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Sensitivity study of experimental measures for the nuclear liquid-gas phase transition in the
statistical multifragmentation model
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The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter,
the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent
(τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear
multifragmention processes within the framework of the statistical multifragmentation model (SMM). The
sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical
point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and
the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary
fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear
liquid-gas phase transition.
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I. INTRODUCTION

The interest in multifragmentation processes, which were
predicted a long time ago [1] and have been extensively studied
following the advent of 4π detectors [2–4], lies in the fact that
they provide a wealth of information on nuclear dynamics, on
the properties of the nuclear equation of state (EOS), and on
the possible nuclear liquid-gas phase transition. The nuclear
liquid-gas phase transition in multifragmentation processes
was first suggested in the early 1980s [5–7]. It is expected
to occur when the nucleus is heated to a moderate temperature
and breaks up on a short timescale into light particles and
intermediate mass fragments with Z � 3 (IMF).

In the past three decades, many experimental and theoretical
works have been devoted to searching for the liquid-gas phase
transition in Fermi energy heavy-ion collisions and relativistic
energy projectile fragmentations. Among the measures used
for studies are the nuclear specific heat capacity (the caloric
curves) [8–16], the bimodality in charge asymmetry [17–19],
the Fisher droplet model analysis [20–26], the Landau free
energy approach [25–31], the moment of the charge distri-
butions [22,32–35], the fluctuation properties of the heaviest
fragment size (charge) [22,23,35–37], Zipf’s law [38,39], the
multiplicity derivatives recently proposed by Mallik et al. [40],
and the derivative of cluster size [41]. With these features,
considerable progress has been accomplished on the theoretical
as well as on the experimental side for the nuclear liquid-gas
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phase transition. Ma et al. in Refs. [22–24] examined most
of these measures, except the multiplicity derivatives, as a
function of the excitation energy, using rather light reaction
systems of 40Ar + 27Al,48Ti, and 58Ni at 47 MeV/nucleon,
and showed that all of them show a critical behavior around
E∗/A ∼ 5.6 MeV. However since all values of the measures
are plotted as a function of the excitation energy, the signature
appears as a broad peak around E∗/A ∼ 5.6 MeV. Therefore,
the specific properties of the nuclear liquid-gas phase transition
in hot nuclear matter are still under debate and many efforts
are still required.

In order to search for suitable observables in heavy-ion
collisions, which can provide strong signatures for the nu-
clear liquid-gas phase transition and be a guide for future
experiments, we investigate several experimental measures
including the multiplicity derivatives, the moment parameters,
and Zipf’s law, and analyze the sensitivity of each observable
in the framework of the statistical multifragmentation model
(SMM) [42–47]. SMM is rather successful in describing the
multiple production of intermediate mass fragments [48–50]
and exhibits a phase transition of the liquid-gas type [51,52].
This article is organized as follows: A brief description of SMM
is presented in Sec. II. The SMM calculations and analyses of
phase transition are given in Sec. III. Discussions are given in
Sec. IV. A brief summary is given in Sec. V.

II. STATISTICAL MULTIFRAGMENTATION
MODEL (SMM)

In SMM, the fragmenting system is in thermal and chem-
ical equilibrium at low density [44–47]. A Markov chain is
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generated to represent the whole partition ensemble in the
version discussed below [45]. All breakup channels (partitions)
for nucleons and excited fragments are considered under
the conservation of mass, charge, momentum and energy.
The primary fragments are described by liquid drops at a
given freezeout volume. Light clusters with mass number
A � 4 are considered as stable particles (“nuclear gas”). Their
masses and spins are taken from the experimental values.
Only translational degrees of freedom of these particles are
taken into account in the entropy of the system. When the
nuclear density becomes very low, the binding energy of
clusters is significantly modified by the Pauli blocking and
clusterization [53], but these effects are not taken into account
in the SMM. Fragments with A > 4 are treated as spherical
excited nuclear liquid drops and the free energies FA,Z are
given as a sum of the bulk, surface, Coulomb, and symmetry-
energy contributions:

FA,Z = FB
A,Z + FS

A,Z + EC
A,Z + F

sym
A,Z , (1)

where

FB
A,Z = (−W0 − T 2/ε0)A, (2)

FS
A,Z = B0A

2/3

[
T 2

c − T 2

T 2
c + T 2

]5/4

, (3)

EC
A,Z = 3

5

e2

r0

[
1 − (ρ/ρ0)1/3

] Z2

A1/3
, (4)

F
sym
A,Z = γ (A − 2Z)2/A − T S

sym
A,Z. (5)

W0 = 16 MeV is used for the binding energy of infinite nuclear
matter, and ε0 = 16 MeV is related to the level density; B0 =
18 MeV is used for the surface coefficient; Tc = 18 MeV is
used for the critical temperature of infinite nuclear matter; e is
the charge unit and r0 = 1.17 fm; ρ is the density at the breakup
and ρ0 is the normal nuclear density; γ is the symmetry energy
parameter; the S

sym
A,Z is the symmetry entropy of fragments,

introduced in our previous work [47].
The entropy of fragments SA,Z can be derived from the free

energy as

SA,Z = −∂FA,Z

∂T
= SB

A,Z + SS
A,Z + S

sym
A,Z. (6)

After the primary breakup, the Coulomb acceleration and
the secondary deexcitation are performed to get the final
secondary fragments. In the deexcitation processes, the Fermi
breakup of light primary fragments (A < 16), the successive
particle emission (A > 16), and the fission of heavy nuclei
(A > 200) are taken into account.

III. SMM CALCULATIONS AND ANALYSES
OF PHASE TRANSITION

SMM calculations are performed with the source mass num-
ber As = 100, charge number Zs = 45, and the fragmenting
volume V = 6V0, where V0 is the volume at the normal nuclear
density. The default symmetry energy coefficient γ = 25 MeV
is used. The input source excitation energy (Ex) varies from 1
to 15 MeV/nucleon with an energy step of 0.25 MeV/nucleon.
More than 1 million events are generated for each Ex . In
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FIG. 1. (a) The caloric curve of a fragmenting source with As =
100, Zs = 45 of SMM calculations. (b) The specific heat capacity Cv

derived from the caloric curve as a function of source temperature.
The vertical line shows the critical point at T = 5.3 MeV.

order to be a guide in future experiments, the calculations are
performed both for the primary and secondary fragments.

In SMM the “temperature” depends slightly on the frag-
menting channel because of the energy fluctuates from partition
to partition with the Markov-chain method. The energies are
determined from the energy balance for a given partition.
Therefore, the average value over all exit channels is used as
the source temperature in the following analyses [47].

The specific heat capacity has long been considered to be
a measure that should provide important information on the
postulated nuclear liquid-gas phase transition [8,9,54–56]. As
one can see from Fig. 1(a), a notable plateauing of the caloric
curve is observed at Ex ∼ 4 MeV for the SMM calculations,
which results in a sharp increase of the specific heat capacity,
Cv , as shown in Fig. 1(b). The sharp maximum of Cv strongly
suggests that the liquid-gas phase transition occurs in SMM.
The critical point at temperature T = 5.3 MeV is obtained.
Experimentally the caloric curve has been measured in many
experiments. The plateau of the caloric curve is qualitatively
observed at an excitation energy of 5–10 MeV, depending on
the system size [54]. However, due to the complexity of re-
action mechanisms and sequential secondary decay processes,
the experimental determination of the excitation energy and
temperature becomes inaccurate and does not allow us to
determine the critical point as a sharp transition, even if it is
there. Therefore, it is crucial to find a good thermometer for the
experiments, which will enable us to determine the temperature
reliably and accurately and will have minimal effect from the
sequential decay process. Here we will use T = 5.3 MeV as
the theoretical critical point for the reference.

A. Multiplicity derivatives

The derivatives of total multiplicity and IMF multiplicity
were recently proposed as an observable to search for nuclear
liquid-gas phase transition by Mallik et al. in Ref. [40]. They
showed that the multiplicity derivatives show a strong signa-
ture marking the first-order phase transition in the canonical
thermodynamic model (CTM) [57], which is claimed to be
essentially the same as SMM.

We apply the multiplicity derivatives to the fragmenting
system calculated by SMM. Figures 2(a) and 2(b) show the
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FIG. 2. (a) The total multiplicity derivatives of fragmenting sys-
tem of SMM versus the source temperature. (b) Similar to (a) but
for the derivatives of IMF multiplicity. The solid and open circles
correspond to primary and secondary fragments, respectively. The
vertical lines indicate the critical point at T = 5.3 MeV from Fig. 1(b).

total and IMF multiplicity derivatives as a function of source
temperature, respectively, for both primary (solid circles) and
the secondary (open circles) fragments. All distributions show
a sharp increase and have a maximum at or near the critical
temperature of T = 5.3 MeV, shown by vertical lines in
both figures. Good agreement between critical temperatures
in the multiplicity derivatives and that in the specific heat
capacity is found. The fact that only a slightly lower value
(∼0.1 MeV) is found in the IMF multiplicity derivative of
secondary fragments indicates that the multiplicity derivatives
provide a good measure in searching for the critical point of
the nuclear matter liquid-gas phase transition. Our results are
consistent with the conclusions in Ref. [40].

B. Moment parameters

The general definition of the kth moment [22,32,33] of
charge distribution is given as

Mk =
∑

Zi �=Zmax

niZ
k
i , (7)

where ni is the multiplicity of fragments with charge number
Z = Zi in each event. Using the zeroth (M0), first (M1), and
second (M2) moments, the quantity γ2 is defined as

γ2 = M2M0

M2
1

. (8)

M2 and γ2 are expected to show the critical point
at which the fluctuations in fragment sizes become the
largest [22,32,33]. Figure 3(a) and 3(b) show the results of M2

and γ2 as a function of source temperature, respectively. As one
can see from Fig. 3(a), the M2 of primary fragments shows a
maximum at slightly higher (∼0.2 MeV) temperature than the
critical temperature T = 5.3 MeV, whereas the maximum of
M2 for secondary fragments is the same as the critical temper-
ature. The maximum value of γ2 of primary fragments appears
at a temperature slightly larger than the critical temperature. In
contrast, the maximum of γ2 of secondary fragments is slightly
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FIG. 3. (a) M2 as a function of source temperature. (b) γ2 as a
function of source temperature. Solid and open circles correspond
to primary and secondary fragments, respectively. The vertical lines
indicate the critical point at T = 5.3 MeV from Fig. 1(b).

lower than the critical temperature. The deviations of those
in both the primary and secondary fragments are less than
0.1 MeV, as shown in Fig. 3(b).

C. Bimodal parameter and fluctuations of maximum fragments

The bimodality [17–19] is a double peaked distribution
of an order parameter, which comes from the anomalous
convexity of the underlying microcanonical entropy. It can
be interpreted as the coexistence of different phases in the
system and provides a definition of an order parameter as
the best variable to separate the two maxima of the distri-
bution [58]. In this framework, when a nuclear system is
in the coexistence region, the probability distribution of the
order parameter becomes bimodal. In Ref. [58], the sorting
parameter with fragment atomic number Z = 12 as a limit
between two phases, (

∑
Zi�13 Zi − ∑

3�Zi�12 Zi)/
∑

Zi�3 Zi ,
which may connect with the density difference of the two
phases (ρL − ρG), was chosen as the order parameter in the
analysis of INDRA data.

As pointed out by Ma et al. in Ref. [22], the Z limit should be
reduced between two phases for light systems, and the critical
temperature appears at the inflection point of the bimodal
parameter. In the present analysis, we choose Z = 3 as the
limit between the two phases, and therefore the bimodal param-
eter can be defined as (

∑
Zi�4 Zi − ∑

1�Zi�3 Zi)/
∑

Zi�1 Zi .
Figure 4(a) shows the bimodal parameter as a function of
source temperature. Lower temperatures of inflection point in
bimodal parameter are found both for primary and secondary
fragments compared to the critical temperature T = 5.3 MeV.
This behavior is generally observed for the bimodal parameter
when the sorting limit Z is changed to 4 < Z < 12 and/or the
light charged particles (Z � 2) from the sorting fragments are
excluded.

The fluctuation of order parameter proposed by Botet in
Ref. [59] provides a method to select an order parameter
and characterize critical and off-critical behavior, without any
equilibrium assumption. The fluctuations in the atomic number
of the largest fragment (Zmax) were applied in the analysis of
INDRA data in Ref. [58], and the normalized variance of Zmax

(NVZ) was utilized by Dorso et al. in Ref. [60] to investigate
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FIG. 4. (a) The bimodal parameter as a function of source
temperature. (b) The NVZ as a function of source temperature.
Solid and open circles correspond to that of primary and secondary
fragments, respectively. The vertical lines indicate the critical point
at T = 5.3 MeV from Fig. 1(b).

the fluctuation of Zmax, which is given as

NVZ = σ 2
Zmax

〈Zmax〉 . (9)

In the SMM calculations, Zmax does not always show a Gaus-
sian distribution. Therefore, we apply the root-mean-square
(RMS) of Zmax as σZmax in NVZ. Figure 4(b) shows the NVZ as
a function of source temperature. One can see that the maxima
of NVZ for both the primary and secondary fragments appear
at the same temperature as that of the critical point, indicating
that the NVZ also provides a good measure in searching for the
critical point of the nuclear matter liquid-gas phase transition.

D. Fisher exponent and Zipf law parameter

The modified Fisher model (MFM) [20,25,61,62] has
been extensively applied to the analysis of multifragmenta-
tion events since it was first adopted by Purdue’s group in
Refs. [6,7,63]. The fragment mass distributions in multifrag-
mentation events are well described by a power-law distribu-
tion of A−τ with the power-law exponent τ ∼ 2.3 [20,25,27].

In the framework of the MFM, the isotope yield in a
multifragmentation reaction can be given as

Y (A,Z) = Y0A
−τ exp

[
−F (A,Z) − μnN − μpZ

T

]
, (10)

where F (A,Z) is the free energy of a fragment with mass A
and charge Z, and μn (μp) is the neutron (proton) chemical
potential. At the critical point, the exponential term in Eq. (10)
vanishes and the distribution becomes a pure power law,

Y (A) = Y0A
−τ . (11)

As shown by Ogul in Ref. [64], the power-law exponents
of mass and charge distributions behave in a very similar
fashion. Thus, we use Z−τ to fit the charge distribution. To
avoid contributions from fission-like large fragments (Z > 20)
and from coalescence-like small clusters (Z � 2), we adopt
the same range of Z = 5–15 in the fit as that in Ref. [65].
The extracted power-law exponents are shown in Fig. 5(a)
both for the primary and secondary fragments. The minima of
power-law exponents appear at slightly lower (∼0.15 MeV)
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FIG. 5. (a) The Fisher exponent (τ ) extracted from the Z dis-
tribution as a function of source temperature. (b) The Zipf law
parameter (ξ ) as a function of source temperature. Solid and open
circles correspond to primary and secondary fragments, respectively.
The vertical lines indicate the critical point at T = 5.3 MeV from
Fig. 1(b). The horizontal line in (b) shows ξ = 1.

temperature both for the primary and secondary fragments
compared to the critical temperature T = 5.3 MeV.

The fragments’ hierarchy distribution gives another mea-
sure, proposed by Ma in Refs. [38,39], which provides a
method to search for the liquid-gas phase transition in a finite
system. It can be defined by the so-called Zipf plot, which
is a plot of the relationship between mean sizes of fragments
rank-ordered in size (i.e., the largest fragment, the second large
fragment, the third large fragment, and so on). Originally the
Zipf plot was used to analyze the hierarchy of usage of words
in a language [66]. It has been applied in a broad variety of
areas, such as population distributions, the size distribution
of cities, the distribution in strengths of earthquakes, etc. The
existence of very similar linear hierarchy distributions in these
very different fields indicates that Zipf’s law is a reflection of
self-organized criticality [67].

We apply Zipf’s law to the SMM events, in which the
fragment charge number is employed as the variable to make
a Zipf-type plot, and the resultant distributions are fitted with
a power law,

〈Zrank〉 ∝ rank−ξ , (12)

where rank = i for the ith largest fragment. ξ is the Zipf law
parameter. When ξ ∼ 1, Zipf’s law is satisfied. The extracted
ξ values are plotted as a function of source temperature
in Fig. 5(b) both for the primary and secondary fragments.
One can see from the figure that Zipf’s law is satisfied at a
temperature slightly larger than the critical temperature both
for the primary and secondary fragments.

IV. DISCUSSIONS

In Sec. III, we investigated several experimental measures
that provide signatures for the nuclear liquid-gas phase tran-
sition in heavy-ion collisions in the framework of SMM both
for the primary and secondary fragments. All these measures
predict a critical temperature at or near to that from the specific
heat capacity when they are plotted as a function of the
source temperature. From the experimental point of view, it is
important to provide measures which show the same signature
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mary fragments for all the measures except for bimodal parameter.
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indicate the critical point at T = 5.3 MeV from Fig. 1(b). Solid circles
correspond to the critical temperature extracted by each measure. For
the error bars shown by the shaded area, see the detail in the text.

for the primary and secondary particles in the study of the
nuclear liquid-gas phase transition.

Due to the experimental errors (statistical and systematic),
there will be some uncertainties included in the measures.
Therefore, the sensitivities of these measures were further stud-
ied. The uncertainty, 
T , is evaluated as a quantitative measure
when 5% deviation from the maximum or minimum value is
observed at T = Tc ± 
T . Figure 6 shows the sensitivities of
all these measures except for the bimodal parameter, in which
the inflection point is used to obtain the critical point and does
not show the minimum or maximum value. One can easily
get from the figure that the total multiplicity derivative and
NVZ have the same critical temperature as that of the specific
heat capacity both for the primary and secondary fragments.
Moreover, the small errors in temperature in Figs. 6(a) and 6(b)
indicate that the total multiplicity derivative and NVZ are the
best measures in the study of the nuclear liquid-gas phase
transition.

All the other measures are noticeably affected by the
secondary decay, as one can see in Figs. 6(a) and 6(b). The
critical temperatures (solid circles) extracted from primary and
secondary fragments are slightly different. The IMF multiplic-
ity derivative is found at exactly the critical temperature for the
primary fragments. But due to the secondary decay effect, the
extracted critical point appears at slightly lower temperature
for the secondary fragments. In contrast, the measures of
M2 and the Fisher exponent τ predict an accurate critical
temperature for the secondary fragments, but show slightly
higher temperature for M2 and lower temperature for τ for the

primary fragments. The γ2 is found to have similar accuracy
in both the primary and secondary fragments, though a large
error bar is obtained for primary fragments. In addition, the
temperature error bars are also smaller for M2, γ2, and τ for
the secondary fragments, which indicates that these measures
are more sensitive for the secondary fragments. The Zipf law
parameter ξ shows a critical temperature slightly larger than
that from the specific heat capacity for primary fragments. But
due to its sharp response, the temperature error bar still does
not cover the critical temperature from specific heat capacity.
The result from secondary fragments is much worse for the
Zipf law parameter (ξ ).

From the above comparisons, we conclude that the total
multiplicity derivative and NVZ are the best measures with
which to predict the critical point accurately, with a minimal
uncertainty both for the primary and secondary fragments.

V. SUMMARY

The multiplicity derivatives, the moment parameters, the
bimodal parameter, the fluctuation of maximum fragment
charge number (NVZ), the Fisher exponent (τ ), and the Zipf
law parameter (ξ ) are examined as the measures to search for
the liquid-gas phase transition in nuclear multifragmention
processes within the framework of SMM. The sensitivities
of these measures are studied. All these measures predict a
critical signature at or near to the critical point extracted from
the specific heat. Among these measures, the total multiplicity
derivative and NVZ are found to be the best measures in
accuracy and sensitivity for the first-order phase transition
even after the secondary decay process. The IMF multiplicity
derivative is found to be accurate in the primary fragments
but shows a slight deviation from the critical temperature in
the secondary fragments. In contrast, the M2 and the Fisher
exponent τ observables predict the critical point very well
from the secondary fragments, but show a slight deviation
for the primary fragments. The γ2 shows similar accuracy
(less than 0.1 MeV deviation) both for the primary and
secondary fragments. The smaller temperature error bars for
the secondary fragments indicate the measures of M2, γ2, and
τ are more sensitive for the secondary fragments. A lower
temperature is predicted by the bimodal parameter both for
the primary and secondary fragments, while the Zipf law
parameter ξ predicts higher temperatures both for the primary
and secondary fragments. These investigations should provide
a guide for future experiments and analyses in the study of the
nuclear liquid-gas phase transition.
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