
PHYSICAL REVIEW C 97, 055208 (2018)

Interacting hadron resonance gas model in the K -matrix formalism
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An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic
virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and
mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The
virial coefficients are related to the phase shifts which are calculated using K-matrix formalism in the present
work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density
of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the
same number of hadrons, shows that the results of the above formalism are larger. A good agreement between
equation of state calculated inK-matrix formalism and lattice QCD simulations is observed. Specifically, the lattice
QCD calculated interaction measure is well described in our formalism. We have also calculated second-order
fluctuations and correlations of conserved charges in K-matrix formalism. We observe a good agreement of
second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.
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I. INTRODUCTION

Relativistic heavy-ion collisions have contributed im-
mensely to our understanding of strongly interacting matter
at finite temperature (T ) and baryon chemical potential (μB).
Lattice quantum chromodynamics (LQCD) [1–8] calculation
provides a first-principles approach to study strongly interact-
ing matter at zero baryon chemical potential (μB) and finite
temperature (T ), which indicates a smooth crossover transition
[1] from hadronic to a quark-gluon plasma (QGP) phase [8]. On
the other hand, at high baryon chemical potential, the nuclear
matter is expected to have a first-order phase transition [9]
which ends at a critical point. Several experimental programs
have been devoted to study strongly interacting matter in a
wide range of temperature and baryon chemical potential.
At present, the properties of matter at high temperature and
small baryon chemical potential are being investigated using
ultrarelativistic heavy-ion collisions at the Large Hadron Col-
lider (LHC), Conseil Européen pour la Recherche Nucléaire
(CERN), and the Relativistic Heavy Ion Collider (RHIC),
Brookhaven National Laboratory (BNL). The beam energy
scan (BES) program of RHIC [10] is currently investigating the
matter at large baryon chemical potential and the location of the
critical point [11]. The HADES experiment at Gesellschaft für
Schwerionenforschung mbH (GSI), Darmstadt, is also inves-
tigating a medium with very large baryon chemical potential
[12]. In the future, the compressed baryonic matter (CBM)
experiment [13] at the Facility for Antiproton and Ion Research
(FAIR) at GSI and the Nuclotron-Based Ion Collider Facility
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(NICA) [14] at Joint Institute for Nuclear Research, Dubna,
will study nuclear matter at large baryon chemical potential.

Hadron resonance gas [15–70] is a popular model to study
the QCD matter formed in heavy-ion collisions at finite
temperature and chemical potential. Varieties of HRG models
exist in the literature, some of which consider interaction
between hadrons and some of which do not. The ideal hadron
resonance gas (HRG) model is successful in reproducing the
zero chemical potential LQCD data of bulk properties of the
QCD matter at moderate temperatures T ≈ 150 MeV [2,3,5–
7]. This model is also successful in describing the hadron
yields, at chemical freezeout, created in central heavy-ion
collisions from Schwerionensynchrotron up to RHIC energies
[18,19,22,28]. The ideal HRG model assumes that the mi-
croscopic thermal system consists of noninteracting pointlike
hadrons and resonances, and hence the width of the resonances
are ignored. There are several approaches to include interaction
in the HRG model. One such model is the excluded volume
HRG (EVHRG) model where van der Waals–type repulsive
interaction [15–17,20,21,30–35,44–48,50,68] is introduced by
considering the geometrical sizes of the hadrons. However,
the long-distance repulsive interactions are ignored in this
model. Another major issue of the model is fixing the radii
of various hadrons. In Refs. [31,35], it was shown that the
LQCD data of different thermodynamic quantities can be
described in the EVHRG model with the fixed radius parameter
between 0.2 and 0.3 fm. The mass-dependent hadronic radius
is also considered in the EVHRG model to study the hadronic
multiplicities at LHC energy and a reasonable agreement
between model and experimental data is found [68]. Repulsive
interaction can also be introduced via repulsive mean field
approach [71,72]. The van der Waals (VDW)–type interaction
with both attractive and repulsive parts has been introduced
recently in the HRG model [55–57,60,61,69]. Such a model
introduces more parameters and fixing them using existing
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information has its own drawbacks. The two van der Waals
parameters can be fixed either by reproducing the properties
of the nuclear matter at zero temperature [56] or by fitting the
LQCD data at zero chemical potential [69]. In addition to that,
the VDWHRG model does not even include the interactions of
mesons since the number densities diverge when the chemical
potential becomes comparable to the meson mass [55]. Com-
pared to the ideal HRG model, both EVHRG and VDWHRG
describe better the lattice QCD data in the crossover region.
As discussed above, in lieu of introducing interactions, both
the interacting HRG models bring in additional parameters
compared to the ideal HRG model. The assumptions involved
in fixing the additional parameters in the interacting HRG
models are debatable.

Another approach to include interaction in a system con-
sisting of hadronic gas is the S-matrix approach [73]. This
approach expands the partition function using relativistic
virial expansion. The virial coefficients are related to phase
shifts, which needs to calculated either theoretically [74,75]
or obtained from experiments. The type of the interaction
depends on the sign of the derivative of phase shift. A positive
sign corresponds to the attractive interaction and a negative
sign corresponds to the repulsive interaction. For an example,
the authors of Ref. [76] had found that π -π channel has the
attractive δ0

0 , δ1
1 phase shifts (phase shift is defined as δI

l

where l is the orbital angular momentum and I is the isospin
of the channel) and also the repulsive δ2

0 phase shift, while
Refs. [76–79] used experimental phase shifts in their study.
A theoretical way of calculating phase shifts is to use the
K-matrix formalism [80,81]. The resonances, contributing to
the interaction, appear as a sum of poles in the K matrix.
This approach preserves the unitarity of the S matrix and
neatly handles multiple resonances, unlike the popular Breit-
Wigner parametrization of the resonance spectral function.
We would like to mention here that Refs. [18,28,82–84]
used Breit-Wigner parametrization with an ad hoc profile
function [84]. All these issues motivate us to use the K-matrix
formalism consistently to calculate phase shifts in the virial
expansion approach. TheK-matrix formalism has been applied
previously to calculate shear viscosity and interaction measure
for interacting hadronic gas in Ref. [80]. However, our result
on interacting measure agrees better with the lattice QCD
result on including additional resonances. Further, we calculate
susceptibilities of the conserved charges within the K-matrix
formalism.

The paper is organized as follows. In Secs. II and III, we dis-
cuss K-martix formalism and the Breit-Wigner parametriza-
tion of the resonance spectral function respectively. A com-
parison between the above approaches is given in Sec. IV.
Section V discusses relativistic virial expansion. We discuss
numerical results and comparison of our calculations with
ideal HRG and LQCD in Sec VI. We conclude our findings
in Sec. VII.

II. THE K -MATRIX FORMALISM

The K-matrix formalism elegantly expresses the unitarity
of the S matrix for the processes of type ab → cd, where a,
b and c, d are hadrons. We provide only a brief summary of

the formalism in this section; interested readers are referred to
Refs. [80,85,86].

In general, the amplitude that an initial state |i〉 to be
scattered to the final state |f 〉 is

Sf i = 〈f |S|i〉, (1)

where S is called the scattering operator. Splitting the probabil-
ity of noninteraction I and interaction by defining the transition
operator T , we have

S = I + 2iT , (2)

where I is the identity operator. Conservation of probability
implies that scattering matrix S should be unitary, i.e.,

SS† = S†S = I. (3)

From the unitarity of S, one gets

T − T † = 2iT †T = 2iT T †. (4)

One may further rearrange this expression into

(T −1 + iI )
† = T −1 + iI. (5)

Let us introduce the Hermitian operator K via

K−1 = T −1 + iI. (6)

Since the operator K is Hermitian, the matrix is symmetric and
the the eigenvalues are real. One can rewrite the components
of T matrix in terms of K matrix as

Re T = (I + K2)
−1

K = K(I + K2)
−1

,

Im T = (I + K2)
−1

K2 = K2(I + K2)
−1

. (7)

Resonances appear as sum of poles in the K matrix as

Kab→cd =
∑
R

gR→ab(
√

s)gR→cd (
√

s)

m2
R − s

, (8)

where the sum on R runs over the number of resonances with
mass mR , and the residue functions are given by

gR→ab(
√

s) = mR�R→ab(
√

s), (9)

where
√

s is the center-of-mass energy. The energy-dependent
partial decay widths [85] are given by

�R→ab(
√

s) = �0
R→ab(

√
s)

mR√
s

qab

qab0
[Bl(qab,qab0)]

2
. (10)

The momentum qab is given as

qab(
√

s) = 1

2
√

s

√
[s − (ma + mb)2][s − (ma − mb)2],

(11)

where ma and mb are the masses of decaying hadrons a and b.
In Eq. (10), qab0 = qab(mR) is the resonance momentum at√

s = mR and �0
R is the width of the pole at half maximum.

The Bl(qab,qab0) are the Blatt-Weisskopf barrier factors which
can be expressed in terms of momentum qab and resonance
momentum qab0 for the orbital angular momentum l as

Bl
R→ab(qab,qab0) = Fl(qab)

Fl(qab0)
. (12)
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The barrier factors Fl(q) can be obtained using the following
definition:

Fl(z) =
∣∣h(1)

l (1)
∣∣∣∣zh(1)

l (z)
∣∣ , (13)

where h
(1)
l (z) are spherical Hankel functions of the first

kind and z = (q/qR)2, with qR = 0.1973 GeV corresponding
to 1 fm.

The scattering amplitude f (θ ) can be expressed as

f (
√

s,θ ) = 1

qab

∑
l

(2l + 1)T lPl(cos θ ), (14)

in terms of the interaction matrix T l(s). Here Pl(cos θ ) are the
Legendre polynomials for the angular momentum l and θ is
the center-of-mass scattering angle. The cross section for the
process ab → cd can be given in terms of terms of scattering
amplitude

σ (
√

s,θ ) = |f (
√

s,θ )|2. (15)

If we use partial decomposition of the T matrix,

T l = eiδl sin δl, (16)

one can relate the phase shift in a single resonance of mass m1

to the K matrix using the relations in Eq. (7),

K = m1�1(
√

s)

m2
1 − s

= tan δl. (17)

A. Three-body decay

Let the resonance R with mass mR decay into three other
particles a, b, and c of masses ma , mb, and mc. The residue
function is given by

gR→abc(
√

s) = 1

2m2
π

∫
dφ3|�(

√
s)|2, (18)

where φ3 is the three-body Lorentz-invariant phase space and
we have scaled it by pion mass (mπ ) to make it dimensionless.
The three-body phase space can be expressed as

φ3 =
∫

d3p1

(2π )3

1

2E1

d3p2

(2π )3

1

2E2

× d3p3

(2π )3

1

2E3
(2π )4δ4

(
p −

3∑
i=1

pi

)

= R3(
√

s)

(2π )5 , (19)

where Ei’s and pi’s are energies and the momenta of the
decaying particles in the resonance rest frame. The function
R3(

√
s) is expressed as

R3(
√

s) = π2

4s

∫ smax
2

smin
2

ds2

s2
λ

1
2
(
s2,s,m

2
a

)
λ

1
2
(
s2,m

2
b,m

2
c

)
, (20)

where smin
2 = (mb + mc)2 and smax

2 = (
√

s − ma)2 and the λ’s
are the Kallen functions [87,88]. They can be defined as

λ(x,y,z) = (x − y − z)2 − 4yz. (21)

If we assume that the width �(
√

s) is a slowly varying function
of energy, it can be pulled out of the integration sign and then
finally we have

gR→abc(
√

s) = 1

(2π )5

R3(
√

s)|�(
√

s)|2
2m2

π

. (22)

III. THE BREIT-WIGNER PARAMETRIZATION

The interaction matrix or the T matrix that was defined
in Eq. (2) for the relativistic single-particle resonance can be
parametrized in the Breit-Wigner form as [89]

T = mR�R→ab(
√

s)(
m2

R − s
) − imR�tot

R (
√

s)
, (23)

where �tot
R = ∑

i,j �R→ij is the total width and �R→ij is the
partial width for a given channel R → ij of the resonance R
respectively.

The cross section for an elastic scattering reaction a + b →
R → a + b is then given as

σ (
√

s,θ ) = gI,l

q2
ab

m2
R�2

R→ab(
m2

R − s
)2 + m2

R�tot
R

2
Pl(cos θ ), (24)

where gI,l are the symmetry factors containing the isospin
and spin multiplicities of the corresponding resonance R.
The center-of-mass momentum qab is the same as given in
Eq. (11), Pl(cos θ ) are the Legendre polynomials for the
angular momentum l, and θ is the center-of-mass scattering
angle. The partial decay widths �R→ab(

√
s) are same as given

in Eq. (10),

IV. COMPARISONS BETWEEN K -MATRIX AND
BREIT-WIGNER APPROACHES

Consider a ππ scattering at center-of-mass energy
√

s,
which has two resonance with mass m1 and m2 coupling to
a certain channel l. From Eq. (8), we have

K = m1�1(
√

s)

m2
1 − s

+ m2�2(
√

s)

m2
2 − s

; (25)

i.e., the resonances are summed in the K matrix. We can use
Eq. (6) to get the T matrix as

T = m1�1(
√

s)(
m2

1 − s
) − im1�1(

√
s) − i

m2
1−s

m2
2−s

m2�2(
√

s)

+ m2�2(
√

s)(
m2

2 − s
) − im2�2(

√
s) − i

m2
2−s

m2
1−s

m1�1(
√

s)
. (26)

If m1 and m2 are far apart relative to their widths, then K
is dominated either by m1 or m2 depending on whether

√
s is

near m1 or m2. The transition amplitude is then given using
Eq. (26) approximately as the sum

T ≈ m1�1(
√

s)(
m2

1 − s
) − im1�1(

√
s)

+ m2�2(
√

s)(
m2

2 − s
) − im2�2(

√
s)

,

(27)
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FIG. 1. The variation of total cross section as a function of center-of-mass energy. Left panel shows total cross section of separated
resonances f0(980) and f0(1500); right panel shows total cross section of overlapping resonances f0(1370) and f0(1500). The calculations
using the K-matrix formalism are shown using a solid blue line (KM). Calculations using Breit-Wigner parametrization are shown using a
dashed black line (BW).

which shows that the result is the same as adding two
Breit-Wigner forms Eq. (23) with masses m1, m2 and widths
�1, �2. The left panel of Fig. 1 compares the results of total
cross section in the K matrix and Breit-Wigner formalism
for two separated resonances f0(980) and f0(1500) of
mass m1 = 990 MeV, �1 = 55 MeV and m2 = 1505 MeV,
�2 = 109 MeV. The results are almost identical except that
the peak in Breit-Wigner formalism is slightly larger than that
in the K-matrix formalism.

In the limit in which the two states have the same masses,
i.e., mc = m1 = m2, then the transition amplitude becomes

T = mc[�1(
√

s) + �2(
√

s)](
m2

c − s
) − imc[�1(

√
s) + �2(

√
s)]

, (28)

which shows that the result is a single Breit-Wigner form but
its total width is now the sum of the two individual widths.
The right panel of Fig. 1 compares the results of the total
cross section in the K matrix and Breit-Wigner formalism
for two overlapping resonances f0(1370) and f0(1500) of
mass m1 = 1370 MeV, �1 = 350 MeV and m2 = 1505 MeV,
�2 = 109 MeV. The results shows that the Breit-Wigner
parametrization overestimates the cross section both at the peak
and in the middle of the overlapping resonances. In such cases
of two nearby resonances the Breit-Wigner form, Eq. (23) is
not strictly valid and the correct equation Eq. (25) must be used.

V. RELATIVISTIC VIRIAL EXPANSION

The most natural way to incorporate interaction among a
gas of hadrons is to use relativistic virial expansion introduced
by Dashen et al. [73]. The formalism allows one to compute
the thermodynamic variables of a system in a grand canonical
ensemble, once the S matrix is known. In general, the logarithm
of the partition function can be written as

ln Z = ln Z0 +
∑
i1,i2

z
i1
1 z

i2
2 b(i1,i2), (29)

where z1 and z2 are fugacities of two species and z = eβμ.
The chemical potential of j th particle is defined as

μj = BjμB + SjμS + QjμQ, where Bj , Sj , and Qj are
baryon number, strangeness, and electric charge and μ’s are
the respective chemical potentials. The virial coefficients
b(i1,i2) are written as

b(i1,i2) = V

4πi

∫
d3p

(2π )3

∫
dε exp[−β(p2 + ε2)

1/2
]

×
[
A

{
S−1 ∂S

∂ε
− ∂S−1

∂ε
S

}]
c

. (30)

In the above, the inverse temperature is denoted by β while
V , p, and ε stand for the volume, total center-of-mass
momentum, and energy, respectively. The labels i1 and i2

refer to the channel of the S matrix which has an initial
state containing i1 + i2 particles. The symbol A denotes the
symmetrization (antisymmetrization) operator for a system of
bosons (fermions) while the subscript c refers to trace over all
linked diagrams. The lowest virial coefficient b2 = b(i1,i2)/V
as V → ∞ corresponds to the case where i1 = i2 = 1 and in
which the present study is mostly interested.

The S matrix can be expressed in terms of phase shifts δI
l

as [90]

S(ε) =
∑
l.I

(2l + 1)(2I + 1) exp
(
2iδI

l

)
, (31)

where l and I denote angular momentum and isospin,
respectively. On integrating Eq. (30) over the total momentum,
we have

b2 = 1

2π3β

∫ ∞

M

dεε2K2(βε)
∑
l,I

′
gI,l

∂δI
l (ε)

∂ε
. (32)

The factor gI,l = (2I + 1)(2l + 1) is the degeneracy factor, M
is the invariant mass of the interacting pair at threshold, and
the factor K2(βε) is the modified Bessel function of the second
kind. The prime over the summation sign denotes that for given
l the sum over I is restricted to values consistent with statistics.

Equation (32) shows that the contribution arising from
interaction to thermodynamic variable are in terms of phase
shifts weighted by thermal factors. This factors give positive
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(attractive) or negative (repulsive) contribution depending on
whether the derivative of phase shifts are positive or negative.
The b2 or alternatively phase shifts are obtained from experi-
ments or from theoretical calculations. In the present work, we
determine the phase shifts from two different parametrization
of the T matrix, (i) K-matrix parametrization and (ii) Breit-
Wigner parametrization, which were discussed in Secs. II
and III. Since in this work we are interested only in the part
corresponding to the second virial coefficient b2(ε) in the
partition function Eq. (29), by inserting Eq. (32) into Eq. (29)
one can immediately compute all the thermodynamic variables.
We adopt the following relations from Ref. [76]:

Pint = 1

β

∂ ln Zint

∂V
= z1z2

2π3β2

∫ ∞

M

dεε2K2(βε)
∑
I,l

′
gI,l

∂δI
l (ε)

∂ε
,

(33)

εint = − 1

V

(
∂ ln Zint

∂β

)
z

= z1z2

8π3β

∫ ∞

M

dεε3[K1(βε) + 3K3(βε)]
∑
I,l

′
gI,l

∂δI
l (ε)

∂ε
,

(34)

sint = −β2

V

[
∂(T ln Zint)

∂β

]
V,μ

= z1z2

2π3

∫ ∞

M

dεε3K3(βε)
∑
I,l

′
gI,l

∂δI
l (ε)

∂ε

− (μ1 + μ2)β2 Pint , (35)

nint = T

V

(
∂ ln Zint

∂μ

)
V,T

(36)

= z1z2

π3β

∫ ∞

M

dεε2K2(βε)
∑
I,l

′
gI,l

∂δI
l (ε)

∂ε
, (37)

and the ideal gas counterpart can be obtained from the first
term of Eq. (29) as follows:

Pid =
∑

h

gh

2π2
m2

hT
2

∞∑
j=1

(±1)j−1(zj/j 2)K2(jβmh), (38)

εid =
∑

h

gh

16π2
m4

h

∞∑
j=1

(±1)j−1zj [K4(jβmh) − K0(jβmh)],

(39)
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FIG. 2. Temperature dependence of various thermodynamic quantities at zero chemical potential. The calculations using K-matrix formalism
are shown using a solid blue line (KM). Calculations using the Breit-Wigner parametrization are shown using a dashed black line (BW). IDHRG
1 corresponds to results of ideal HRG, with the same number of particles as used in KM/BW parametrization, whereas IDHRG (PDG 2016)
includes all the hadrons and resonances listed in PDG 2016 [89]. Results are compared with lattice QCD data of Refs. [4] (WB) and [6]
(HotQCD).
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nid =
∑

h

gh

2π2
m2

hT

∞∑
j=1

(±1)j−1(zj/j )K2(jβmh), (40)

sid = β(εid + Pid −μ nid), (41)

where h denotes the stable hadron index. The total pressure of
the system is the sum of ideal and interacting parts, i.e.,

P = Pid + Pint , (42)

and subsequent relationships hold for other quantities.
The susceptibilities of conserved charges can be calculated

as [7]

χ
xyz
BSQ = ∂x+y+z(P/T 4)

∂(μB/T )x∂(μS/T )y∂(μQ/T )z
, (43)

where x, y, and z are the order of derivatives of the quantities
B, S, and Q.

For a very narrow resonance of mass mR , the phase shift
δI
l changes rapidly through π radians around ε = mR and can

be approximated by a step function δI
l = θ (ε − mR). In such

a limiting case ∂δI
l /∂ε ≈ πδ(ε − mR), and then from Eq. (32)

we have

b2 = gI,l

2π2
m2

RT K2(βmR). (44)

This is similar to a stable hadron in the Maxwell-Boltzmann
statistics.

A few points to be noted here. First, notice that the K-matrix
and Breit-Wigner forms can only be able to take resonance in-
teraction based on known masses and widths of the resonances
and do not carry any information about repulsive channels
which are known to exist from perturbative calculation [91]
and experimental phase shifts [76]. Recently, some works [78]
started looking at these repulsive channels but an adequate
treatment of such channels is still missing. Second, apart from
the elastic interaction channel, many inelastic channels can
exist for a gas of interacting hadrons, which the present study
does not encompass [79]. Third, we have checked that the
effects of three-body interaction in the equation of state is less
than 5% in the range of temperature considered in this work.

Therefore, we have not included the effect of the three-body
interaction in Sec. VI.

VI. RESULTS

We have considered all the stable hadrons and resonances
which have two-body decay channels listed in PDG (2016)
[89]. In Fig. 2, we have shown temperature variation of
different thermodynamic quantities such as scaled pressure,
energy density, entropy density, and interaction measure (ε −
3P )/T 4. Results of the K-matrix parametrization are com-
pared with the Breit-Wigner parametrization and two variants
of HRG models are shown. The IDHRG 1 considers the same
number of resonances (i.e., those decaying into two bodies) as
the K-matrix–Breit-Wigner parametrization, and the IDHRG
(PDG 2016) considers all the resonances listed in PDG (2016).
Later, the results are compared with continuum extrapolated
LQCD data of Wuppertal-Budapest (WB) [4] and the Hot QCD
Collaboration [6]. We notice that all thermodynamic quantities
calculated using the K-matrix–Breit-Wigner parametrization
are larger than the results of IDHRG 1. This is because
many resonances have finite width; for example, in the π -π
channel resonances like f0(500), ρ(770) or resonances like
N (1440), N (1520) in π -N channel contribute substantially
to the second virial coefficient. Differences in K-matrix and
Breit-Wigner parametrizations persist because of the presence
of many overlapping resonances, as mentioned in Sec. IV. In
particular, we found that the interaction measure, which is a
measure of interactions in a medium, is well described in the
K-matrix formalism. Thermodynamic quantities in IDHRG
(PDG 2016) are larger compared to previous IDHRG 1 because
of increased number of degeneracies. It is important to mention
that the all our results are meaningful below the hadronic to
quark gluon crossover transition temperature Tc as predicted
by LQCD [6], which is around 145–163 MeV. It must be
noted that Ref. [80] also used the K-matrix formalism to
calculate interaction measure in an interacting gas of π -K-N -η
including the dominant resonances produced in the two-body
elastic interaction. However, their result underestimates the
lattice results close to Tc, which has been improved in the
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FIG. 3. Temperature dependence of second-order diagonal susceptibilities at zero chemical potential. The calculations using the K-matrix
formalism are shown using a solid blue line (KM). IDHRG 1 corresponds to results of ideal HRG, with the same number of particles as used
in the KM/BW parametrization, whereas IDHRG (PDG 2016) includes all the hadrons and resonances listed in PDG 2016 [89]. Results are
compared with lattice QCD data of Refs. [2] (WB) and [3] (Hot QCD).
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KM/BW parametrization, whereas IDHRG (PDG 2016) includes all the hadrons and resonances listed in PDG 2016 [89]. Results are compared
with lattice QCD data of Refs. [3] (Hot QCD) and [7] (lattice).

present work by the inclusion of additional hadrons �-�-�
and the corresponding resonances. The above results show
that our approach of using the K-matrix formalism is in good
agreement with LQCD.

The temperature dependencies of diagonal susceptibilities
χ2

B , χ2
S , and χ2

Q are shown in Fig. 3. We compare our results
with continuum extrapolated LQCD data of Refs. [2] (WB)
and [3] (Hot QCD). Results of all diagonal susceptibilities in
the K-matrix formalism are in better agreement with LQCD
data, especially χ2

S , up to crossover temperature than IDHRG
1. However, it should be noted that χ2

B and χ2
Q in IDHRG

(PDG 2016) also agree with LQCD data but this is due to the
increase in the number of degeneracies, as mentioned earlier.
Results of Breit-Wigner parametrization are not shown in the
comparison because of its inherent inadequacy in treating in
multiple resonances, which leads to violation of unitarity.

The temperature dependencies of off-diagonal susceptibil-
ities χ11

BS , χ11
BQ, and χ11

QS are shown in Fig. 4. We compare
our results with the continuum extrapolated LQCD data of
Refs. [3] (Hot QCD) and [7] (lattice). We have found that
K-matrix formalism agrees with lattice data for χ11

BS but not
for χ11

BQ and χ11
QS . We think this might happen because [76]

many channels, mostly in the N -N channels, have dominant
repulsive channels which could negate the influence of positive
phase shifts, thereby contributing to the correlations.

VII. CONCLUSION

To summarize, we have included the interaction properly
in the hadron resonance gas model using the quantum virial
expansion approach. The thermodynamic quantities were cal-

culated by parametrizing the two-body phase shifts using the
K-matrix formalism, which preserves the unitarity of the S
matrix. Good agreement with lattice QCD calculations is found
for the equation of state using the above formalism. Specifi-
cally, we found that the interaction measure [(ε − 3P )/T 4] as
a function of temperature is well described in the K-matrix
formalism and has been improved compared to the previous
studies in Ref. [80] by the inclusion of additional hadrons.
We found that IDHRG 1 (considering those resonances that
decay into two stable hadrons) underestimates the lattice data
for all the thermodynamic variables. However, IDHRG (PDG
2016) matches lattice data because of the increased number
of degeneracies. Additionally we have calculated the diagonal
and off-diagonal susceptibilities of conserved charges in the
K-matrix formalism. The results of susceptibilities calculated
in the K-matrix formalism resembles lattice data quite well,
especially in the strangeness sector below the crossover re-
gion. However, observables χ11

BQ and χ11
QS are not described

satisfactorily in the present work. This could be improved by
incorporating inelastic collisions and repulsive interactions and
it would be interesting to introduce them in a future work.
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