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Universal formula for baryon spectra in heavy-ion collisions and its implications
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In an unconventional presentation of the data on the transverse momentum spectra of baryons produced in
heavy-ion collisions, regularities are found that make possible the discovery of a universal formula valid for
p,�,�, and �. The formula describes the baryon distributions over wide ranges of pT (0.5 � pT � 5 GeV/c)
for 0.06 � √

sNN � 3 TeV, except for very peripheral collisions. Some aspects of their empirical properties are
derived in the recombination model, resulting in a revelation of some features of the light and strange quark
distributions before hadronization. Interpretation of the inverse slopes of their exponential behavior leads to
an implication that cannot accommodate the conventional description of fluid flow. This is mainly a study of
phenomenology without detailed model input.
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I. INTRODUCTION

From the empirical behaviors of the particles produced
in experiments in heavy-ion collisions we learn about the
properties of the hot and dense systems formed by the col-
lisions. Different kinematical regions usually require different
descriptions that are complementary, the most notable exam-
ples of which are the hydrodynamical expansion at low pT

[1–5] and the fragmentation of jets at high pT [6–8]. When
certain features of the data cannot be explained by conventional
descriptions, they have at times been referred to as anomalies
[9], such as baryon enhancement at intermediate pT [10,11].
In physics it is often that anomalies provide useful hints of
the existence of some underlying issues that have not been
recognized or sufficiently understood.

The baryon spectra are of particular interest for several
reasons. By baryons we mean the proton and the promi-
nent hyperons: p,�,�,�. Their spectra are not significantly
contaminated by resonance decays at low pT . With three
constituent quarks those baryons have a variety of strangeness
contents and thus may display a range of properties that can
be related merely through strangeness counting. What is most
noteworthy, yet unexpected at the outset, is that there exists
a universality in the phenomenological properties of the four
baryons produced in heavy-ion collisions that can be described
by one general formula for a wide range of pT . Finding the
details of that universal formula and learning from them the
underlying physics are the aims of this investigation.

We emphasize that this is a study in phenomenology.
No deep theory is used to describe the quark-gluon plasma.
The formula used to fit the data are guided by empirical
regularity, not by any basic principle or detailed modeling.
Thus the procedure is totally free for experimentalists to do
more extensive fitting of their data and error determination.
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The initial choice of format in which the data are to be
presented is guided by the recombination model [12,13], but
once a phenomenological function is defined in terms of
measurable quantities, the remaining task is only to show
that the dependencies on pT , collision energy, centrality, and
strangeness content can directly be determined from the data
in a way common to all baryons.

The universal properties of the data convey some basic
information about the formation of baryons that needs to be
elucidated. We make an attempt to interpret what those data
imply in the framework of the recombination model (RM).
Since very simple assumptions will be used, amounting mainly
to momentum conservation in the transition from quarks to
hadrons, no detailed knowledge of RM is necessary to follow
our description of the physics just before hadronization, i.e.,
the properties of the distributions of the strange and nonstrange
quarks that recombine. What we find is that those quark
distributions do not have the properties that can fit into any
scheme that can accommodate the conventional view of an
equilibrated fluid system describable by hydrodynamics. It is
therefore understandable that at some point the baryon spectra
was referred to as an anomaly. Meson spectra are different, and
we give attention to them separately.

II. BARYON SPECTRA

Hadronic spectra measured in heavy-ion experiments are
usually compared to predictions of event generators that have
many parameters to tune, or fitted by analytic formulas in
specific models, such as the blast-wave model [1] that uses sev-
eral parameters for each centrality (as done in Refs. [14,15]).
Since we aim to have a phenomenological description of
the baryon spectra over a wide range of collision energies,
reaching up to 2.76 TeV at LHC, and over a wide range of
transverse momentum pT from 0.5 up to 7 GeV/c, we cannot
subscribe to any dynamical formalism that claims validity only
in restricted ranges of pT . Our first objective is to stay close
to the data and search for a description that is applicable to all
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FIG. 1. Baryon spectra function Bh(pT ) at 2.76 TeV for (a) p,
(b) �, (c) �, (d) �. The data are from [14–16]. The lines are fits by
Eq. (3). The same value of Th is used for all centrality bins.

baryons produced at all energies above 60 GeV, with very few
parameters. If it is possible, then the result may provide some
hint on some aspect of the system that is universal.

We will consider only the pT spectra in the midrapidity
region averaged over all azimuthal angle φ, using dN̄/pT dpT

to denote the inclusive distribution, which is to be identified
with experimentally measured quantity as follows:

dN̄h

pT dpT

= dNh

2πpT dpT dy
, (1)

where the right-hand side (RHS) includes all hadrons of type
h at all φ and |y| < 0.5. For baryons we define

Bh(s,Npart,pT ) = mh
T

p2
T

dN̄h

pT dpT

(s,Npart), (2)

where mh
T = (m2

h + p2
T )1/2, mh being the mass of baryon h.

Npart is the number of participants that corresponds to the
centrality bin specified by the data. The reason for the prefactor
mh

T /p2
T in Eq. (2) will be discussed below. Note that Bh

has dimension (momentum)−3. At this point we need only
regard Bh(s,Npart,pT ) as a function of four variables, the
fourth being the strangeness number ns in the identified baryon
h : p,�,�,� with ns = 0,1,2,3, respectively. It is important
to recognize that Bh(s,Npart,pT ) can be empirically determined
without any theoretical input. Our present task is only to find all
the properties of Bh(s,Npart,pT ) that can directly be uncovered
in the data.

In Fig. 1 we show first the Bh spectra from Pb+Pb collisions
at

√
sNN = 2.76 TeV for h : p,�,�,and � [14–17]. Hereafter,√

sNN will be abbreviated by
√

s. A factor of 1/(2πpT ) has
been applied to the data, whenever needed, to conform to
the definition in Eqs. (1) and (2). Evidently, the data points
fall spectacularly well on straight lines in large portions of
the pT ranges shown. The straight lines in each subfigure of
specific h have a common slope for all centralities. There are
data points that deviate from the exponential fits, but we want
to emphasize in this study the universality of the behavior
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FIG. 2. Baryon spectra function Bh(pT ) at 200 GeV for (a) p, (b)
�, (c) �, (d) �. The data are from [18,19]. The lines are fits by Eq. (3).
The same value of Th is used for all centrality bins.

that is more important than the deviations. For the proton in
Fig. 1(a) there are fragmentation products that populate the
region pT > 5 GeV/c; their physical origin is different from
that of the universal exponential behavior, so we leave them out
from our discussion in the following. Without implying that the
physics of fragmentation is unimportant, we are only limiting
the scope of our attention here to what is universal. Similarly,
in very peripheral collisions at 60–80% centrality bin there are
particles produced at very smallpT that contribute to deviations
also from the straight-line fits. They correspond to Npart < 60,
and we will leave them out from our general characterization
below as well. It is noteworthy that the exponential fits work
better at larger ns and that for � in Fig. 1(d) they are almost
perfect at all centralities.

For lower energies at
√

s = 200 and 62.4 GeV we show
the Bh spectra in Figs. 2 and 3 [18–21], and find the same
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FIG. 3. Baryon spectra function Bh(pT ) at 62.4 GeV for (a) p,
(b) �, (c) �, (d) �. The data are from [20,21]. The lines are fits by
Eq. (3). The same value of Th is used for all centrality bins.
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TABLE I. Values of Th(s) in GeV/c from straight-line fits in
Figs. 1–3.

√
s (TeV) 0.0624 0.2 2.76

p 0.262 0.296 0.39
� 0.284 0.321 0.423
� 0.311 0.351 0.463
� 0.343 0.387 0.51

general behavior. Straight-line fits continue to be very good,
except for the proton at pT > 3 GeV/c, for which we again
ignore the deviations for the sake of focusing on what is
universal. The slopes of the straight lines in each subfigure are
the same, independent of centrality. To describe quantitatively
the exponential dependence on pT for all h at all three energies,
let us use the phenomenological formula

Bh(s,Npart,pT ) = Ah(s,Npart) exp[−pT /Th(s)]. (3)

The conversion from centrality bins shown in Figs. 1–3 to Npart

will be done later when the prefactors Ah(s,Npart) are shown.
The values of Th(s) obtained from the fits in Figs. 1–3 are given
in Table I. Those twelve numbers can be reduced to six when
the following formula in terms of the strangeness content is
used.

Th(s) = 3

(3 − ns)/Tq(s) + ns/Ts(s)
, (4)

where Tq(s) and Ts(s) are adjusted to fit the values of Th(s) in
Table I. The origin of the form in Eq. (4) will be discussed in
the following section, where the notation for Tq,s will become
obvious. At this point we need only regard it as empirical.
Using the values of Tq(s) and Ts(s) given in Table II, Th(s)
can be well fitted by Eq. (4), as shown in Fig. 4. This result
reveals the close relationship that the four baryons have with
one another.
The three curves in Fig. 4 suggest that the

√
s dependence is

universal also. Exhibiting the values of Tq(s) and Ts(s) from
Table II in log-log plot in Fig. 5, we see that they share a
common power-law behavior. Let us then define

Tq(s) = T1f (s), Ts(s) = T2f (s), (5)

f (s) = √
s β,

√
s in TeV, (6)

and we find

T1 = 0.35 GeV/c, T2 = 0.46 GeV/c, β = 0.105. (7)

It is truly amazing that all four baryon spectra can be so well
described by the three parameters in Eq. (7) for such wide
ranges of pT and

√
s.

TABLE II. Parameters Tq (s) and Ts(s) in GeV/c.

√
s (TeV) 0.0624 0.2 2.76

Tq 0.262 0.296 0.39
Ts 0.343 0.387 0.51
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FIG. 4. Th(s) vs number of strange quarks ns in h. The lines are
determined by Eq. (4) and values of Tq (s) and Ts(s) in Table II.

Proceeding now to the dependence on centrality, we can
determine from the heights of the straight lines in Figs. 1–3
the prefactors of the exponentials in Eq. (3), which, when
expressed in terms of Npart [17], turn out to behave simply
as

Ah(s,Npart) = A1
h(s)Nah

part, ah = 1.35, (8)

with a universal scaling exponent ah for all baryons, for
Npart > 60. This is shown in Fig. 6 for the three energies. The
scaling behavior is not valid at very peripheral collisions. We
are interested only in the scaling portion. The proportionality
factor A1

h(s) of the scaling law in Eq. (8) is shown in Fig. 7
in a log-log plot vs

√
s for the four baryons. The three points

for each h type can be well fitted by straight lines, except for
the case h = p, where the line connecting the points (in filled
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FIG. 5. Power-law dependence of Tq (s) and Ts(s) on
√

s, resulting
in Eqs. (5)–(7).
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FIG. 6. Ah vs Npart for three colliding energies. The lines are the
best straight-line fits of the points.

squares) at
√

s = 0.0624 and 2.76 TeV misses the point (in
open square) at

√
s = 0.2 TeV.

The numerical values of A1
h(s) are given in Table III, where

A1
p is slightly less than A1

� at
√

s = 0.2 TeV. We are unable
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FIG. 7. A1
h(s) vs

√
s for the four baryons. The lines are fits of the

solid points by Eq. (9) with values of A0
h and bh in Table III. The open

square point for the proton at 0.2 TeV is not included in the fit. It is a
departure from universality discussed in the text.

to explain this departure from regularity. Figures 2(a) and
2(b) show how the p and � spectra have nearly the same
magnitudes, and Fig. 6(b) shows that the p and � lines nearly
overlap. Figure 7 clearly indicates that the open square for
A1

p(0.2) should be a factor of 2.2 higher to be on the scaling
line for the proton.
The four straight lines in Fig. 7 have the power-law behavior

A1
h(s) = A0

h

√
s −bh ,

√
s in TeV, (9)

where the values of A0
h and bh are given in Table IV. Those

values can be reorganized and presented in a more insightful
way, as we will do in the following section.
It is of interest to remark that we have applied the same
phenomenological study as above to antibaryons and found
that the pT dependences of Bp̄,B�̄,B�̄,B�̄ all exhibit the
same exponential behavior as in Figs. 1–3. Moreover, the
corresponding inverse slopes Th all satisfy the same equations
(4)–(7). The values of A1

h(s) differ from those in Table III
in some cases mostly at 0.0624 TeV, but not much in other
cases. There is a significant decrease in A1

p̄(s) from
√

s =
0.0624−0.2 TeV, just as it is for p in Table III. Thus the
irregularity observed above for p at 0.2 TeV is present also
for p̄. The details about antibaryons will not be included in
this paper.

TABLE III. Values of A1
h(s) in (GeV/c)−3 in Fig. 7.

√
s (TeV) 0.0624 0.2 2.76

p 0.0875 0.0263 0.0255
� 0.0350 0.0286 0.0159
� 0.0025 0.0023 0.0014
�(×10−3) 0.2706 0.2228 0.1592
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TABLE IV. Values of A0
h and bh in Eq. (9).

A0
h bh

p 0.0350 0.315
� 0.0191 0.245
� 0.0016 0.175
� 1.7507×10−4 0.105

III. QUARK RECOMBINATION

The description of baryon spectra in the preceding section
is entirely empirical without any model input. We now use the
recombination model to penetrate one step from the ending
edge of plasma at the point of hadronization to the partons
that recombine. In so doing we hope to reveal some general
properties of the quarks just before the baryons are formed that
can account for the regularities observed in Sec. II.

In the recombination model (RM) [12,13,22,23] the invari-
ant pT distribution of baryons at midrapidity is

p0 dN̄h

dpT

=
∫ (

3∏
i=1

dpi

pi

)
F (p1,p2,p3)Rh(p1,p2,p3,pT ), (10)

where pi is the transverse momentum of quark i, F (p1,p2,p3)
is their invariant distribution at the time of hadronization,
and Rh(p1,p2,p3,pT ) is the recombination function for the
formation of baryon h. The hadron number N̄h is averaged
over all azimuthal angles and over y at y ≈ 0, as defined
in Eq. (1). We note that the overbar on N̄h was omitted
in earlier publications for the sake of brevity. In Eq. (10)
integration over spatial coordinates is implicit, although there
are other formulations of recombination where the spatial
coordinates are considered explicitly [24,25]. By not exposing
the spatial integration in F (p1,p2,p3) we gain in simplicity,
which enables us to learn through analytic operations the
universal properties of the quarks just before confinement.
In essence, we examine mainly the consequences of only
momentum conservation and the strangeness content of the
hadronization.

In general, the parton distribution F (p1,p2,p3) can contain
thermal and shower components, but since only the exponential
behavior in Figs. 1–3 is examined in detail, we limit ourselves
to only the thermal partons and write

F (p1,p2,p3) = T (p1)T (p2)T (p3) (11)

in terms of the dimensionless single-parton invariant distribu-
tion

Tj (pi) = pi

dNj

dpi

= Cjpi exp(−pi/Tj ), (12)

where the subscript j = (q,s) denotes either light (nonstrange)
quark q or strange quark s. The normalization factor Cj has the
dimension of inverse momentum. The inverse slope Tj is not
to be regarded as temperature, and especially should not to be
identified with the temperature discussed in the hydrodynamics
of equilibrated system. Specifically, we allow Tj to include the
dissipative effects of minijets on the expanding medium at all
times of the evolution of the plasma. Without a reliable way

to calculate Tj we use it as a parameter to be determined by
phenomenology in the expectation that much can be revealed
about the partonic system in its final phase.

The recombination function (RF), Rh(p1,p2,p3,pT ), in-
volves the wave function of hadron h in momentum space,
since it can be regarded as the time-reversed process of
the hadronic structure function. Factoring out the transverse-
momentum conservation explicitly, one can write it as

Rh(p1,p2,p3,pT ) = Wh(y1,y2,y3)δ

(∑
i

yi − 1

)
, (13)

where yi = pi/pT , which is the momentum fraction of the ith
quark in the hadron h. For the proton, Wp(y1,y2,y3) has been
determined in the valon model [26,27]. At low virtuality a
valon is identified with the constituent quark, but when probed
at high virtuality a valon reveals its internal structure, which
is determined from the structure function of the nucleon. The
function Wp(y1,y2,y3) in the proton RF is related to the valon
distribution in the proton, which is broadly peaked in yi around
1/3. Since the structure functions of the hyperons cannot
be studied experimentally, we have to make some sensible
assumption about their RFs. On the basis that the average
momentum fraction 〈yi〉 of each quark in a hyperon is 1/3,
as we know that it is so in the proton, we simplify Eq. (13)
further by the approximation for all h

Rh(p1,p2,p3,pT ) = gh

3∏
i=1

δ(pi/pT − 1/3), (14)

where gh is a numerical factor that represents all the complica-
tions of recombination, averaged over all spin and color factors,
and spatial and momentum coordinates of the coalescing
quarks; it depends only on the hadron h, not on the initial
stage of the collision process that involves

√
s and Npart. The

simplicity of Eq. (14) offers a transparent view of the physical
content of the result to be derived below.

Upon substituting Eqs. (11), (12), and (14) into (10), we
obtain

p0 dN̄h

dpT

=
(

3∏
i=1

Ci

)
ghp

3
T exp

[
−pT

3

3∑
i=1

1

Ti

]
, (15)

where Ci is either Cq or Cs depending on the quark type i, and
similarly for Ti . Let us now make the following identification:

1

Th

= 1

3

∑
i

1

Ti

= 1

3

(
3 − ns

Tq

+ ns

Ts

)
, (16)

where ns is the number of strange quarks in h, and thus
we obtain Eq. (4). It is important to recognize that Tq and
Ts in Eq. (16) refer to the inverse slopes of the theoretical
distributions Tq,s(pi) in Eq. (12), whereas Tq(s) and Ts(s) in
Eq. (4) are phenomenological quantities that simplify Th(s) in
Table I. By identifying Eqs. (4) and (16) we are providing the
origin of the phenomenological formula in the framework of
the recombination model.

To complete the relationship between Eqs. (2) and (15), we
need only to note that at y ≈ 0, the hadron energy p0 is just
the transverse mass mh

T so that combining those two equations
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with (16) yields (3) with

Ah(s,Npart) = gh

3∏
i=1

Ci(s,Npart). (17)

Having now derived (3), we see that the universal pT behavior
of the baryon spectra at all

√
s considered is totally described

by the three parameters T1,T2, and β in Eq. (7) with interpre-
tation of Tq and Ts in the RM.

On the Npart dependence of Ah(s,Npart) we see that ah in
Eq. (8) is independent of h, so Ci in (17) has the scaling
behavior N0.45

part that is independent of i. Thus if we define

Cj (s,Npart) = cj

√
s −bj N0.45

part , j = q,s, (18)

we obtain from Eqs. (8), (9), and (17)

A0
h = ghc

3−ns
q cns

s (19)

with

bh = (3 − ns)bq + nsbs. (20)

From Table IV we see that bh can be well described by Eq. (20)
with the choice

bq = 0.105 and bs = 0.035. (21)

Thus the dependency of Cq,s(s,Npart) on
√

s and Npart is
completely specified by Eqs. (18) and (21). The normalization
coefficients cq and cs can be obtained from (19) for ns = 0 and
ns = 3 (but with dependence on the undetermined factors gp

and g�), i.e.,

cq = (A0
p/gp)1/3, cs = (A0

�/g�)1/3. (22)

From the values of A0
p and A0

� given in Table IV let us
summarize our phenomenological result deduced from the
above equations:

Cq(s,Npart) = 0.327 g−1/3
p

√
s
−0.105

N0.45
part (GeV/c)−1, (23)

Cs(s,Npart) = 0.056 g
−1/3
�

√
s
−0.035

N0.45
part (GeV/c)−1. (24)

As a reminder, we note that Bh,Ah,A
1
h, and A0

h are all of
dimension (momentum)−3, while Cj and cj are of dimension
(momentum)−1; gh and Npart are dimensionless. The numerical
coefficients above are in (GeV/c)−1 with

√
s being in units of

TeV. It is of interest to note that the strange-to-nonstrange ratio
is

Rs/q(s) = Cs(s,Npart)

Cq(s,Npart)
= 0.17

(
gp

g�

)1/3√
s 0.07, (25)

which increases mildly with energy with a power-law exponent
of only 0.07 and is independent of Npart. Not to be overlooked,
however, is that the numerical factor in front has a low value of
0.17, so that apart from the factor (gp/g�)1/3 that is of order 1,
Rs/q (s) varies only from 0.14–0.2 in the range of

√
s of study

here.
The data in Figs. 1–3 show that all the hyperons exhibit

linear behavior in those plots but not in the case of the
proton. The reason for the proton spectra to bend up above
pT ≈ 4 GeV/c is because of the contribution from high-pT

jet fragmentation. The RM offers an explanation of why the

hyperon spectra do not bend up. The conventional description
of jet fragmentation is to treat it as a one-step process from
hard parton to hadrons. In the RM it is a two-step process, the
first of which is the fragmentation of a hard parton to shower
partons Si ; the second step is the recombination of those shower
partons to form hadrons [28]. In heavy-ion collisions some of
those Si may combine with the thermal partons Tj from the
bulk medium to form mesons and baryons. The baryons that
exhibit universal behavior in our study here are formed by
TiTjTk recombination, but TiTjSk,TiSjSk , and SiSjSk are also
possible at high pT , if sufficient number of shower partons can
be created by hard jets [13,29]. Since extremely high-pT jets
make a negligible contribution, we can restrict our attention to
semihard jets produced near the surface of the collision region
with pT less than 10 GeV/c, say. Shower partons of s type
are suppressed relative to those of q type in such jets. Thus in
summing TiTjSk over i,j , and k there are more contributions
to the proton with all q quarks than to hyperons with some s
quarks. However, that is insufficient to explain why the hyperon
spectra in Figs. 1–3 are so straight without any up-bending at
all. The crucial source of that behavior is the RF in Eq. (14),
where the quark momenta are restricted to 1/3 of the hadron
momentum. It means that higher-momentum shower partons
cannot recombine with lower-momentum thermal partons. In
the case of hyperons the empirical fact that the data in Figs. 1–3
are well fitted by straight lines is evidence for Eq. (14) being
a good approximation for the hyperon RF. In the case of
the proton the RF in the general form of Eq. (13) allows
the possibility of contributions arising from shower q quarks
having higher pk than thermal q quarks at lower pi,j , and
thereby causing the proton spectra to bend upward from the
straight lines for pT > 4 GeV/c. Power-law behavior of TTS,
TSS, and SSS recombination has been studied in detail before
[26,27]. The use of the approximation in (14) picks out the
universal part as revealed by the straight-line portions of the
proton spectra in Figs. 1–3.

IV. MESON SPECTRA

Since the RM works so well to explain the universality
observed in the baryon spectra, it is natural to inquire whether
similar regularity can be found in the meson spectra. We know,
however, that resonance decays and fragmentation products
contribute heavily to low-mass mesons, particularly pions,
so similar behaviors as with baryons cannot be expected.
Nevertheless, it is of interest to investigate the situation for
high-mass mesons. In this section we study the φ meson
problem and show how the information gained about the s
quark in the previous section can be gainfully applied to the φ
spectra in the RM. The φ-� problem was initiated in Ref. [30],
and will be carried forward with more detail here.

For a meson h we define the modified function differently
from Eq. (2) for baryon, as follows:

Mh(s,Npart,pT ) = mh
T

pT

dN̄h

pT dpT

(s,Npart), (26)

which is of dimension (momentum)−2. Let us first show the
empirical properties of Mφ(s,Npart,pT ) directly from the data
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FIG. 8. φ-meson spectra functions Mφ(pT ) for (a)
√

s =
2.76 TeV, (b) 200 GeV, (c) 62.4 GeV. The data are from [31,32].
All straight lines at each energy have the same inverse slope Tφ(s).

on theφ spectra for the three collision energies in Fig. 8 [31,32].
Evidently, all the data points can be well fitted by straight lines
for all centralities, and the inverse slopesTφ(s) are 0.512, 0.388,
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FIG. 9. Aφ vs Npart for three energies. The lines are for a common
value of aφ in Eq. (29).

0.344 GeV for
√

s = 2.76,0.2,0.0624 TeV that satisfy

Tφ(s) = 0.46f (s) GeV/c. (27)

Thus we have from phenomenology

Mφ(s,Npart,pT ) = Aφ(s,Npart) exp[−pT /Tφ(s)], (28)

where Aφ(s,Npart) depends on Npart as shown in Fig. 9, which
exhibits the power law

Aφ(s,Npart) = A1
φ(s)N

aφ

part, aφ = 0.9, (29)

independent of energy. Note that the value of aφ has the
property that

aφ = 2

3
a�, (30)

where a� is given in Eq. (8). The values of A1
φ(s) are given in

the legend of Fig. 9, revealing a dependence on
√

s that is not
monotonic, as shown in Fig. 10. The two points at

√
s = 0.2

and 2.76 TeV are joined by a straight line described by

A1
φ(s) = A0

φ(s)
√

s −bφ , bφ = 0.07 (31)

with
√

s in units of TeV. The value for bφ above is chosen such
that upon comparison with Eq. (21), we have

bφ = 2bs = 2

3
b�. (32)

The 2/3 factors contained in Eqs. (30) and (32) are just what
one should expect from the RM, as we will show below.

The empirical fact that the point A1
φ(0.0624) = 0.05 being

far below the line in Fig. 10 is very unsatisfactory from the
perspective of our expectation. It is a departure from regularity
similar to the case of the open square for the proton A1

p(s)
in Fig. 7 at

√
s = 0.2 TeV. If we attribute the low value of

A1
φ(0.0624) to insufficient energy to produce very many φ

mesons, then one would wonder why � production suffers no
suppression at 62.4 GeV relative to A1

�(s) at higher energies,
as we can see from Fig. 7.
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FIG. 10. Dependence of A1
φ(s) on

√
s. The straight line is drawn

in accordance to Eq. (31) with bφ chosen to satisfy (32).

Let us now turn to the RM to see what should be expected.
The invariant pT distribution of mesons in the RM is

p0 dN̄h

dpT

=
∫ (

2∏
i=1

dpi

pi

)
F (p1,p2)Rh(p1,p2,pT ), (33)

where p1 and p2 are the transverse momenta of quark and
antiquark recombining to form a meson at pT . Restricting to
thermal partons only

F (p1,p2) = T1(p1)T2(p2), (34)

Tj (pi) = Cjpi exp(−pi/Tj ), (35)

and using the simple form for the RF

Rh(p1,p2,pT ) = gh

2∏
i=1

δ

(
pi

pT

− 1

2

)
, (36)

we get from Eq. (33)

p0 dN̄h

dpT

= ghC1C2p
2
T exp

[
−pT

2

(
1

T1
+ 1

T2

)]
. (37)

For φ-meson production resulting from the coalescence of s
quark and s̄ antiquark, we use for Tj (pi) in Eq. (35) the same
distribution as Ts(pi) in Eq. (12), i.e., C1 = C2 = Cs , and T1 =
T2 = Ts , thus obtaining

p0

pT

dN̄φ

pT dpT

= gφC2
s exp(−pT /Ts). (38)

Identifying this with the phenomenological formula Eq. (28)
yields

Tφ(s) = Ts(s), (39)

Aφ(s,Npart) = gφC2
s (s,Npart), (40)

where Ts(s) links Eq. (27) with (5). The application of
Cs(s,Npart) in Eq. (18) to (40) and then to (29) results in the
verification of (31) and (32).

1 2 3 4 5
0

0.1
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0.3

0.4

Pb+Pb@2.76TeV 0−10%

Au+Au@200GeV 0−12%

p
T
 (GeV/c)

(Ω
−

+
Ω̄

+
)/

φ

FIG. 11. The dependence of the ratio (�− + �̄+)/φ on pT at two
energies. The data are from Ref. [31]. The lines are from Eqs. (43)
and (44) using (45) to fit the normalization.

A direct way of seeing the connection between
B�(s,Npart,pT ) and Mφ(s,Npart,pT ) is that

B�(s,Npart,pT ) = g�C3
s (s,Npart) exp[−pT /Ts(s)], (41)

Mφ(s,Npart,pT ) = gφC2
s (s,Npart) exp[−pT /Ts(s)], (42)

so that the two pT dependencies are identical, and the pref-
actors are proportional to C3

s and C2
s , respectively. Since Cs

is of dimension (momentum)−1, B� and Mφ are of dimen-
sions (momentum)−3 and (momentum)−2, respectively, as their
definitions require. The parallelism of B� and Mφ in these
equations is now utterly transparent and can be attributed
uniquely to the RM. � (φ) is the recombination of three (two)
quarks, and all of them (�,φ,s,s̄) have the same transverse-
momentum dependence. The masses m� and mφ do not appear
explicitly in Eqs. (41) and (42), which are obtained without
any reference to radial flow in the hydrodynamics phase and
rescattering or regeneration in a hadron gas phase.

The �/φ ratio

R�/φ(s) = B�(s,Npart,pT )

Mφ(s,Npart,pT )
= (g�/gφ) Cs(s,Npart) (43)

has negligible dependence on
√

s, according to Eq. (24). There
are data for (�− + �̄+)/φ whose dependence on pT is shown
in Fig. 11 [31]. With the assumption Ts = Ts̄ so that the spectra
for �− and �̄+ are the same, we have from the definitions in
Eqs. (2) and (26)

dN(�− + �̄+)/pT dpT

dN(φ)/pT dpT

= m
φ
T (pT )

m�
T (pT )/pT

2R�/φ(s). (44)

The pT dependence above has no dynamical significance
because it arises explicitly from m�

T (pT ) and m
φ
T (pT ), but, of

course, the cancellation of the common exponential behavior in
Eqs. (41) and (42) is highly significant. By adjusting g

2/3
� /gφ ,

we can fit the data in Fig. 11 using Eqs. (24), (43), and (44),
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FIG. 12. Pion spectra function Mπ (pT ) for (a)
√

s = 2.76 TeV
and (b) 200 GeV. The data are from Refs. [14,18]. The straight lines
are plots of Eq. (46) with normalization adjusted to fit as tangents.

obtaining the lines in that figure with the value

g
2/3
� /gφ = 0.042. (45)

While the solid (black) line fits the data at 2.76 TeV very well,
the dashed (red) line fails to fit the 0.2 TeV data above pT =
3.5 GeV/c. We see that in Fig. 2(d) the RHIC data on � are
well fitted up to the highest pT point at 4 GeV/c, and that in
Fig. 8(b) the φ data are also well fitted for 0–5%, but the last
point at pT = 4.5 GeV/c for 0–10% is missed. Because of that
the �/φ ratio of the 0.2 TeV data in Fig. 11 for pT > 4 GeV/c
falls below our red dashed line, which is almost straight in
that region. We do not regard the misfit of that last point as a
failure of the overall universality that we have found in Figs. 2
and 8, but it may indicate that the s-quark distribution begins
to deviate from the exponential form in Eq. (12) at around
ps ∼ 2 GeV/c at RHIC energy, but persists beyond ∼ 2 GeV/c
at LHC energy. This statement is based on the recognition that
at pT ∼ 4.5 GeV/c, the s quarks in � have ps ∼ 1.5 GeV/c,
but those in φ have ps ∼ 2.2 GeV/c. That can explain why the

solid line for LHC in Fig. 11 fits the data better than the dashed
line for RHIC.

The φ-� problem is special because they consist of strange
quarks only and have high masses. Pion and proton have the
lowest masses among mesons and baryons, so their spectra
have complications. We have seen in Figs. 1(a), 2(a), and
3(a) how the proton’s pT spectra bend up from exponential
behavior at high pT due to the contribution from shower
partons. For pions the effects are more prominent. We show in
Fig. 12 the pT dependence of Mπ (s,Npart,pT ) at

√
s = 2.76

and 0.2 TeV [14,18]. Evidently, there is no portion in the
range 0 < pT < 6 GeV/c where the spectra show significant
linearity in the plots. The straight lines are shown for the
purpose of accentuating the departure from linearity; they are
the thermal contributions that follow directly from Eqs. (26)
and (37), appropriately modified from (42),

Mπ (s,Npart,pT ) = gπC2
q (s,Npart) exp[−pT /Tq(s)], (46)

where Tq(s) = Tπ (s) = Tp(s), given in the first row of Table I.
As we have learned from previous studies [12,13], the peaking
in Fig. 12 at pT < 1 GeV/c is dominated by resonance decay
and the up-bending at pT > 3 GeV/c is due to the thermal-
shower and shower-shower recombination, for which the RF
for pion is very broad and is poorly represented by Eq. (36).
There is obviously no good reason to pursue the question of
universality among the low-mass mesons as we have done for
baryons.

V. IMPLICATIONS

We have presented the empirical properties of the baryon
spectra in Sec. II, and showed how those properties emerge
naturally in the recombination model in Sec. III. The regularity
in the φ-� problem is discussed in Sec. IV, where it is also
shown that the pion spectra do not exhibit similar behavior. It
is appropriate at this point to discuss the physics implications
of what we have found.

Starting first with the pT distributions of Bh(s,Npart,pT ) in
all 12 parts of Figs. 1–3, they all show exponential behavior
over wide ranges of pT . The straight-line fits are especially
good for the � spectra. Why has this not been realized
until now? The answer is partly in the use of the function
Bh(s,Npart,pT ) defined in Eq. (2) with the factor mh

T /p2
T that

seems ad hoc. We have described the motivation for it in
the RM, where Eq. (15) provides a derivation of (2) and (3).
Moreover, the inverse slope Th(s) in (3) is related to Tq and Ts in
(16) in just the way found empirically in Eqs. (4)–(7) for all h.
These are unambiguous evidence that the formation of baryons
is by means of recombination of light and strange quarks. As
mentioned earlier, the quark distributions in Eq. (12) are at the
time of hadronization, so they contain all the effects of medium
expansion and energy losses from minijets at earlier times. The
question about gluons that carry a significant portion of the
plasma energy is answered in the RM by the conversion of
gluons to quarks before hadronization [12]. That is a problem
studied on the plasma side approaching hadronization, the
details of which need not concern us here now, but we will
return to it later.

An essential assumption made on the quark distribution
F (p1,p2,p3) is that it is factorizable as stated in Eq. (11),
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whether the ith quark is of q or s type. The composition of
the plasma in terms of quark species evolves as the medium
expands until a point that hydrodynamics refers to as chemical
freeze-out. We have not adhered to any specific description of
equilibration or dynamical flow. What we know qualitatively
is that partons with high, low, and intermediate transverse
momenta interact with one another so that any property about
hadrons that covers a wide range of pT cannot be understood
in a theoretical model that is restricted to a narrower range of
the partons’ transverse momenta.

To write F (p1,p2,p3) as a factorizable product of T (pi) is a
revelation of our ignorance. If indeed those partons are thermal
in nature, the assumption of no correlation is reasonable. How-
ever, we know that at high pT there are thermal-shower and
shower-shower recombinations that may involve correlated
partons [12,13]. What has turned out to be unexpected is that
those quarks contributing to baryons up to pT ≈ 6 GeV/c are
thermally distributed even for kT ≈ 2 GeV/c. (Here and in
the following, we will use kT instead of pi to denote parton
transverse momentum in order to emphasize the common
transverse properties of partons in the medium when the
identity of the ith parton to recombine later is unimportant.)
Furthermore, the inverse slopes Tq,s(s), ranging in values
from 0.3–0.5 GeV/c are universally related to all baryons
produced, based on strangeness content without reference to
the baryon masses. Thus despite simplifying assumptions we
have obtained revealing results that call for interpretation.

Hadronization occurs over an extended period of time as
the dense medium expands, since the front surface may be cool
enough for confinement even while the bulk interior is still hot
at an early stage. None of that intricate dynamical process is
explicit in the simple recombination formula Eq. (10). In the
assumption that space-time coordinates have been integrated
over implicitly in that equation, the implication is that the quark
distribution T (kT ) is a summation over many sectors of kT

intervals, each of which has a high probability of hadronization
at a certain time after collision. Roughly, one expects the
high-kT sector to hadronize earlier. It is therefore hard to
conceptualize the inverse slope Tq,s as a temperature in the
context of local thermal equilibrium, let alone in a global
system. Nevertheless, it is a simple measure of the nature of
the kT distribution, particularly in quantifying the difference
between q- and s-quark distributions.

The fact that Tq(s) depends on
√

s and is ≈ 0.39 GeV/c
at LHC energy according to Eqs. (5)–(7) informs us that the
inverse slope is far from the values of temperatures discussed
in hydrodynamics, in which the critical temperature Tc from
lattice QCD is 0.16 GeV [33] and the kinetic freeze-out
temperature Tkin is 0.1 GeV [34]. In hydrodynamics radial
flow raises the effective temperature to values comparable to
our Th(s). However, the contribution from radial flow depends
on the hadron mass mh, while our values of Th(s) depend on
ns , not on mh. In fact, there is experimental evidence that the
average 〈pT 〉 of baryons does not depend on mh as prescribed
by hydrodynamics models [32]. We conclude that the behavior
discovered in Figs. 1–3, summarized by Eq. (3) and Table I,
or by Eq. (4) and Table II, has a dynamical origin that is
outside the realm of hydro flow. It should be pointed out that
without subscribing to hydrodynamics flow does not mean

that we reject the notion of medium expansion. It is just that
the evolutionary process may be too complex for a smooth
dynamical theory to describe adequately.

Our concern has been the effects of minijets, which can
render the assumption of rapid equilibration unrealistic. In
a heavy-ion collision at

√
s > 60 GeV semihard partons

with transverse momenta kT ∼ 3–5 GeV/c are abundantly
produced. They can traverse the whole transverse plane from
one side to another over a distance of 10 fm in 10 fm/c time,
dissipating energy to the medium throughout their trajectories,
and thereby raising the local thermal energy. How such minijet
contributions can be calculated is unknown, since pQCD is
unreliable at low kT . Without a theoretically calculable scheme,
but with strong phenomenological support, we are forced to
advocate the physical interpretation that the raising of local
thermal energy by minijets results in the increase of inverse
slope Tq of the parton kT distribution relative to Tc or Tkin. The
fact that our use of an exponential formula for T (kT ) leads
to good fits of the baryon spectra data means that the partons
in different sectors of kT interact enough to render an overall
thermal distribution.

An aspect of our partonic approach to hadronization that is
still in need of an explanation is why Ts (s) > Tq(s), as shown in
Fig. 5. According to Eqs. (5) and (7), Ts(s) is 30% higher than
Tq(s) throughout the energy range studied. It is an indication
that the strange and nonstrange subsystems are not strongly
coupled. A naive thought would be that there are more ss̄ than
qq̄ pairs. For a system not in global thermal equilibrium it is
necessary to look beyond comparing Tq and Ts in order to gain
a better understanding in a larger picture. The distributions
Tq and Ts involve the normalization factors Cq and Cs . From
Eq. (23) to (25) we obtain the ratio

Rq/s(s,kT ) = Tq(s,kT )

Ts(s,kT )

= R−1
s/q(s) exp

[
−kT

(
1

Tq(s)
− 1

Ts(s)

)]

= R−1
s/q(s) exp

[
−kT

(
1

T1
− 1

T2

)/
f (s)

]
. (47)

The inequality T2 > T1 in Eq. (7) makes Rq/s(s,kT ) a de-
creasing exponential function. The factor Rs/q(s), as given in
Eq. (25), involves (gp/g�)1/3, which is of order 1. Assuming
it to be 1 enables us to plot Rq/s(s,kT ) as shown in Fig. 13; it
exhibits the general property whether the multiplicative factor
(gp/g�)1/3 is actually higher or lower. We see that the ratio
increases by a factor of around 6 as kT is decreased from
around 2.5 GeV/c to 0. The preponderance of light quarks
at very low kT means that they are created by processes that do
not have sufficient energy to create ss̄ pairs at the same rate.
That is in support of our view that minijets are important and
that their radiative energy losses as they traverse the expanding
medium can generate soft qq̄ pairs far more readily than the
more massive ss̄ pairs. Copious soft gluons convert to qq̄
before hadronization. Because those qq̄ pairs have low kT ,
their distribution Tq(kT )/kT has a higher peak than Ts(kT )/kT ;
consequently, the corresponding inverse slope Tq is smaller
than Ts .
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FIG. 13. The q/s ratio Rq/s(kT ) of quark distributions defined in
Eq. (47) plotted against the quark transverse momentum kT for three
colliding energies.

VI. CONCLUSION

Our approach in this paper has been to present the data
first and show their universal features without model input. To
explain the regularities found should therefore be the goal of
any model on the subject. For the benefit of a reader who has
not followed the details of our phenomenological investigation
in Sec. II let us summarize the universal formula here in one
equation

Bh(s,Npart,pT )

= A0
h

√
s

−bh
N1.35

part exp

[
−pT

3

√
s

−0.105
(

3 − ns

0.35
+ ns

0.46

)]
,

(48)

where A0
h and bh are listed in Table IV with pT being in GeV/c

and
√

s in TeV. This equation describes the pT spectra of any
baryon h (p,�,�,�) over wide ranges of pT at any

√
s >

0.06 TeV and any Npart > 60. The inverse slope is independent
of baryon mass, but depends on the strangeness content ns .

In the recombination model the properties of the inverse
slopes are derived, and the bh exponents simplified. The model
inputs are basically that the q and s quarks recombine to
form the baryon h and that the quark distributions depend
exponentially on their transverse momenta kT . It is from the
empirical numerics in Eq. (48) that an insight is gained on
the relative magnitudes of the q- and s-quark distributions in
kT . The dominance of light quarks over strange quarks at low
kT suggests the important role played by soft partons that are
generated by the minijets, which lose energy to the medium
throughout the expansion process, thus keeping the system
from rapid equilibration, while creating an abundance of qq̄
pairs.

It is clear that this study opens up more questions than
answers. Quantitative details are needed to affirm qualitative
suggestions. An event generator that can produce results that
approximate the universal formula would help to shed some
light on the dynamical process. On the experimental side, it
seems that the questions raised with regard to the irregularities
seen in Figs. 7 and 10 deserve some attention.

There are, of course, deviations from universality that are
evidence for subdominant physics that are nevertheless worthy
of study. The focus on universality in this paper puts on center
stage a problem that has no wide recognition nor unanimity on
what the underlying physics is.
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