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Rapidity distributions of hadrons in proton-nucleus collisions
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We study proton-lead collisions with a new model for the Fock states of the incoming proton. The number of
collisions that the proton experiences selects the appropriate Fock state of the proton, which generates a multiple
of pp-like rapidity distributions. We take as input the pp maximum entropy distributions, shifting the respective
center-of-mass rapidities and reducing the available energies. A comparison with existing data at 5 TeV is made,
and results for 8 TeV are presented. We also explore the high multiplicity data in this model.
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I. INTRODUCTION

The main ideas underlying high energy proton-nucleus
collisions are well established. It is easiest to consider the
system in the reference frame where the nucleus is at rest. Then
high energy excitations in the fast incoming proton become
degenerate with the ground state. Their lifetime at sufficiently
high energy is significantly longer than the nuclear dimension,
so these excitations can be treated as Fock components of the
proton. In the large-Nc approximation one can reorganize these
excitations in a series of color-neutral Fock states consisting
of quark-antiquark pairs [1]. We consider only those Fock
components of the proton that are brought to mass shell by
interactions, otherwise they remain a virtual fluctuation of the
proton. The nth Fock state is actualized by n collisions with
target nucleons. Data can be explained when in n collisions
only (n + 1)/2 as many particles are formed as in a single pp
collision [2–4]. How can one understand the phenomenon that
the fragmentation products do not multiply n times, given the
two facts that there are n collisions and that the fragmenting
two strings formed in each collision overlap strongly in rapidity
space?

In this paper we present a model which can explain this
phenomenon. We assume that in proton-proton collisions and
in qq̄-proton collisions the strings hadronize in a similar
fashion, producing a symmetric maximum entropy distribu-
tion [5,6] in its respective rest frame. With the simplification
that pions are produced in the same amount as gluons, the
maximum entropy method yields a Bose-type distribution
depending on rapidity y and transverse momentum p⊥. The
maximum entropy distribution has three parameters, namely
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an effective transverse “temperature” λ(s) and a longitudinal
softness w(s), both depending on the center-of-mass (cm)
energy. It is symmetrical around the cm rapidity ycm. Using
the rapidity variable, we can describe both hemispheres of the
distribution:

n(y, �p⊥) = 1

exp
{√

p2
⊥+m2

π

(
1

λ(s)+w(s)√
s

exp |y−ycm|)} − 1
.

(1)

For pp collisions, the transverse phase space is homoge-
neously distributed over the area L2

⊥. Empirical values for
this area give sizes L⊥ ≈ 1.3 fm for pion distributions [5,6].
Invoking parton-hadron duality, the multiplicity of produced
particles is obtained by integrating the light cone distribution
over the respective phase space. Note that the relativistic
measure dy = dx/x arises from the large spatial extension in
the longitudinal direction of the small-x partons. With a gluon
degeneracy factor g = 2(N2

c − 1) [5], the total multiplicity
becomes

N = g
Npart

2
L2

⊥

∫
d2p⊥
(2π )2

∫
dy n(y, �p⊥). (2)

We emphasize that a statistical understanding of the final state
in heavy-ion collisions necessitates a correct description of
both the momentum and configuration space distributions.
The maximum entropy model was originally conceived for
symmetric pp or AA collisions. It can be adapted to the pA
configuration by keeping the symmetry of the fragmentation
products with respect to the cm rapidity, which depends on the
momentum of the qq̄ substate in the fast proton colliding with
a target nucleon.

II. THE FOCK STATE DECOMPOSITION AND
MULTIPLICITY IN PROTON-NUCLEUS COLLISIONS

For proton-nucleus collisions, we add the individual con-
tributions of the different projectile Fock states, which lose
coherence, interacting with the nuclear participants. This
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means that a two-particle Fock state is actualized (brought to
mass shell) when the incoming proton interacts with two target
nucleons, or a three-body component interacts with three target
nucleons, and so on. The elastic proton-nucleus cross section
amplitude can be calculated within the Glauber theory, as can
the quasielastic and reaction cross sections (e.g., see [7]). Thus
one can calculate the reaction cross section as

σpA
reac = σ

pA
tot − σ

pA
el − σ

pA
qel =

∫
d2b [1 − e−TA(b)σpN

in ], (3)

where the profile function of the nucleus TA(b) =∫ ∞
−∞ dz ρA(b,z) is obtained from the nuclear density, inte-

grating over the z direction. Here we employ the optical
approximation and neglect the interaction range in comparison
with the nuclear radius for the sake of simplicity, which is more
accurate. The resulting lengthy expressions are well known [7].

Apparently the exponentials in Eq. (3) can be expanded as
σ

pA
reac = ∑

n σ (n), where

σ (n) = 1

n!

∫
d2b

[
TA(b)σpN

in

]n
e−TA(b)σpN

in . (4)

This expression is frequently misinterpreted as an n-fold
collision of the projectile proton with n bound nucleons. How-
ever, the proton can interact inelastically only once, the further
collisions of the proton debris may occur with cross sections
quite different from σ

pN
in . Multiple inelastic interactions in-

volved in (4) should be interpreted as independent collisions of
different constituents of the projectile Fock component inside
the nucleus. However, the cross sections of those collisions are
unknown, and the Glauber model alone is unable to predict
them and the multiplicity distribution.

Inelastic processes are related through the unitarity relation
to the forward elastic amplitude. The latter is given by the
Glauber model as a sum of multiple NN elastic amplitudes.
However, the one-to-one correspondence between inelastic
processes and different terms in the elastic amplitude is not
known within the Glauber model. This problem was solved
by Abramovsky, Gribov, and Kancheli (AGK) [8], who for-
mulated the unitarity cutting rules for the elastic amplitude.
The magnitudes and signs of different multiple interaction
terms in the expanded Glauber amplitude were found to be
related to a sum of unitarity cuts of different numbers of
elastic NN amplitudes (Pomerons).1 The key point of the AGK
cutting rules is the independence of the proton multi-Pomeron
coupling on the number of cut Pomerons. This important result
was proven in [8] within the old-fashioned parton model with
short-rapidity-range correlations.

1The NN elastic amplitude, which can be called effective Pomeron,
already includes multi-Pomeron terms and is subject to the AGK
cutting rules. Therefore the hadron multiplicity also depends on the
number of cut Pomerons, related to the projectile Fock components,
interacting with the same bound nucleon. The hadron multiplicity
distribution in pA collisions will still be given by the convolution of
the multiplicity distribution in each NN collision with the distribution
of the number of collisions. Both are controlled by the AGK rules,
but with different weight factors.

The AGK cutting rules provide the weight factors (4) for
the inelastic pA collision corresponding to n cut Pomerons.
Notice that the particles produced on mass shell from n cut
Pomerons have to share the total energy (see below); however,
the proton multi-Pomeron coupling Eq. (4) is the same as in
the elastic cross section (no cut Pomerons), therefore the cross
sections σ

pN
in should be taken at the full collision energy. At

5 TeV we use σin = 70 mb as the pp inelastic cross section [4].
The sum over all n, i.e., over all possible collisions, gives the
total inelastic cross section.

To understand the multiplicity distribution, we construct a
model for the nth Fock state in such a way that it reproduces
the general features of the phenomenology in pA collisions.
The most important empirical result is the increase of the
multiplicity ratio r between pA and pp collisions with the
mean number 〈n〉 of collisions:

r = 〈n〉 + 1

2
. (5)

In order to specify the details of the model, however, more
and different reaction channels would have to be analyzed. We
assume that the nth Fock state |n〉 is a coherent superposition
of n-particle states with different numbers of “valence-like”
and “sea-like” constituents:

|v1,v2, . . . ,vm,s1,s2, . . . ,sn−m〉. (6)

The valence-like constituents vi carry sizable momentum
fractions of the proton. The sea-like constituents si are very
slow and do not contribute to the hadronization significantly.
The first “valence”-like constituent in the proton has the
structure |qqq〉, and all others constituents are |q̄q〉 color-
neutral dipoles. In line with the maximum entropy assumption,
we assume that in the quantum state with m valence particles
each particle carries the same fraction xm = 1/m of the proton
momentum. Because of lack of further information, we assume
that the individual quantum states have equal amplitudes in the
superposition; in reality the individual amplitudes may depend
on the reaction dynamics. The nth Fock state in the model then
has the form

|n〉 = 1√
n

(|1,s,s, . . . 〉 + |1/2,1/2,s, . . . 〉

+ |1/3,1/3,1/3,s, . . . 〉 + · · ·
+ |1/n,1/n, . . . ,1/n〉). (7)

We have labeled the valence-like constituents by their
respective momentum fractions xm = 1/m. Because of the
negligible role of sea substates, the mth component gives m
times the multiplicity of a proton-proton collision, modified,
of course, according to the momentum fractions of the color-
neutral states in the Fock state. To obtain the total multiplicity
N (n) generated by the nth Fock state, we average the sum of
the multiplicities of the n components:

N (n) = 1

n

n(n + 1)

2
(8)

Combining this multiplicity with the Glauber weights gives
the empirical multiplicity ratio between pA and pp collisions,
Eq. (5). This simple additivity is broken by energy conservation
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and rapidity shifts arising from the lower momenta in the
substates. There have been more sophisticated proposals [9]
about the distribution function of the different Fock states and
how they interact with the target nucleons, but the necessary
multiparton distributions are really unknown and can only be
guessed.

The eikonal formula still holds because Gribov inelastic
shadowing corrections to the total inelastic cross section from
excitations of the fast proton are known to be small [10]. It
also has been shown in string motivated models [11] that the
inelastic pp cross section is mainly given by the distance (R)
of q and diquark in the proton, whereas the string thickness
(a) gives only a small contribution. Consequently also the
transverse string excitations only give a minor modification
of the cross section, since the transverse size a is much smaller
than the extension of the string a 	 R.

III. HADRON PSEUDORAPIDITY DISTRIBUTIONS
IN pA COLLISIONS

Because of momentum sharing, the mth component of the
Fock state creates a multiplicity distribution with a reduced cm
energy and a cm rapidity shifted from the pp cm momentum
y = 0 towards positive rapidities, i.e., towards the target
rapidity in our convention. Note that different experiments have
different conventions for the rapidity of the nucleus and the
proton; we use the one in the ALICE publication [12]. Since
the lead beam has an energy of 1.58 TeV/per nucleon and the
opposing proton beam an energy of 4 TeV, there is an additional
displacement � of the cm rapidity in proton direction:

s(m) = xms, (9)

ycm(m) = − ln(xm)/2 − �, (10)

� = 0.465. (11)

Each collision between a proton substate with a target
proton leads to a fragment distribution as in a pp collision.
The existing parametrizations of the pp data with the maxi-
mum entropy distribution allow us to interpolate the energy
dependences of the two parameters of the light cone plasma
distributions. The fitted values of the parameters for cm -
energies 0.2 <

√
s < 7.0 TeV serve as input for the energy

dependence of the effective transverse temperature λ(s) and
the longitudinal softness w(s):

λ(s) = [0.023 + 0.03 ln(
√

s/s0 )] GeV, (12)

w(s) = −3.66 + 1.33 ln(
√

s/s0 ), (13)

s0 = 1 GeV2. (14)

Additional constants in the maximum entropy distribution
are K = 0.3 and the pion mass mπ = 0.138 GeV. The starting
values w = 7.67 and λ = 0.274 GeV correspond to the cm
energy

√
s = 5 TeV, but in the higher Fock states this energy

is reduced. We calculate the relevant rapidity distribution for
a collision of a substate with xm = 1/m with a target proton
using the correct energy s(m) and rapidity ycm(m) to get the
pseudorapidity distribution dN(m)

d2p⊥dη
, which is the basic building
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Η
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/d
Η

FIG. 1. Individual contributions dNch(m)
dη

with m = 1 to m = 7

from top to bottom are shown for
√

s = 5 TeV. The cm momenta
are shifted towards the target rapidity, and cm energies are reduced
due to momentum sharing.

block of our model:

dN(m)

d2p⊥dη
= 16L2

⊥
(2π )2

√
1 − m2

π(
m2

π + p2
⊥
)

cosh2 y(η,p⊥)

× nm(y,p⊥), (15)

nm(y,p⊥) =
(

exp
{√

p2
⊥ + m2

π

〈 1

λ(s(m))
+ w[s(m)]

K
√

s(m)

× exp |y(η,p⊥) − ycm(m)|
〉}

− 1
)−1

, (16)

y(η,p⊥) = ln

⎡
⎣

√
m2

π + p2
⊥ cosh2 η + p⊥ sinh η√

m2
π + p2

⊥

⎤
⎦. (17)

We should emphasize that these expressions are not Lorentz
invariant, since they are differential in pseudorapidity, which
must be attributed to a specific reference frame. In Fig. 1 pseu-
dorapidity η is defined in the cm of collision, as experimental
data are usually presented.

The nth Fock state |n〉 interacting with n target nucleons
can produce up to n times the proton-proton multiplicity with
the probability

P (n) = σ (n)

σreac
. (18)

The first component |1,s,s,s, . . . 〉 gives a pseudorapidity
distribution dN(1)

d2p⊥dη
. The second component |1/2,1/2,s,s, . . . 〉

gives twice the pseudorapidity distribution dN(2)
d2p⊥dη

and simi-
larly for the higher components. The total sum of produced
fragmentation products comes from the arithmetic sum of
1 + 2 + 3 + · · · + n pp distributions which must be averaged,
because each component has equal weight. Averaging gives
the correct multiplicity ratio between pp and pA collisions
observed for high energy collisions, as discussed before. For
the charged particle multiplicity we multiply with a factor 2/3:

dNch

d2p⊥dη
= 2

3

nmax∑
n=1

P (n)
1

n

(
dN(1)

d2p⊥dη
+ 2

dN(2)

d2p⊥dη

+ 3
dN(3)

d2p⊥dη
+ · · · + n

dN(n)

d2p⊥dη

)
. (19)
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FIG. 2. Data points [12] from the ALICE experiment show the
charged-particle pseudorapidity distribution in p+Pb collisions at√

s = 5020 GeV; the solid curve represents the result from the
presented model. The dashed curve gives our prediction for the 8000
GeV data.

The summation is extended to nmax = 40, since higher contri-
bution are negligible. To compare with the data we integrate
over transverse momentum:

dNch

dη
=

∫
d2p⊥

dNch

d2p⊥dη
(20)

=
nmax∑
n=1

P (n)
1

n

(
dNch(1)

dη
+ 2

dNch(2)

dη

+ 3
dNch(3)

dη
+ · · · + n

dNch(n)

dη

)
. (21)

In Fig. 1 the contributions dNch(m)
dη

for m = 1 to m = 7 are
shown individually. Due to momentum sharing they decrease
in magnitude and move towards positive pseudorapidities.
For p-Pb collisions, on average 〈n〉 = 7.25 collisions occur.
Summing over all collisions, one obtains the p-Pb rapidity
distribution in Fig. 2. The lower curve shows the 5 TeV data
from the ALICE Collaboration [12] together with the theory.
The theoretical calculation is close to the data, but slightly
underestimates the asymmetry of the measured distribution
in pseudorapidity. The neglected small-sea substates in the
Fock states would increase the theoretical result for positive
pseudorapidities and decrease the proton side.

A comparison of our theoretical prediction with the data of
8 TeV p-Pb collisions may present an additional test of our
model. The theoretical multiplicity distribution at 8 TeV has
the same shape as at 5 TeV, but one obtains a larger multiplicity
due to the higher energy.

Notice that p⊥ dependence Eq. (19) does not exhibit the
expected effect of broadening. This is not the problem of
the Fock-state picture, but of the Glauber approximation. The
unitarity cut of the Glauber elastic pA amplitude suggested by
the AGK rules assumes independent hadronization of the cut
Pomerons. This assumption, known as Bethe-Heitler approx-
imation, is subject to corrections for the effects of coherence,
which is known as the effect of saturation. Namely, a hadron
can be produced coherently by several cut Pomerons, leading
to rising 〈p2

⊥〉. Numerically this is a rather weak effect, as was
evaluated in [13]. Even weaker is its influence on the mean p⊥-
integrated multiplicity, so we neglect this correction. Smallness

������������������������������������������������������
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FIG. 3. Data points from the ATLAS experiment [15] show the
charged-particle pseudorapidity distribution for the 5% most central
p-Pb collisions at

√
s = 5020 GeV; the solid curve represents the

result from the presented model, selecting the highest component in
each Fock component. The dashed curve gives the prediction for the
averaged Fock states.

of this correction is confirmed by successful calculations of the
multiplicity distribution in pA collisions performed with the
Glauber Monte Carlo method [14].

IV. THE HADRON PSEUDORAPIDITY DISTRIBUTION IN
HIGH MULTIPLICITY PROTON-NUCLEUS COLLISIONS

The highest multiplicity p-Pb data show a surprisingly large
enhancement of the pseudorapidity distribution, especially in
the target hemisphere. We remind that the minimum bias ratio
of pA to pp multiplicity is given by Eq. (5). A high multiplicity
trigger does select the highest component of each Fock state
|n,high〉 in our model, namely

|n,high〉 = |1/n,1/n, . . . ,1/n〉, (22)

which produces n times the proton multiplicity and conse-
quently will increase the overall multiplicity by a factor 2:

rhigh = 〈n〉. (23)

In addition the selection of impact parameter will also give a
higher multiplicity. In Fig. 3 we show the highest multiplicity
we can get in our model for an impact parameter cut 0 < b <
1.76 fm, which corresponds to a centrality of 0–5%.

It is impossible to get the factor-3 enhancement only from a
cut in impact parameter space. In our model the average Fock
state (cf. Fig. 3) does not suffice to describe the data taken in
the ATLAS experiment [15], whereas the selected Fock state
gives good agreement in the positive pseudorapidity region.
There is an even stronger asymmetry in the data than in Fig. 2,
which is missed by the simplified theory. Possible final-state
effects can also change our results.

In a recent work [16], predictions for the 8 TeV p+Pb
run at the CERN Large Hadron Collider are compiled and
compared with each other. They include saturation approaches,
Monte Carlo event generators, and perturbative QCD-based
calculations. In contrast to these basic approaches, which aim
at an ab initio description of pp collisions, our paper uses the
phenomenological pseudorapidity distribution of pp collisions
to generate the pseudorapidity distribution in pA -collisions.
Using the maximum entropy distribution for pp collisions, we
can with the same ansatz obtain the pseudorapidity distribution
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in the most central and less central regions. We develop a new
view on the fluctuations in the proton, which extends previous
work [17] to study fluctuations in the proton wave function,
explaining the observed azimuthal asymmetries of produced
particles. A study of color-neutral components in the proton is
mostly known from the pion cloud picture. One can interpret
the valence qq̄ states as the high energy manifestation of the
pion cloud, its chiral partner, and other mesons. In the fast pro-
ton the container and cloud of the quarks carry quanta with siz-
able light cone momenta which can interact with the target nu-
cleons. This is the main new ingredient of our presented model.

Several improvements have to be studied: (i) How does the
focusing on the highest Fock state take place as a function of
the trigger? This is in order to understand the variations of
the pseudorapidity distribution with centrality. (ii) How do the
sea states enter the Fock state composition quantitatively? (iii)
Can the maximum entropy distribution for string fragmentation
fluctuate? In this paper we only use an average value for the

transverse temperature λ, but one expects that fluctuations
in λ may be important to boost the multiplicity which is
proportional to λ2. In statistical physics it is well known
that fluctuations of the “temperature” can lead to a power
behavior of the high p⊥ part of the transverse momentum
distribution, which is encoded in Tsallis distributions. (iv) New
experimental tests could be pp- and AA-collision analyzed
along the same lines as outlined in the paper. These points will
be studied in further work.
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