-
baryon systems with strangeness S = −1 that can be build
from the lowest SU(3) (pseudoscalar meson, baryon) octets
[1–3,9–14]. However, only some of the resulting interactions
can be readily adapted to match with the Faddeev-type three-
body approach described above. Calculations in that scheme
require as input two-body amplitudes that are generated from a
potential inserted into a standard (relativistc or nonrelativistic)
three-dimensional Lippmann-Schwinger equation so that the
pertinent reaction amplitudes can be calculated for momenta

TABLE I. Characteristic results for the considered K̄N potentials
by Cieplý and Smejkal (TW1) [35], Ohnishi et al. (V E-dep.) [30], and
Oset-Ramos-Bennhold (ORB) [10]. Scattering lengths are in fm and
pole positions are in MeV.

Model aK̄N (I = 0) aK̄N (I = 1) Pole 1 Pole 2

TW1 −1.61 +i 1.02 0.60 +i 0.50 1433 −i 25 1371 −i 54
V E−dep. −1.89 +i 1.11 0.45 +i 0.53 1429 −i 15 1344 −i 49
ORB −1.72 +i 0.89 0.52 +i 0.64 1426 −i 16 1390 −i 66

that are on- or off the energy shell. It is worth mentioning that
the very first study of the K̄N interaction based on a chiral
Lagrangian [42] yielded indeed such a potential.

In the present study, we utilize two fairly recent potentials,
namely the model TW1 (also known as PWT) by Cieplý and
Smejkal [35], and the energy-dependent model V E−dep. of
Ohnishi et al. [30]. Both are so-called chirally motivated
potentials, i.e., they are based on the Weinberg-Tomozawa
term, and both yield results in agreement with the latest
experimental value for the level shift and width of kaonic
hydrogen by the Siddharta Collaboration [8]. The latter aspect
is very important because those data put very tight constraints
on the K−p scattering length, i.e., on the K̄N interaction close
to the threshold. The actual expressions for those potentials
can be found in Refs. [35] and [30], respectively, together with
pertinent results for K̄N and K̄N → π� (see also Refs. [43]
and [14]). The formal difference between the two potentials
is very small, consisting only in the treatment of the factors
coming from the energies of the mesons and baryons, cf. Eqs.
(1) [35] and (17) [30], respectively. However, the actual fits
to the data are different and so are the underlying two-body
amplitudes. As examples, we show the ones for K̄N → π�
in Fig. 2. Some key results like the K̄N scattering lengths
and the pole positions of the �(1405) are summarized in
Table I. Besides those interactions we consider also the Oset-
Ramos-Bennhold (ORB) potential [10]. This is done mainly
for historical reasons. We used this potential in our initial
study of K−d → π�n [31] and we wanted to connect with
those results. Note that the K−p scattering length predicted
by the ORB potential is not in line with the kaonic hydrogen
results [8]. Still, it will be interesting to see in how far
the K−d → π�n results differ from those for the other
potentials.

As already mentioned, typically chiral potentials are limited
to s waves only. Accordingly, in view of the findings of Kamano
and Lee [34], these are not suitable for generating the K̄N
amplitude that enters into the initial scattering process (tI in
Fig. 1). Thus, in order to circumvent this difficulty, we decided
to resort to a phenomenological treatment which means that we
substitute this amplitude directly by results of a partial-wave
analysis of available K̄N scattering data, namely the one
performed recently by Manley and his group at Kent State Uni-
versity (KSU) [44]. This analysis covers the energy range from
1480 to 2100 MeV, i.e., goes well beyond pK− = 1 GeV/c
(corresponding to a K̄N c.m. energy of 1795 MeV) that is
needed for analyzing the E31 experiment. Using those results
has the advantages that one implements an amplitude that
yields an excellent reproduction of the K̄N data and that one
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FIG. 2. K̄N → π� isospin I = 0,1 s-wave amplitudes of the employed potentials: TW1 [35] (solid lines), Ohnishi et al. [30] (dash-dotted
lines), and ORB [10] (dashed lines) and of the KSU analysis [44] (filled circles).

can use as many partial waves as are needed in the three-body
calculation for getting converged results for the considered
observables. Of course, there is a price we have to pay. We
have to introduce a phenomenological form factor for the
required off-shell extension. To be concrete, we use the form
factor f (p,k) = �2/[�2 + (p − k)2], which depends on the
off-shell momentum p but also on the on-shell momentum k.
This choice ensures that the K̄N on-shell amplitude remains
unchanged. For the cutoff mass in the form factor, we employ
� = 800 MeV. However, we performed test calculations where
we varied the value of � by 10% in order to examine the
sensitivity of our results to this phenomenological treatment.
Fortunately, it turned out that the variations in the K−d
observables that we consider coming from the choice of the
cutoff are negligibly small.

Partial-wave cross sections for K−n → K−n and K−p →
K̄0n of the KSU analysis [44] are displayed in Fig. 3. Ob-
viously, for pK− = 1 GeV/c, i.e., the kinematics of the E31
experiment, there are large contributions from the dI 5 and fI 5

amplitudes, respectively. (We use here the standard notation
LI 2J , but with small letters for the two-body amplitudes as it
is commonly done in three-body calculations.)

For the deuteron wave function, φd , we use the one of the
Nijmegen potential Nijm93 [45]. We tested wave functions
from other realistic potentials too, but it turned out that the
results are rather insensitive to the particular choice.

IV. RESULTS AND DISCUSSION

Before presenting the results, we briefly review our earlier
studies on the K−d → π�N reaction and relevant works. We
started with a calculation of the two-step processes [31] for
the beam momentum pK = 0.6 GeV/c and the neutron angle
θn = 0◦, where the s waves of the Jülich meson-exchange
model [15] and the ORB chiral interaction [10] were used
for the K̄N − π� amplitude. The diagrams included in these
calculations are depicted in Fig. 1. (The plane-wave impulse
process, see Fig. 3(A) in Ref. [31], gives negligible effects
and is not shown.) However, no clear peak was seen in the
�(1405) resonance region, and then we proceeded to a Faddeev
calculation, which enabled us to sum up all rescattering
processes. We performed calculations [29] for pK− = 1 GeV/c
and θn = 0◦ considering the kinematics of the J-PARC E31
experiment [27] and obtained converged results after the sixth
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FIG. 3. Partial-wave cross sections of the KSU analysis [44]
for (a) K−n → K−n and (b) K−p → K̄0n. The partial waves are
indicated by L2J .

iteration of Eqs. (11)–(13), where the same s-wave K̄N − π�
interaction mentioned above was used. (The transition to the
π�N system was treated perturbatively.) Although a peak
corresponding to the �(1405) resonance appeared there, the
line shape of the π� invariant mass spectrum did not match
the preliminary E31 results [25,26,46] and, in addition and
more disturbingly, its magnitude was five times smaller than
the experimental results.

Recently, Kamano and Lee [34] investigated the reaction
K−d → π�n as well and they realized the importance of the
K̄N → K̄N amplitude that enters into the first rescattering
process (tI in Fig. 1). This amplitude is well constrained
because there is a wealth of data in the high-energy region
corresponding to the incoming K− momentum of 1 GeV/c.
Their calculation is based on the two-step processes depicted
in Fig. 1 and they use amplitudes from their coupled-channel
K̄N potential [17] which was developed in the course of
a comprehensive analysis of K̄N data up to an energy of
2100 MeV. In their calculation, K−d cross sections of compa-
rable magnitude to the E31 experiment were obtained [34].

The results in Ref. [34] indicate very clearly that it is crucial
to use the full amplitude for the initial K̄N → K̄N process,
and not only the s-wave contribution as we [29,31] and others
[30] did in the past. Thus, as already mentioned in Sec. III, in the
present work we adopt the K̄N → K̄N amplitude established
by the KSU group [44] which describes the K̄N reaction data
in the high-energy region with similar or possibly even better
quality than the one used in Ref. [34].

The merits of the special kinematics of the E31 experiment
have been discussed thoroughly in Refs. [27,34]. In short,
the K− kicks out the neutron (or proton) from the deuteron
and is thereby strongly slowed down. The slowly moving K−
interacts then with the remaining nucleon and converts into
π�. Viewed in the c.m. frame, the outgoing nucleon and
the π� system move back to back [34], and therefore, there
is basically no correlation between them. Another important
aspect is that the energy regions in which the involved two
subprocesses, K̄N → K̄N and K̄N → π�, take place are
well separated for this special kinematics. Specifically, for π�
invariant masses below 1490 MeV, say, the region of interest
where the majority of the E31 data are, the corresponding
energy for tI , i.e., the K̄N → K̄N amplitude, is essentially
above 1550 MeV or so, and thus well above the K̄N thresh-
old. Therefore, there is no principle conflict when using the
K̄N → K̄N amplitude from the partial-wave analysis and
the K̄N → π� amplitude from chirally motivated potentials.
Finally, according to Kamano and Lee, only the s wave of
the K̄N → π� amplitude is of relevance for the considered
observables, cf. Fig. 7 in Ref. [34]. Thus, it is meaningful
to combine the full K̄N → K̄N amplitude from the KSU
analysis and the s-wave K̄N → π� amplitude from chiral
potentials. Indeed, variations in the results reflect directly
differences in the K̄N → π� amplitude around and below the
K̄N threshold as predicted by the chiral interactions. On the
other hand, existing differences in the (s-wave) K̄N → K̄N
amplitude in the near-threshold region [2] do not play a role
for the actual results.

A. Comparison with preliminary E31 results

In Fig. 4, inclusive cross sections for the reaction K−d →
π�N are shown as a function of the π� invariant mass. The
K− beam momentum and the neutron angle are fixed to pK− =
1 GeV and θn = 0◦, respectively, in accordance with the J-
PARC E31 experiment [25]. We use the amplitudes by the
KSU group [44] for the K̄N → K̄N processes depicted as tI
in Fig. 1, while the chirally motivated interaction TW1 [35] by
Cieplý and Smejkal is utilized for generating the K̄N → π�
amplitude that are represented by tF in Fig. 1. Partial waves
up to a total angular momentum of j = 7/2 are included for
the K̄N → K̄N amplitude. Isospin-averaged masses are used
so that the K̄N threshold is at 1434.6 MeV.

The predicted line shapes for the three final states in Fig. 4
are compared with available but still preliminary data of the
E31 experiment [26]. In contrast to our former work [29],
where only an s-wave interaction was used for the amplitude
of the first step (tI ), the cross sections increase drastically
and reach a magnitude that is comparable to the experiment.
The importance of using the full amplitude for tI becomes
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FIG. 4. Double differential cross section for (a) π±�∓n and (b)
π−�0p. Predictions based on the potential TW1 [35] are indicated
by solid (π−�+n, π−�0p) and dashed lines (π+�−n), respectively.
Preliminary data are taken from Ref. [26]. Vertical line indicate the
K̄N threshold.

immediately clear when one inspects the K̄N → K̄N cross
section generating by the KSU amplitudes, displayed in Fig. 3.
It can be seen that the partial waves dI 5 and fI 5 provide large
contributions to the cross section around pK ≈ 1 GeV/c, the
relevant energy region for the amplitude in the first step.

Indeed, in our new calculation there is a good overall
agreement with the preliminary data for K−d → π−�+n. In
particular, the maximum of the spectrum is roughly repro-
duced. Qualitatively, the results are similar to those reported
by Kamano and Lee in Ref. [34].

B. Origin of the peaks: Quasifree scattering and �(1405)

Before analyzing the results in detail and examining also
other potentials, let us discuss the origin of the structure
of the line shape and, in particular, of the peaks. It can be
understood by considering the amplitude for the two-step
process, tπ�,K̄N G0 tK̄N,K̄N φd which is obtained after the

iteration of the Faddeev equations (12) and (13). The structure
results from an interplay between tπ�,K̄N and G0 tK̄N,K̄N φd .
We present the moduli of those quantities in Fig. 5. The K̄N →
π� amplitude, shown here for different charge channels,
exhibits a clear peak below the K̄N threshold which reflects
the presence of the �(1405) resonance. For π� invariant
masses above that threshold, it becomes smooth and rather
small. Note that K−p → π0�0 (dashed line) corresponds to
a pure (I = 0) isospin state. In the case of K−p → π+�−
and K−p → π−�+, there is an interference with the I = 1
state, with opposite signs, and accordingly the peak positions
are shifted to somewhat higher or lower invariant masses.
Moreover, the behavior at the K̄N threshold is different in the
case of K−p → π−�+ (solid line); i.e., there is cusp and not
a rounded step anymore. Together with the specific weighting
by the term G0 tK̄N,K̄N φd , cf. Fig. 5(b), this causes the distinct
differences in the cross sections for the π+�−n and π−�+n
channels around the K̄N threshold.

The large peak of the π−�+n cross section for energies
around 1455 MeV is clearly coming from the combined effect
of the Green’s function and tK̄N,K̄N φd . It is due to quasifree
scattering (QFS) of the K− on the nucleons. The π+�−n
results are remarkably different, experimentally as well as
in theory, reflecting large interferences between the I = 0
and I = 1 contributions. In the case of K−d → π−�0p, a
pure I = 1 state, QFS is likewise responsible for most of the
structure, cf. Figs. 5(b) (dotted line) and 4(b). The K̄N →
π� amplitude with I = 1 corresponds to the dotted line in
Fig. 5(a). There is a noticeable cusp at the K̄N threshold,
and the drop of the amplitude below the threshold is partly
responsible for the clear reduction of the K−d → π−�0p
cross section in that energy region, but otherwise t I=1

π�,K̄N

exhibits a rather smooth behavior.

C. Sensitivity to differences between the chiral potentials

Given that the data from the E31 experiment are still
preliminary, it is certainly too early for drawing more detailed
conclusions. This should be kept in mind when we now
compare the predictions based on different chiral potentials
with each other and confront them also with those data. We
consider here, besides the potential TW1, the interactions by
Ohnishi et al. [30] and by Oset-Ramos-Bennhold [10]. Results
are presented in Fig. 6.

As already discussed above, in our calculation based on
TW1 the overall magnitude of the cross sections is well
reproduced, for the π±�∓n channels as well as for π−�0p.
(Data for π0�0n have been already presented too [26], but are
still very preliminary and no absolute values are given.) This
is also the case for the two other potentials. At the same time,
there are noticeable variations between the predictions for the
different potentials. Since the same K̄N → K̄N amplitude
is used in the calculations, these reflect differences in the
pertinent K̄N → π� amplitudes.

Let us first discuss the π−�0p spectrum which exhibits the
simplest structure. In this channel, only the I = 1 component
of π� can contribute, and therefore one can trace back the
features in the cross section directly to those of the two in-
gredients, t I=1

π�,K̄N
and G0 tK−p,K−p φd , shown in Figs. 2 and 5,
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FIG. 5. The quantitities (a) |tπ�,K̄N |2 and (b) |G0 tK̄N,K̄N φd |2 for different charge channels. The results shown are for the potential TW1
[35]. Vertical line indicate the K̄N threshold.
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respectively. Specifically, there is a one-to-one correspondence
of the order of the maxima in the cross sections and the
magnitudes of the K̄N → π� amplitude in the relevant region
of 1440–1460 MeV. The ORB potential provides the largest
predictions for both.

The π� invariant mass where the maximum occurs is
basically determined by the product of the Green’s function
with tK̄N,K̄N φd [cf. Fig. 5(b)] and, therefore, it is the same
for all potentials. Indeed, also the maximum of the two model
predictions in Ref. [34] is practically at the same invariant
mass. It is somewhat surprising that the preliminary data
suggest that the maximum could be at somewhat higher
invariant masses. A shift of the maximum by 10–15 MeV
would be rather difficult to achieve within our scheme. It would
require a drastic change in the K̄N → K̄N or K̄N → π�
amplitudes. Certainly, one has to wait for the final analysis of
the experiment in order to see whether this discrepancy will
persist.

Interestingly, the π−�0p data do not show any effect from
the opening of the K̄N channel. In the theoretical predictions
there is a clear drop off in the cross section right below the K̄N
threshold. As a consequence, there is a sizable underestimation
of the preliminary data in that invariant-mass region.

The π−�+n and π+�−n channels involve contributions
from I = 0 and I = 1. The line shape for the former is quite
well described by the predictions based on the potential TW1.
This concerns not only the maximum but also the structure
induced by the�(1405) resonance. Specifically, the calculation
produces a moderate peak at the corresponding invariant mass
and a dip at the K̄N threshold, i.e. features that are reasonably
well in line with the measurement. Only the peak position
itself appears to be slightly closer to the K̄N threshold than
what is indicated by the preliminary data. Obviously, the other
two potentials generate a too pronounced structure so that
the empirical information is drastically overestimated. Like
for π−�0p, there is also a noticeable underestimation of the
empirical results for the π−�+n channel at higher invariant
masses for all potentials. However, here the available empirical
information points to a possible extended plateau rather than to
an actual shift of the maximum as compared to the theoretical
predictions.

In contrast to the channels discussed above, there is only a
poor overall agreement with the preliminary data for K−d →
π+�−n. Here the predictions are only roughly in line with
the experiment for higher invariant masses. Around the K̄N
threshold, the spectrum is significantly overestimated. More-
over, the structure produced in the three-body calculation does
not resemble at all the behavior exhibited by the data. In the
experiment, there is practically no effect seen from the opening
of the K̄N channel, while theory produces a pronounced peak
below the threshold for all considered potentials. Actually, the
same incorrect behavior is present in the results by Kamano
and Lee [34].

Finally, the results for π0�0n are qualitively similar to those
for π−�+n, except that there is a less pronounced maximum
for invariant masses above the K̄N threshold. In this channel,
only the I = 0 component of π� can contribute, which makes
it to the most promising one for exploring and pinning down
the structure of the �(1405) resonance.
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FIG. 7. Average of K−d → π+�−n and K−d → π−�+n spec-
trum (lines, filled circles) vs half of the K−d → π−�0p spectrum
(empty circles), cf. Eq. (26) and text. Same description of curves as in
Fig. 6. Prelimary data are taken from Ref. [26]. Vertical lines indicate
the K−p and K̄0n thresholds.

Following the experimentalists, we consider here in addition
the average of the K−d → π+�−n and K−d → π−�+n
spectrum, cf. Fig. 7, denoted by (σπ+�−n + σπ−�+n)/2 to
simplify the notation. Since [1]

σπ±�∓n ∝ 1

3
|TI=0|2 + 1

2
|TI=1|2 ±

√
6

3
Re (TI=0T

∗
I=1), (26)

it is clear that in this average the interference term be-
tween the I = 0 and I = 1 contributions drops out. We
want to emphasize, however, that the amplitudes TI in
Eq. (26) do not correspond directly to those for K̄N →
π�, i.e., to t I

π�,K̄N
. Formally, and ignoring the interdepen-

dence of the kinematical variables for which the amplitudes
in the subsystems are evaluated, their relations are TI=0 =
t I=0
π�,K̄N

/
√

2 × (A − B) and TI=1 = t I=1
π�,K̄N

/
√

2 × (A + B),
where A = G0 tK0n,K−pφd and B = G0 tK−n,K−nφd . Here the
relative signs reflecting whether the proton or neutron in the
deuteron takes part in the scattering process have been already
accounted for.

Furthermore, one should be aware that due to the large mass
splitting between K− and K̄0 [47], the physical thresholds of
the K−p and K̄0n channels are separated by more than 5 MeV,
as indicated in Fig. 7. Thus, there will be a potentially large
breaking of the isospin symmetry in the region close to and
between the K−p and K̄0n thresholds, making it impossible to
define amplitudes with proper isospin. Consequently, caution
is required when applying Eq. (26) for the interpretation of the
data in that specific energy region.

Figure 7 includes also data for (half of) σπ−�0p (empty
circles). Since that cross section corresponds to 1

2 |TI=1|2, it
is obvious that the π±�∓n results are dominated by the I = 0
component. Nevertheless, the individual results shown in Fig. 6
reveal that the I = 1 contribution is by no means negligible and
plays a decisive role for the actual line shapes.
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In view of the preliminary character of the data, it is prema-
ture to draw more concrete conclusions with regard to the prop-
erties of the elementary K̄N → π� interaction. However, it is
obvious that larger values of the I = 1 K̄N → π� amplitude
for invariant masses above the K̄N threshold would bring the
maximum of the π−�0p cross section closer to the experiment
and likely also the one for π−�+n. Indeed, the KSU analysis
supports larger values for the corresponding s-wave amplitude;
see Fig. 2. Its absolute square exceeds the one predicted, e.g.,
by the ORB potential by about 30% at 1480 MeV.

The situation is more complicated below the K̄N threshold
and, specifically, in the �(1405) region. Still, the results shown
in Figs. 6 and 7 provide a strong indication that the �(1405)
peaks by all three potentials are too large in magnitude. In
particular, there is a dramatic overestimation in the sum of
π+�−n and π−�+n, cf. Fig. 7, where interferences between
the I = 0 and I = 1 amplitudes should cancel, at least to
some extent and disregarding the potential difficulties with the
isospin “interpretation” mentioned above.

D. Influence of three-step processes

In the course of our calculation, we explored also con-
tributions from three-step processes, where the correspond-
ing amplitudes are obtained by iterating twice the Faddeev
equations (11)–(15). As already mentioned, we needed several
iterations to reach converged results in case when only the
s-wave K̄N → K̄N amplitude was included [29]. In contrast,
now where K̄N partial waves up to j = 7/2 are incorporated,
there are practically no visible changes in the invariant-mass
spectra at 0◦ of the outgoing neutron when the three-step
processes are included. Let us provide exemplary results for
the two processes shown in Fig. 8 which are expected to
yield the largest effects among the three-step processes. We
use the Nijmegen potential Nijm93 [45] for the NN sector,
and include partial waves up to j = 3. It turned out that the
process in Fig. 8(b) gives larger contributions than the process
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FIG. 8. Diagrams for three-step processes
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FIG. 9. K−d → π�n results for neutron angles θn = 10◦ and
20◦. Results based on two-step processes only (solid lines) are shown
together with those where three-step processes are also included
(dashed lines). The predictions are based on the potential TW1 [35].

in Fig. 8(a) with the NN interaction, but still the overall effect
is tiny for θn = 0◦ and the spectra remain almost unchanged as
compared to the results for the two-step processes. Therefore,
we extended the calculations to θn = 10◦ and 20◦ for further
exploration. Corresponding results including the process in
Fig. 8(b) are shown in Fig. 9. With increasing neutron angle,
the peak originating from K̄N QFS is more reduced and
the structure due to the �(1405) becomes more pronounced.
However, at the same time, the overall magnitude of the
cross section is strongly reduced, which makes corresponding
experiments much more challenging.

V. SUMMARY

In this paper, we reported on a calculation of the reaction
K−d → π�N within a Faddeev-type approach. The work
is motivated by corresponding experiments that are presently
performed at J-PARC. Accordingly, spectra for various charge
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channels of the π� final state were presented for the specific
kinematics of the E31 experiment [27], namely for the K−
beam momentum of pK = 1 GeV/c and the neutron angle of
θn = 0◦. A comparison with preliminary data that have become
available recently [25,26] was performed.

The employed Faddeev-type approach requires as main
input amplitudes for the two-body subsystems K̄N → K̄N
and K̄N → π�. For the latter, we utilized results generated
from so-called chiral unitary models taken from the literature.
Specifically, we used the potentials by Cieplý and Smejkal
(TW1) [35] and Ohnishi et al. (V E−dep.) [30], both of which
are constrained by the latest measurement of kaonic hydrogen
[8], and a more historical potential that is due to Oset et al. [10].
On the other hand, the K̄N → K̄N amplitude was taken from
a recent partial-wave analysis [44] because of the following
reason: While in the calculation of the quantities measured in
the E31 experiment the K̄N → π� amplitude is sampled at
energies around the K̄N threshold, the K̄N → K̄N amplitude
is probed in an entirely different kinematical regime. It is
required for c.m. energies corresponding to the initial mo-
mentum of pK = 1 GeV/c, which means around 1800 MeV.
The aforementioned chiral potentials do not provide a realistic
description of K̄N scattering at such high energies. Moreover,
in that energy region higher partial waves yield an essential
contribution, not only for K̄N elastic scattering but also in
the reaction K−d → π�N that is investigated here. The
latter aspect has become clear after the pioneering work of
Kamano and Lee [34], and it has been confirmed in the present
study. Chiral potentials are typically limited to s waves. Thus,
calculations that employ such models for the K̄N → π� as
well as the K̄N → K̄N amplitudes—like ours [31] and several
others in the past—allow only very limited access to the physics
that governs the E31 experiment.

The predictions of our calculations turned out to agree
quite well with the preliminary data on a qualitative level,
i.e., as far as the magnitude and the line shape in general is
concerned. Especially, the spectra for K−d → π−�+n and
K−d → π−�0p are fairly close to the data reported so far.
However, on a more quantitative level, there are noticeable
differences. In particular, the situation with regard to the
structure of the �(1405)—the prime motivation behind the
E31 experiment—is conflicting. Indeed, all three potentials
produce a structure in the relevant π� invariant-mass region;
however, it is much too pronounced as compared to what is
indicated presently by the measurement. Actually, in case of
π+�−n even the line shape is quite different.

Given the preliminary status of the data, it is obvious that
the present study can only have an exploratory character and
that solid conclusions, specifically with regard to the structure
of the �(1405) resonance, have to be postponed. Nonetheless,
it has become clear that the general conditions are similar to
what has been already found in studies of other reactions with
the aim of scrutinizing the structure of the �(1405) [48–50],
namely that the line shape around the K̄N threshold is a
result of (a) a delicate interplay between the isospin I = 0 and
I = 1 K̄N → π� amplitudes, and (b) the energy dependence
of the subthreshold I = 0 K̄N amplitude or, equivalently, the
pole structure of the �(1405). Disentangling these two aspects
remains a challenge. In any case, the observed differences

between the employed potentials are promising for the prospect
of getting further constraints on the K̄N interaction in the
�(1405) resonance region and, specifically, on the K̄N → π�
transition amplitude. Of course, whether final conclusions on
the �(1405) will be possible depends not least on the accuracy
of the data that is eventually achieved in the E31 experiment.
The most promising channel would be K−d → π0�0n, where
the emerging π0�0 system is in a pure isospin I = 0 state.
However, with only neutral particles in the final state it is obvi-
ously also by far the most ambitious one for an experiment [26].
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APPENDIX A: PERMUTATION OPERATOR

We use the Balian-Brézin [40,51] approach to calculate the
permutation matrix element in Eq. (21). Since the details of
the derivation for the nonrelativistic case are given in Ref. [39],
we concentrate on an extension to the relativistic case and only
show its final expression. In Sec. II B, 〈k′q α′|P23| k′′q ′′α′′〉 ap-
pears, but a cyclic permutation P23P13 often used is considered
because 〈k′q α′| P23 is easily obtained from 〈k′q α′| P23P13 by
a permutation inside the two-body sector.

First, we introduce the momentum state of the noninter-
acting particles 1 and 2 in the two-body c.m. frame which is
associated with individual momenta via

|�k′′; �0〉 ≡ |�k′′〉 |−�k′′〉.
On the left-hand side, the relative momentum �k′′ and the total
momentum zero are indicated. This is boosted to the three-
body c.m. frame and expressed together with the third particle
(numbered 3) state |�q ′′〉 as

|�k′′; −�q ′′〉 |�q ′′〉 ,

where the Wigner rotations for spins are neglected. The per-
mutation matrix element between these states can be evaluated
by using Eq. (19) as

〈�k′; −�q | 〈 �q | P23P13 |�k′′; −�q ′′〉 |�q ′′〉
= δ(�k′ − ρ �q − �q ′′) δ(�k′′ + �q + ρ ′′ �q ′′) δ(�q + �q ′′ + �q1)

× N − 1
2 N ′′ − 1

2 , (A1)

where

N =
∣∣∣∣ ∂( �q ′′, �q1)

∂(−�q, �k′)

∣∣∣∣ = W31

ω31

ω3(q ′′) ω1(q1)

u3(k′) u1(k′)

is the Jacobian [52] for the Lorentz transformation from
(�q ′′,�q1) to (−�q,�k′). Similarlily,

N ′′ =
∣∣∣∣ ∂(�q1,�q)

∂(−�q ′′,�k′′)

∣∣∣∣ = W12

ω12

ω1(q1) ω2(q)

u1(k′′) u2(k′′)
,

where ωi(q) =
√

q2 + m2
i , ui(k′) =

√
k′2 + m2

i , W31 =
u3(k′) + u1(k′), W12 = u1(k′′) + u2(k′′), and ωij = ωi + ωj

for i,j = 1,2,3.
Equation (A1) is of similar form as the one defined with

Jacobi momenta in the nonrelativistic case, except for the

055209-11



K. MIYAGAWA, J. HAIDENBAUER, AND H. KAMADA PHYSICAL REVIEW C 97, 055209 (2018)

Jacobians, but ρ and ρ ′′ are no longer constants. Those are
expressed as

ρ = 1

W31

{
−�k′ · �q

ω31 + W31
+ u3(k′)

}
(A2)

and

ρ ′′ = 1

W12

{ �q · �q ′′

ω12 + W12
+ ω2(q)

}
. (A3)

We do not want to go into further details in this paper, but
we mention that the Jacobians N , N ′′ and ρ, ρ ′′ are expressed
by only three variables k′, q, and x, where x is defined as
x ≡ k̂′ · q̂.

On the basis of the above results, the permuta-
tion matrix element between partial-wave projected basis
states 〈k′q α|P23P13| k′′q ′′α′〉 can be evaluated in line with
Appendix A in [39]. The resulting form is

〈k′q α | P23P13| k′′q ′′α′〉 =
∫ 1

−1
dx

δ(q ′′ − χ )

q ′′2
δ(k′′ − π )

k′′2 R̄αα′ (k′q x), (A4)

where χ and π are given in Eqs. (22), (23), and

R̄αα′ (k′q x) = N − 1
2 N ′′ − 1

2

√
ĵ ĵs ĵ ′ ĵ ′

s

∑
LS

Ŝ

⎧⎨
⎩

l s j
λ s2 js

L S J

⎫⎬
⎭

⎧⎨
⎩

l′ s ′ j ′
λ′ s3 j ′

s

L S J

⎫⎬
⎭(−)s2+2s3+s ′√

ŝ ŝ ′
{
s3 0 s
s2 S s ′

}

×8π2
∑

ml ml′ mλ′

(l λ L,ml 0 ml) (l′ λ′ L,ml′ mλ′ ml)(−)mlYl −ml
(k̂′)Yl′ ml′ (k̂

′′)Yλ′ mλ′ (q̂
′′)

√
2l + 1

4π
. (A5)

We use the notation ĵ ≡ 2j + 1 and assume that �q is along the
z axis and �k′ lies in the x-z plane. The two vectors �k′′ and �q ′′
are defined as

�q ′′ = �k′ − ρ �q,

�k′′ = −ρ ′′ �k′ − (1 − ρ ′′ρ) �q.

Finally, Rαα′ in Eq. (21) is related to R̄αα′ by

Rαα′ (k′q x) = (−)l R̄αα′ (k′q x) ,

where the phase is easily obtained by applying P13 on
〈k′q α| P23 to the left as mentioned above.

APPENDIX B: ANALYTICAL INTEGRATION OVER x
AND k′′ AND THE DOMAIN FOR THE k′ AND q ′′

INTEGRATIONS

Here we describe how the x and k′′ integrations are per-
formed analytically in Eq. (20) and how the domain for the k′
and q ′′ integrations is defined in Eq. (24). The major advantage
of choosing x and k′′ variables for analytic integrations is
that it enables us to avoid moving singularities, which are
well known to be difficult to treat in three-body calculations.
This prescription was presented in Sec. 2.2 of Ref. [39]
for the nonrelativistic case which is somewhat simpler. We
explain how to extend it to the relativistic case and show
only the formulas without going into details with regard to
the numerical calculations.

In order to rewrite δ(q ′′ − χ ) in Eq. (21) in the form where
x is explicitly shown, first we deform ρ given in Eq. (A2) as
follows:

ρ = σ (1 − δx), (B1)

where

σ = u3(k′)
W31

, δ = k′q
u3(k′)(ω31 + W31)

.

Notice that σ and δ are functions of k′ and q. Then δ(q ′′ − χ )
is rewritten as

δ(q ′′ − χ ) = q ′′

k′ρ qfr

δ(x − x0) �(1 − |x0|) , (B2)

where

fr =
∣∣∣∣1 + σq

k′ δ − δ x0

1 − δ x0

∣∣∣∣
and x0 is a solution of

q ′′2 = k′2 + ρ2q2 − 2k′ρ qx (B3)

[see Eq. (22)]. Since ρ is a linear function of x, Eq. (B3)
has actually two solutions, but one of them turns out to
be physically meaningless. We omit the lengthy expres-
sion of x0 here, but mention that it is a function of k′, q
and q ′′.

Using the two δ functions, δ(x − x0) and δ(k′′ − π ) we can
perform the x and k′′ integration analytically in Eq. (20). Note
that the � function in Eq. (B2) restricts and defines the domain
for the double integrations over k′ and q ′′. In the nonrelativistic
case, ρ is a constant [ρ = m3/(m3 + m1)] and the domain is
easily deduced from Eq. (B3) and |x0| � 1. It becomes an open
rectangular region in the k′-q ′′ plane restricted by the three
straight lines, q ′′ = k′ − ρ q and q ′′ = ±k′ + ρ q (see Fig. 1
in Ref. [39]). In the relativistic case, ρ [=σ (1 − δx0)] depends
on k′, q, and x0, namely k′, q, and q ′′, and the boundaries of
the “rectangle” are no longer straight lines but curves. Those
are given by

q ′′ = k′ + ρ− q,

q ′′ = k′ − ρ+ q,

q ′′ = −k′ + ρ+ q.

where ρ− = σ (1 + δ) and ρ+ = σ (1 − δ). Thus we arrive at
the expressions in Eq. (24).
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