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We use a momentum-dependent optical model potential to analyze the annihilation cross sections of the
antineutron n on C, Al, Fe, Cu, Ag, Sn, and Pb nuclei for projectile momenta plab � 500 MeV/c. We obtain
a good description of annihilation cross section data of Barbina et al. [Nucl. Phys. A 612, 346 (1997)] and of
Astrua et al. [Nucl. Phys. A 697, 209 (2002)] which exhibit an interesting dependence of the cross sections on
plab as well as on the target mass number A. We also obtain the neutron (n) nonelastic reaction cross sections for
the same targets. Comparing the nA reaction cross sections σnA

rec to the nA annihilation cross sections σnA
ann, we

find that σnA
ann is significantly larger than σnA

rec , that is, the σnA
ann/σ

nA
rec cross section ratio lies between the values of

about 1.5 to 4.0 in the momentum region where comparison is possible. The dependence of the n annihilation
cross section on the projectile charge is also examined in comparison with the antiproton p. Here we predict
the pA annihilation cross section on the simplest assumption that both pA and nA interactions have the same
nuclear part of the optical potential but differ only in the electrostatic Coulomb interaction. Deviation from a such
simple model extrapolation in measurements will provide new information on the difference between nA and pA

potentials.
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I. INTRODUCTION

Annihilation between an antinucleon and a nucleon or
nucleus defines one of the basic aspects in antimatter-matter
interactions. Over the years there have been many experimental
measurements [1–21] and theoretical studies [21–41] about
antinucleon annihilation on nucleons and nuclei. However,
most of the work was carried out with the antiproton p

projectile. Experimental and theoretical investigations using
the antineutron n, on the other hand, are still relatively limited.
Theoretical work has also been carried out on the relationship
between nn oscillation and the nA interaction potential [42–
44]. Recently, it has also been suggested that nA annihilation
can be used to prepare an apparatus for nn oscillation [45]
detection.

On the experimental side, one representative investigation
is the measurement of the nFe annihilation cross section from
100 to 780 MeV/c [46–48]. The experiment was carried out
with the LEAR facility at CERN using the pp → nn charge-
exchange reaction. Another investigation, by the OBELIX
group of Astrua et al [8], measured the annihilation cross
section of n on C, Al, Cu, Ag, Sn, and Pb nuclei in the plab

range from 50 to 400 MeV/c. These experiments give clear
evidence about the dependence of the antinucleon-nucleus
absorption cross section on the mass number A and about
the momentum dependence, which exhibits the prominent
absorption feature of inverse-power-law type of momentum
dependence at low energies. They are also useful to test the
theories of antinucleon-nucleus interactions.

In response to the experimental efforts, Friedman derived an
optical model potential for p-nucleus interaction by accounting
for both the neutron and proton densities [32] to examine the

annihilation cross sections for p and n on all the six targets
at seven energies studied in Astrua et al [8]. The calculated
cross sections for p and n were compared with experimental
annihilation cross sections for n. The study indicated that the
p induced annihilation cross sections increase much more
steeply in the low momentum plab < 200 MeV/c region in
comparison to the case for the n projectile. It also elucidated
that the larger p annihilation cross sections match the exper-
imental data closely, but surprisingly not for n annihilation
cross sections. Above 250 MeV/c, the n annihilation cross
sections are found to be reasonably close to the experimental
cross sections. However, below 100 MeV/c, the cross sections
are found to be significantly smaller than the experimental
cross sections. Furthermore, the predicted n annihilation cross
sections display the feature of decreasing and shifting to
lower and lower momenta as the size of the nuclear target
increases, and thus deviate from the behavior suggested by the
experimental cross sections. It is important to note that the very
same density-folded optical model potential was checked and
tested previously, by the same author of Ref. [32], to reproduce
very well the angular distributions for elastic scattering of p
by C, Ca, and Pb at 300 MeV/c [31].

The fact that n induced annihilation cross sections are
smaller than for p can be easily understood because the
incoming electrically neutral projectile will naturally experi-
ence negligible Coulomb attraction from the target nucleus.
But, it is perplexing that experimentally there is a notable
absorption feature of 1/pα

lab-like dependence, akin to the effects
of Coulomb focusing for n annihilation cross sections at lower
momenta, and the microscopic optical potential predicted that
these cross sections decrease and shift to lower and lower
momenta as A increases.
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Recently, we extended the Glauber model for nucleus-
nucleus collisions [49–52] to study the nuclear annihilation
cross sections by antinucleons. The extended Glauber model
for the calculation of the pA annihilation cross section [22,23]
considered the nucleon-nucleus collision as a collection of
binary collisions, and took into account the appropriate shad-
owing and the inclusion of initial-state and in-medium inter-
actions. The basic ingredients are the elementary pp and pn

annihilation cross sections, σpp
ann and σ

pn
ann, together with initial-

state Coulomb interactions and the change of the momentum
of the antinucleon inside the nuclear medium. We note that, in
our earlier study [22], the basic pp annihilation cross section,
σ

pp
ann, was parametrized semi-empirically as 1/v and employed

in our investigation of the stability and the properties of matter-
antimatter molecules [53,54]. In our subsequent study [23], we
improved the σ

pp
ann and σ

pn
ann formulas by considering the an-

tiparticle transmission through a nuclear potential and the pp
Coulomb interaction, thereby the nuclear annihilation cross
sections can be properly evaluated in a simple analytical form.
The expressions are rigorous enough and therefore we amend
our earlier simple approach of a 1/v function to parametrize
the basic σ

pp
ann and σ

pn
ann cross sections. The strong absorption

model formulated decomposes the incoming plane waves into
a sum of partial waves of given orbital angular momentum L
and assumes that these partial waves transmitted to the nucleon
surface S lead to an annihilation reaction. It is shown that the
cross sections for nuclear annihilation by p and n are simple
functions of the momentum of the incident particles. Across
the momentum range considered, contrasting it to the σ

np
ann

annihilation cross section, the σ
pp
ann annihilation cross section

is significantly enhanced by the Coulomb interaction for plab

momenta of the incident particle below 500 MeV/c. As plab

increases, the two annihilation cross sections become almost
identical, approaching Pomeranchuk’s equality limit [55] at
plab ∼ 500 MeV/c. In addition, the calculated annihilation
cross sections agree well with the experimental data. With the
improved σ

pp
ann and σ

pn
ann, we also reproduced the general map of

annihilation cross sections, σpA
ann , as a function of nuclear mass

numbers A and collision energies.
With encouraging results from the particle transmission

theory to describe theσ
pp
ann,σpn

ann, andσ
pA
ann annihilation cross sec-

tions, we employed the very same theory to examine σnA
ann. But

there was an inadvertent error that arose through the Coulomb
trajectory modification considered in the extended Glauber
model, making our σnA

ann agree with the experiment data. We
reexamined and reevaluated our σnA

ann cross section and found,
in the absence of additional Coulomb effects, that the rectified
σnA

ann cross sections are significantly “flat” and relatively lower
than the experimental data for plab < 200 MeV/c, yielding a
far from satisfactory agreement between our calculations and
experiment of Astrua et al.

Anticipating that new and better experiments [56–58] will
be performed in the coming years, here we attempt to explore
an alternative theoretical method to rectify our previous an-
nihilation cross section results for nA. Moreover, it appears
that a comparative study of the absorption cross sections
induced by neutrons, antineutrons, and antiprotons has not yet
been made.

The content of this paper is as follows. In Sec. II, we
present the phenomenological optical model potential (OMP)
we obtained to examine the nA annihilation cross sections.
In Sec. III, we assess our phenomenological theory by com-
paring our numerical results to the available experimental nA
annihilation cross section, nA reaction cross section, and pA
annihilation data. Finally, we conclude the present study with
some discussions in Sec. IV.

II. PHENOMENOLOGICAL MOMENTUM-DEPENDENT
OPTICAL MODEL POTENTIAL

The Glauber model is known to work best at high energies
in which the extend individual nucleon can be treated as an
isolated scatterer. For low-energy collisions, such a description
may not be appropriate, and the traditional optical model po-
tential analysis may be more suitable. For this reason we adopt
a phenomenological analysis to study the energy dependence
of the OMP on nA annihilation cross section. Moreover, the
method of OMP is well tested and long established for treating
complicated interactions between an incoming nucleon and a
nucleus [59,60].

In the present analysis, we consider the collision between
an antinucleon (an n̄ or an p̄ and, or a neutron) and a nucleus,
and their effective interaction strength without spin-orbit in-
teraction is represented generally by a momentum-dependent
optical model potential,

U (r) = VC(r) − VV (r,p) − i[WV (r,p) + WD(r,p)], (1)

where subscriptsV andD denote the volume and surface terms,
respectively; and

VV (r,p) = Vo(p)f (r,rV ,aV ), (2)

WV (r,p) = Wo(p)f (r,rW ,aW ), (3)

WD(r,p) = −4aWD
WoD

(p)
d

dr
f (r,rWD

,aWD
). (4)

As usual the f (r,rx,ax) is a Wood-Saxon form factor,

f (r,rx,ax) = 1

(1 + exp[(r − rx)/ax])
, (5)

where x ≡ V,W,WD . The Coulomb term VC(r) is naturally
zero for an electrically neutral projectile. Otherwise,

VC(r) =
⎧⎨
⎩

ZAZpe2

2rc

(
3 − r2

r2
c

)
for r � rc,

ZAZpe2

r
for r > rc,

(6)

for a charged projectile, with ZA and Zp being the target and
projectile nuclear charges, respectively, and rc = roA

1/3 is the
Coulomb radius with ro being 1.25 fm.

Although the main focus here is the nA optical model
potential, our knowledge of the pA optical model potential
is more extensive. To gain some intuitions about the shape
and size of our desired OMP, knowledge of the pA OMP is
valuable as it could shed some light on the construction of
nA OMP. There are at least two families of the pA potential,
and these families and their ambiguity were studied by one
of the present authors in [61]. One family, so-called S, has
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a much more shallow imaginary potential with W of order
15–45 MeV, associated with a deep real potential with V of
order 200–350 MeV. The other one, so-called D, has a real
well depth V of order 100 MeV and a deep imaginary part W
of order 100–200 MeV. On the other hand, the neutron-nucleus
(nA) optical potential is also well established. From Koning
and Delaroche [60], we learned that the nA optical potential
has a real well depth V of the order of 60 MeV and considerably
shallower imaginary potential with W of the order of 15 MeV
for many nuclei across the periodic table, but with A value
greater than 23. This potential family is quite different from
that of pA.

The optical model potential of Koning and Delaroche has
many advantages because of its simplicities and systematic
variations. However, as it has not taken into account the effects
of static and dynamical deformation of the nuclei, it has its
limitations, and its application to 12C as we do here will exhibit
an expected deficiency.

It is desirable to have a simple, “flexible,” and yet rich
enough (i.e., applicable in the very-low-momentum region)
form of optical model potential for nA that could also be useful
for pA annihilation. We therefore concocted a momentum-
dependent phenomenological optical model potential,

Vo(plab) = V ′
o ×

(
cosh(

√
(b0 + plab) − √

b0)

cosh(
√

(b1 + plab) − √
b1)

)
, (7)

where b0 and b1 are two adjustable parameters. We choose
this form so that Vo → V ′

o as plab → 0, and we use the
cosh function such that Vo(plab) decreases monotonically and
gradually with plab. In addition, we also want our Vo(plab)
to behave similarly to the functional dependence of VV (E)
of Koning and Delaroche plotted in Fig. 1 of Ref. [60]. We
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FIG. 1. Comparison of nC, pC annihilation cross sections and
the nC nonelastic reaction cross section as a function of the projectile
momentum in the laboratory frame. The dash-dot-dotted line refers
to the nC reaction cross section obtained using the KD-OMP; the
dotted line and the scattered triangles are the nC reaction nonelastic
data from Brookhaven National Laboratory’s National Nuclear Data
Center [66].

TABLE I. Antineutron optical model potential well depths, V ′
o

and W(o,oD), and the b(0,1) free parameters, are in MeV, and VD = 0.
The W(o,oD) parameters are independent of the projectile momentum.

Nucleus 12C 27Al 56Fe 63.6Cu 107.9Ag 118.7Sn 206Pb

V ′
o 52.00 66.00 56.00 60.00 82.00 90.00 110.00

Wo 12.00 3.50 9.00 4.33 4.10 4.30 2.80
WoD 5.98 5.98 5.98 5.98 5.98 5.98 5.98
b0 14.04 31.86 67.20 75.52 127.29 140.08 243.08
b1 7.92 16.90 39.00 37.70 61.10 65.00 106.60

also assume that our absorptive potentials, Wo(p) = Wo and
WoD(p) = WoD , do not vary with the projectile momentum.
Table I lists the optical model potential well depths and the b0

and b1 parameters used in the calculations.
With regard to the radius parameter in the optical potential,

we use the following procedure to estimate its approximate
value before more refined search and adjustment. From the ex-
perimental annihilation cross section at high energies at which
a geometrical approximation is a reasonable assumption, we
estimate a radius rR given by

σann = π (rRA1/3)2. (8)

This radius defines a sharp cutoff distribution for the collision
process. The equivalent Wood-Saxon optical model potential
with a radius parameter of rV and a diffuseness aV can be
estimated by [62]

rV = rR

(
1 − 1

3

(
πaV

rRA1/3

)2
)

(9)

for each nuclei. For example, even though the nC experimental
annihilation cross section at plab > 500 MeV/c is not readily
available, according to Pomeranchuk’s equality at the high-
energy limit [55], both the nC and pC annihilation cross
sections should be identical. Therefore, it is reasonable to
make use of the experimental data to determine the value
of pC annihilation cross section at 900 MeV/c and use this
value to determine the rR , which turns out to be 1.653 fm.
Concerning how one guesses the value of the diffuseness
parameter aV , its initial estimate is deduced from the clues
given by Friedman [31], in which the aV for antineutron may
be about a factor of 2–3 times of that for the neutron. To search
for the optimal value of aV , several iterative calculations for
annihilation cross section have to be performed at a fixed
momentum of 900 MeV/c for both nC and pC until both
their annihilation cross sections closely satisfy Pomeranchuk’s
equality. Once the rR and aV values are determined, Eq. (9)
gives the corresponding value of rV . The same procedure is
also applied to the case of iron nuclei.

With respect to the Al, Cu, Sn, and Pb nuclei (e.g., see Fig. 5
in Ref. [9]), despite the fact that there are p experimental data
are available at around 1 GeV/c, they were not measured at a
common momentum point. As a result, we are afraid that they
can complicate the consistency of our estimations for the rR

and hence rV values for each element. To be safe, we choose
to use the experimental nA annihilation cross section values
at 375 MeV/c and extrapolate them to 400 MeV/c. Note that
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TABLE II. The estimated annihilation cross sections at 400 and
900 MeV/c, and their corresponding values of rR .

Pair plab (MeV/c) σ = π (rRA1/3)2 (fm2) rR (fm)

pC 900 45.0 1.653
nAl 400 100.0 1.881
pFe 900 100.0 1.475
nCu 400 180.0 1.893
nAg 400 240.0 1.840
nSn 400 265.0 1.868
nPb 400 400.0 1.911

the same iterative aV -search procedure is also considered for
these elements. Table II presents the annihilation cross sections
at 400 and 900 MeV/c, and their corresponding values of rR .
The subsequent antineutron radial and diffuseness parameters
for the POMP as a function of mass numbers are given in
Table III. Figure 6(a) illustrates the variation of the strength of
Vo as a function of mass number and antineutron momentum.
In general, their behaviors bear similarity with the momentum
functional form of σnA

ann.
In order to obtain the nA reaction cross section, we adopted

the optical model potential by Koning and Delaroche [60].
To avoid later confusion, we shall use the phenomenological
optical model potential (POMP) to denote the antinucleon-
nucleus interactionsU (r) of Eq. (7). On the other hand, we shall
use the Koning-Delaroche optical model potential (KD-OMP)
to denote the nA optical potential described in Ref. [60].

These optical model potentials are then employed in the
Schrödinger equation, and the standard distorted wave method
provided in the ECIS97 computer program [63] is used to
solve the Schrödinger equation to obtain the reaction cross
section. For each individual nucleus, we use a fixed value
for Vo evaluated at plab = 200 MeV/c for plab � 200 MeV/c,
as Vo becomes almost constant in the high-energy limit.
Furthermore, we also check the sensitivity of the cross section
atplab = 200 MeV/c with respect to the small variation (∼5%)
of Vo and make sure that the change in the cross section is not
more than ∼5%.

TABLE III. Optical model potential parameters for nA and nA

interactions. The neutron optical model potential parameters are from
Ref. [60]. The geometry parameters rx and diffusiveness parameters
ax are in fm. It is assumed that rW = rV , aW = aV , aVD

= aWD
, and

VD = 0.

Nucleus 12C 27Al 56Fe 64Cu 108Ag 119Sn 206Pb

n rV 1.234 1.577 1.307 1.649 1.663 1.681 1.785
rWD

1.260 1.260 1.260 1.260 1.260 1.260 1.260
aV 1.050 1.250 1.050 1.500 1.500 1.600 1.600
aWD

0.590 0.590 0.590 0.590 0.590 0.590 0.590

n rV 1.127 1.162 1.186 1.203 1.219 1.221 1.235
rWD

1.306 1.290 1.282 1.279 1.267 1.264 1.249
aV 0.676 0.665 0.663 0.668 0.662 0.660 0.647
aWD

0.543 0.538 0.532 0.534 0.527 0.525 0.510
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FIG. 2. Comparison of nFe, pFe annihilation cross sections and
the nFe nonelastic reaction cross section as a function of the projectile
momentum in the laboratory frame. The symbols are experimental
data of nFe annihilation. The dash-dot-dotted line refers to the
nFe reaction cross section obtained using the KD-OMP; the dotted
line is the nFe reaction nonelastic data from Brookhaven National
Laboratory’s National Nuclear Data Center [66].

III. RESULTS AND DISCUSSION

In this section, we first evaluate our nA annihilation cross
section results by comparing with the available experimental
data. Second, we discuss the differences between the nA
annihilation and nA reaction cross sections, and compare their
corresponding optical model potential parameters. Third, we
consider the pA annihilation. Lastly, we analyze the power
laws of the p and n annihilation cross sections.

A. n A annihilation cross sections

In our previous study [23], we examined the np annihilation
cross section as a function of the antineutron momentum
by considering the transmission through a nuclear potential.
Although the annihilation cross section data for np still remain
rather sparse to date in comparison to pp and contain sig-
nificant degrees of uncertainty, a good agreement is achieved
between our analytical results and experimental data from the
OBELIX Collaboration [1] and from Brookhaven National
Laboratory [2]. Similarly, a good way to verify and validate the
present optical model potential model in describing the mass
A and momentum dependencies of n annihilation (and of n
reactions) is to benchmark against the available experimental
data.

Figure 1 shows a comparison of nC annihilation cross
sections against several sets of data. From a quantitative
perspective, the predicted cross sections appear to obey the
momentum dependence behavior suggested by the experiment
in the low-momenta region. As plab proceeds to increase
beyond 500 MeV/c, the theoretical and experimental cross
sections continue to remain in agreement, indicating that the
cross section decreases as the momentum increases.
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FIG. 3. (a) Cross sections for nA, pA, and nA as a function of the projectile momentum in the laboratory frame. The solid line is for nA,
the dashed line is for pA, and the dash-dot-dotted line is for nA. The circles are experimental data from Astrua et al. [8]. The diamond is
from Bianconi et al. [9]. (b) Cross section ratios. The solid line represents the theoretical σnA

ann/σ
nA
rec , the dashed line represents the theoretical

σpA
ann /σ nA

ann, and the solid circle represents the ratio of the experimental σnA
ann to the theoretical σnA

rec .

In Fig. 2, we examine the nFe annihilation cross sections
along with several data sets. Similarly, the calculated nFe
annihilation cross sections also appear to be in good agreement
with the experimental data, which indicate much larger cross
sections (in comparison to the case of nC annihilation) below
plab of 400 MeV/c, and the annihilation cross section becomes
progressively smaller as one goes up in plab.

Figure 3(a) shows that the predicted nA annihilation cross
sections for the Al, Cu, Ag, Sn, and Pb nuclei rise considerably
as the projectile momentum continues to decrease. These
theoretical cross sections also describe the experimental data
[8] relatively well in the momenta region where the data are
available for comparison, except at plab of 76 MeV/c where the
calculations underestimated the experiment by about 15–20%
for Ag, Sn, and Pb targets. In regard to the finding of Ref. [32]
where n annihilation cross sections shift to lower and lower
momentum as nuclear size increases, inspecting the change of
σnA

ann cross sections as a function the nuclear mass number A
displayed in Fig. 3(a), we do not notice any sign of reduction
of nA annihilation cross sections or shifts of such kind.

B. n A reaction cross sections

The energy dependence of nA reaction cross sections have
been relatively well studied for many elements across the
periodic table over the years. Therefore, it is meaningful to
compare the nA annihilation cross section against the nA

reaction cross section as a function of incoming projectile
momentum. But before we do that, it is worthwhile to examine
the quality of the present neutron reaction cross sections based
on the KD-OMP. Displayed in Fig. 4 is a comparison between
the present results and the BNL recommended nonelastic
reaction cross section data for C, Al, Fe, Cu, Ag, and Pb
nuclei [66]. It is shown that the overall agreement between the
calculated cross sections and recommended data is reasonably
good. Note that we intentionally left out the Sn results in the
plot because, to our best knowledge, we could not find the
available BNL data to make a comparison.

Since both the nA and nA interactions are free from
initial-state Coulomb interactions, it is valuable to compare
the momentum dependence of the cross sections of these
two interactions. One can clearly see, from Figs. 1, 2, and
3(a), that the n annihilation cross sections of all targets are
significantly larger than that of the n reaction. To better
appreciate the differences in the cross sections between the n
and n projectiles, we plot the σnA

ann/σ
nA
rec ratios as a function

of the projectile momentum for carbon and iron nuclei in
Fig. 5(a). In general, the curves for carbon and iron nuclei
depict a similar behavior. In the same plot, we also include
the ratio of experimental σnC

ann to the theoretical σnC
rec , which we

shall denote as the experimental ratio. It is interesting to see the
shape of the curve of experimental ratios also resembles the
behavior of the theory even though the agreement between
the theoretical predicted and the experimental ratios is not
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FIG. 4. The nA nonelastic reaction cross section as a function
of the projectile momentum in the laboratory frame. The solid line
refers to the present results obtained using the KD-OMP. The symbols
are the data recommended by the Brookhaven National Laboratory’s
National Nuclear Data Center [66].

that satisfactory. The disagreement may be attributed to the
calculation not taking into account the effects of static and
dynamical deformation of the carbon nuclei.

Examining Fig. 5(a) more closely, one finds that the
theoretical σnC

ann/σ
nC
rec ratio is about 1.5 at plab � 160 MeV/c

whereas the experimentally suggested value is about 1.3 and
at a slightly higher plab of 165 MeV/c. Moving to higher
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FIG. 5. Cross section ratios as a function of the projectile mo-
mentum in the laboratory frame. (a) The ratios of σn/σn. The solid
line represents the theoretical σnC

ann/σ
nC
rec , the dashed line represents

the theoretical σnFe
ann /σ nFe

rec , and the solid circle represents the ratio
of experimental σnC

ann to the theoretical σnC
rec . Note that there are

no experimental σnFe
ann available at the common momentum points

of carbon. (b) The ratios of σp/σn. The solid line represents the
theoretical σpC

ann/σ
nC
ann and the dashed line represents the theoretical

σpFe
ann /σ nFe

ann .

plab � 400 MeV/c, this ratio is about 2.3. It should be noted
that in this low-energy region we have assumed that most of
the nA nonelastic reactions are due to the absorption process.
We also restrict our analysis to the lowest momentum of
100 MeV/c to avoid any complications due to contributions
from the low-energy resonances.

Again, as illustrated in Fig. 5(a), the σnFe
ann /σnFe

rec ratio also
turned out to be about 1.4 to 1.6 between plab values of
120 and 400 MeV/c. For the rest of the targets shown in
Fig. 3(b), one finds that the σnA

ann/σ
nA
rec ratios vary between

the order of 1.5 and 3.8 in the region where comparisons are
possible, and also depend on both the momentum and the
A values. Notice that their momentum dependency of cross
section ratios resembles their cross section behaviors, which
are also quite different from those of the iron and carbon nuclei
seen earlier in Fig. 5(a). Comparing to the case of carbon
nuclei, Fig. 3(b) indicates a much better agreement between the
predicted and the experimental σnA

ann/σ
nA
rec ratios for all targets.

The better agreement is understandable since the theoretical
and experimental σnA

rec are also in a much closer agreement
(e.g., see Fig. 4).

Now we consider the optical potential parameters for both
nA and nA interactions. The values of the initial (or starting)
potential depthV ′

o for all the target elements are given in Table I.
The V ′

o value, in general, increases from 52 to 110 MeV as the
A value goes from 12 to 206. But with KD-OMP [60] calcu-
lations, this trend is reversed for the case of the nA reaction.

The corresponding real parts of the central potentials Vo

for nA and nA interactions, as a function of momentum, are
shown in Figs. 6(a) an 6(b), respectively. Although the depth of
Vo based on POMP for every nuclei decreases with increasing
momentum according to Eq. (7), as shown in Fig. 6(a), the
antineutron’s potential curves do not display any form of
systematic order as a function of mass number A. At larger
momentum (i.e., plab > 100 MeV/c), the potentials gradually
become less sensitive to the increment of the projectile mo-
mentum. In contrast, in Fig. 6(b), the neutron’s Vo obtained
from KD-OMP [60] for each nucleus does show a systematic
decrease as the nuclear size increases and an almost linear
decrease as a function of momentum, especially for plab >
200 MeV/c.

The imaginary terms Wo and WoD
, the volume and surface

absorption POMP components, are also quite different from the
KD-OMP prescribed values. First of all, they do not depend
on projectile momentum. Second, as shown in Table II, even
though our Wo for nA varies from 12.0 to 2.8 MeV with respect
to carbon and to lead nuclei, there is no systematic change in Wo

as the nuclear size increases. In comparison to the case of nA,
Fig. 7(a) shows that the KD-OMP determined Wo decreases as
A value increases, but increases as plab increases. Third, the
antineutron’s surface absorption WoD

for nA is chosen to be a
constant of 5.98 MeV for all targets. However, the neutron’s
surface absorption values WoD do depend on momentum, and
their functional forms are diaplayed in Fig. 7(b). It should be
noted that for neutrons, at low incident energy, the absorption
is dominated by the surface component WoD

. Beyond about
250 MeV/c, the volume term Wo can no longer be ignored, and
at higher energies the absorption can be completely dominated
by Wo.
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FIG. 6. The variation of Vo as a function of projectile momentum
and atomic mass.

We compare the geometrical parameters rx and diffusive-
ness parameters ax for nA and nA interactions in Table III.
Similar to nA interactions, with the case of iron nuclei as an
exception, we have in the case of nA that the radii rW = rV and
they increase as A increases. But the present rV values for the
antineutron are significantly larger than those for the neutron.
For example, the rV of 1.785 fm for nPb annihilation is about
45% larger than the rV of 1.235 fm for the nPb reaction. Also, in
the nA case, even though the rWD

values for nA and nA are not
that different, we have a constant value of rWD

= 1.26 fm for
every nuclei, whereas the rWD

associated with the nA reaction
decreases from the C target with rWD

= 1.306 fm to Pb with
rWD

= 1.249 fm. A similar pattern is also found with the nA
diffusiveness parameters aW = aV and aWD

. The diffusiveness
parameters aV for nA also happen to be at least a factor of 2–3
larger than those for the nA interactions. Nevertheless, this
set of POMP parameters enables us to obtain theoretical cross
sections that complement the experimental annihilation cross
sections across a wide momentum range.

C. pA annihilation cross sections

As an adjunct to predicting the nA annihilation and nA reac-
tion cross sections, we further predict the pA annihilation cross
section. We base our prediction on the simplest assumption that
both pA and nA interactions have the same nuclear optical
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FIG. 7. Neutron optical model potential well depth, W(o,oD ), as a
function of projectile momentum.

model potential but differ only in the long-range Coulomb
interaction. The goal here is to examine the dependence of
the annihilation cross sections on the projectile charge and to
provide a benchmark for comparison, against which the nA
and pA interaction potentials may differ.

In comparison to the neutral n projectile, according to the
annihilation cross sections depicted in Figs. 1, 2 and 3(a), it
is within our expectation that the charged p projectile shows
relatively larger annihilation cross section. As a matter of fact,
because of the additional effects from Coulomb focusing, the
p annihilation cross sections for all the nuclei feature a steeper
rise than that of the nA interaction as the projectile momentum
goes down. As the projectile momentum continues to increase,
the effects from Coulomb focusing also gradually diminish. As
a result, the annihilation cross sections for both n and p merge
at plab ∼ 500 MeV/c, and eventually reach Pomaranchuk’s
equality, in which their cross section ratio becomes unity at
∼1.0 GeV/c. These plots also evidently indicate that the pA
annihilation cross sections are sensitive to the target mass
number A.

To better understand the differences in annihilation cross
sections due to p and n projectiles, we examine the σ

pA
ann /σnA

ann
ratios as a function of momentum for carbon and iron nuclei
in Fig. 5(b). The plots show that their behavior is similar to the
momentum dependence of their annihilation cross sections,
and their slopes are remarkably steep in the region where the
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momentum goes to zero. Comparing the magnitude of the
iron ratio curve to that of carbon, one clearly sees a stronger
Coulomb focusing effects for the heavier nucleus and this
long-range effect weakens in the limit of large momentum.
In addition to that, Fig. 5(b) also reveals a contrasting energy
dependent in the behavior of σ

pA
ann /σnA

ann ratios in comparison to
those of σnA

ann/σ
nA
rec ratios shown in Fig. 5(a).

Figure 3(b) displays a collection of the behaviors of
σ

pA
ann /σnA

ann ratios for all target nuclei as a function of momentum.
The featured behavior is consistent with σnA

ann/σ
nA
rec where

comparisons are possible, expected that the σ
pA
ann /σnA

ann ratios
are smaller by roughly a factor of 2. Again, all the σ

pA
ann /σnA

ann
ratios show strong momentum dependence at low momenta.

Recently, the ASACUSA Collaboration took a new mea-
surement of the pC annihilation cross section at a low energy
of 5.3 MeV or plab = 100 MeV/c [20]. Their cross section
value of 1.73 ± 0.25 barns is also plotted in Fig. 1. The datum
clearly touches our prediction. In addition to that, we have
also plotted the one and only experimental datum for pSn at
100 MeV/c in Fig. 3(a4). The down side of this case is that
there are no other comparable experimental measurements for
p and n as in the case of protons. Therefore, at this point,
we will not surmise the energy dependence of the pSn cross
section.

D. The power laws and annihilation cross sections

Since it is of interest to find out whether σnA
ann ∝ A2/3 at low

energies, we plotted σnA
ann at plab = 50 and 100 MeV/c against

the corresponding mass number of A2/3 in Fig. 8. The scattered
points are the POMP predicted results. They are fitted with an
expression of σnA

ann = σnA
o A2/3. The fitting is rather good. It

indeed indicates that σnA
ann has a linear dependence on A2/3 at

low energies. Apart from these, Fig. 8 additionally reveals that
the nFe annihilation cross sections appear to peculiarly deviate
from this linear dependence. Perhaps future experiments can
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FIG. 9. The exponent α expressing the dependence of the σ n̄A
ann

and σ p̄A
ann on plab as σ n̄A

ann ∝ 1/pα
lab, as a function of the target mass

number A. The scattered points are results from the present POMP
calculations. The dashed line marks α = 0.530 (an average over all the
targets) for the n projectile whereas the dotted line marks α = 1.494
(an average over all the targets) for the p projectile.

reinvestigate this anomaly in the low-momentum region where
plab is less than 100 MeV/c.

It is also informative to examine the inverse power law of
nA annihilation. In the limit of low energy, parametrizing the
theoretical annihilation cross section in an inverse power law
form, σnA

ann ∝ 1/pα
lab, in the range between 40 and 100 MeV/c,

the α exponential value can be easily determined by setting
α = ∂ ln(σann)/∂ ln(plab). Figure 9 gives the variation of α
exponential values as a function of mass number A. Taking an
average over all the nuclear targets yields a value of α = 0.530.
This consequently suggests that the σnA

ann may be proportional
to 1/p

1/2
lab for targets with A � 6. This finding appears to be

far from what we learned in our previous work [23]. There we
found in the case of np the exponential value α = 1.08 in the
momentum range between 30 and 95 MeV/c. This exponential
value is very close to the expected α = 1.0 value, a clear
indication of the 1/plab behavior. However, in our previous
study [23], the nuclear potential was assumed to be a constant
there. Here, in contrast, the nuclear optical potential depends
on the projectile momentum, causing the σnA to deviate from
the 1/plab law.

At the low-energy limit, we can see that the cross section
slope for the pA interaction is much steeper than the one
of nA. Therefore, it is also meaningful to check the inverse
power law form, σ

pA
ann ∝ 1/pα

lab, of pA annihilation. Similar to
what we discussed earlier with respect to nA annihilation in
Fig. 9, parametrizing the theoretical annihilation cross section
in a power law form in the range between 40 and 100 MeV/c
allows one to obtain the α exponential value. In our previous
investigation on pp interaction [23], we found that α = 1.544
in the momentum range between 30 and 50 MeV/c. Displayed
in Fig. 9 is the variation of α as a function of mass A. Similarly,
averaging these values over the seven nuclear targets yields
a value of α = 1.494. As opposed to the case of nA, this
value is close to what we found previously in the case of pp
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annihilation. This also means the Coulomb effect is dominant
at the low-energy limit and cannot be neglected. The extracted
α = 1.494 is not quite equal to α = 2.0 as expected at the
very-low-energy limit [64,65]. This means that the approach
to the lowest energy limit of α = 2 will occur at much lower
energies than the range of low energies considered here.

IV. SUMMARY AND CONCLUSIONS

The purpose of this contribution is twofold. The first
one is to revisit and rectify our previous annihilation cross
section results for nA in [23]. The second one is to pursue a
phenomenological analysis of n annihilation cross section as
a function of projectile momentum plab and mass number A.

Previously, we used the extended Glauber theory [23]
to examine the experimental annihilation cross section data
for n on C, Al, Fe, Cu, Ag, Sn, and Pb in the momentum
range below 500 MeV/c. But an inadvertent error arose
through the Coulomb trajectory modification, causing the re-
sults to agree with the experimental data. After amending the
theory, the re-evaluated results turned out to be in disagreement
with the experimental data.

The Glauber theory is well known to be valid for high-
energy collisions in which the extend individual nucleon can
be treated as an isolated scatterer. For low-energy collisions,
such a description may not be as appropriate and the traditional
optical model analysis may be more suitable. For this reason
we adopt the optical model potential to analyze the momentum
dependence of nA annihilation cross section.

The use of a microscopic optical model potential method
was previously attempted by Friedman [31,32] to investigate
the momentum dependence of nA annihilation cross sections.
The investigation found that the annihilation cross section of
n on nuclei cannot be described by a microscopic optical
potential that fits well the available data on the p interactions
with nuclei. Nevertheless, inspired by the works of Friedman
and Koning and Delaroche [60], we explored a new form
of momentum-dependent optical model potential to describe
the nA interaction. Even though it is phenomenological and
local, the presented optical model potential of Eq. (7) is
quite different from that of Koning and Delaroche and that
of Friedman. It is simple, as well as comprehensive enough
to treat very-low-momentum nA and pA annihilations. We
employed the momentum-dependent optical model potential
in the Schrödinger equation, and the equation is solved using

the standard distorted wave method provided in the ECIS97
computer program [63] to evaluate the annihilation cross
sections for nA and pA. Similarly, we have also applied
the Koning-Delaroche’s momentum-dependent optical model
potential to examine the nA nonelastic reaction cross sections
on on C, Al, Fe, Cu, Ag, Sn, and Pb. We showed that the
calculated cross sections are in reasonable agreement with the
recommended data from Brookhaven National Laboratory’s
database.

Although, in this study, we found that the present nA
annihilation cross sections fit the experimental data rather well,
this does not mean that we have fundamentally understood the
neutral nA annihilation mechanism. In fact, the opposite is
true. For a start, even though both the nA and nA interactions
are Coulomb free, why does the σnA

ann/σ
nA
rec cross section ratio

appears to be so large (almost by a factor of 2)? From a
simple geometrical argument, in comparison to the incoming
neutron n, why does the antineutron n seems to have a
larger “effective area” for the target nuclei to react? Further
theoretical and experimental efforts are necessary to address
these fundamental questions.

In the low-energy range considered here, we have demon-
strated and verified that σnA

ann is indeed approximately pro-
portional to A2/3. We have illustrated that for neutral or
Coulomb-free nA interactions the annihilation σnA

ann ∝ 1/pα
lab.

In addition, we have also shown that the α value for charged
pA interactions is significantly larger than the α value for
neutral nA interactions. We presume that this is likely due to the
additional Coulomb effects on top of nuclear interactions for
charged pA interactions. In conclusion, we have calculated the
nA annihilation cross section based on the simplest assumption
that both nA and pA interactions have the same nuclear optical
potential but differ only in the long-range electrostatic interac-
tion. Any deviation from such a simple model extrapolation in
measurements will shed new and desirable information on the
difference between nA and pA potentials.
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