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Nuclear surface diffuseness revealed in nucleon-nucleus diffraction
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The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties
of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering
differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient
tool in order to extract the nuclear surface information from limited experimental data involving short-lived
unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber
model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear
bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract
both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its
magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using
realistic density distributions obtained by a mean-field model.
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I. INTRODUCTION

A nucleus is composed of protons and neutrons interacting
via nuclear force. They make a self-consistent mean field
that results in forming the nuclear shell structure. A system-
atic analysis of nuclear charge radii via the electron-elastic
scattering have revealed that nuclei have saturated internal
density and a relatively sharp surface that defines a nuclear
radius [1]. Advances in the radioactive ion beam facilities have
made it possible to study properties of short-lived unstable
nuclei. From such facilities, the exotic structure of neutron-rich
unstable nuclei was reported, which has never been observed
in stable nuclei, e.g., halo [2] and developed skin [3] structure.

Such exotic structure is dominated by nuclear dynamics at
around the nuclear surface. For example, nuclear deformation
plays a crucial role in enlarging the nuclear radius, because it
drastically changes the density profile at around the nuclear
surface, and has actually been confirmed by the systematic
analyses of the total reaction cross sections on a carbon target
[4–10]. Also, it is found that excitations of the outermost
single-particle neutron orbits play an essential role to deter-
mine the low-lying electric-dipole strengths of neutron-rich
isotopes [11–14].

Since the density profile at around the nuclear surface is a
rich source of the nuclear structure information, a systematic
investigation of the nuclear surface density distributions must
be worth studying. However, the neutron density distribution is
difficult to probe by the traditional electron scattering. Alterna-
tively, the proton-elastic scattering is suitable for that purpose
[15]. Recent precise measurements up to large scattering angles
were successful in extracting the neutron density distributions
of Sn and Pb isotopes with the help of known proton density
distributions [16,17]. To apply it for unstable nuclei, such
measurement in the inverse kinematics is useful but it is not
easy to obtain the cross sections at large scattering angles

because most of incident particles are scattered in the forward
angles at high incident energies. Since precise experimental
cross sections are limited to small scattering angles, it is
convenient to know what information we can obtain from
limited cross-section data.

In this paper, we perform a numerical experiment systemat-
ically using theoretically obtained nucleon-nucleus scattering
cross sections focusing on the reactions of small scattering
angles up to a few diffraction peaks to see to what extent
the information on the nuclear surface can be obtained. For
this purpose, we start with an idea of a simple black sphere
(BS) picture, which assumes a nucleus is a completely ab-
sorptive object at a sharp-cut square-well radius. The model is
mathematically equivalent to the Fraunhofer diffraction model
[18,19], which offers one-to-one correspondence between the
nuclear radius and the diffraction peak position. Though it is
not perfect, the idea can be a zeroth-order approximation of the
proton-nucleus scattering, remarking the fact that the BS model
explains fairly well a systematic trend of the proton-nucleus
total reaction cross sections, which was originally pointed out
by Kohama et al. [20–22].

In reality, since the total nucleon-nucleon cross section
is not large enough at medium and high incident energies,
the proton-nucleus scattering is not completely absorptive at
around the nuclear surface where the nuclear density is not
well saturated. A simple model approach based on the BS
picture and the proton optical depth shows that the effect of
the surface diffuseness plays an essential role to determine the
incident energy dependence of the total reaction cross sections
of the proton-nucleus scattering [22,23]. Here we discuss the
role of the nuclear transparency due to the surface diffuseness,
which is not explicitly taken into account in the BS model by
comparing it with a microscopic high-energy reaction theory,
the Glauber model [19]. To understand the significance of its
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good reproducibility of the data using such a phenomenology
is another purpose of this paper.

This paper is organized as follows. In the next section, we
briefly explain calculations of the elastic scattering differential
cross section of the high-energy nucleon-nucleus scattering
in the Glauber model. In Sec. III A, we demonstrate how
the elastic scattering differential cross section reflects the
density profile at the nuclear surface. A systematic analysis
is performed by using a two-parameter Fermi (2pF) distribu-
tion as the density profile, which clearly defines the nuclear
diffuseness. We find one-to-one correspondence between the
nuclear diffuseness and the magnitude of the cross section at
the first peak position. To quantify the sensitivity to the density
profile at around the surface region, we investigate in Sec. III B
the spatial distributions of the scattering amplitude at the first
and second peak positions of the elastic scattering differential
cross sections. In Sec. III C, we propose a simple way to
extract both the nuclear radius and diffuseness information
from the elastic scattering differential cross sections for future
application to short-lived unstable nuclei. We extract the
information on the surface diffuseness of density distributions
obtained via a microscopic mean-field approach. By assuming
the 2pF density distributions, the unknown diffuseness and
nuclear radius are uniquely determined in such a way that the
first peak position and its magnitude of the elastic scattering
differential cross section are reproduced simultaneously. It
will be convenient to know the first peak position before
measurement from other observables in which we show, in
Sec. III D, a relationship between the first peak position and
the total reaction cross section with the help of the BS model.
The possibility of extracting proton and neutron diffuseness
separately is discussed in Sec. III E. Conclusions are presented
in Sec. IV.

II. ELASTIC SCATTERING DIFFERENTIAL CROSS
SECTION IN THE GLAUBER MODEL

The Glauber model is a microscopic theory, which is widely
used to study high-energy nucleus-nucleus collisions [19].
With the help of the adiabatic and eikonal approximations,
the final-state scattering wave function is greatly simplified as

|�f 〉 = eiχ |�i〉, (1)

where eiχ is the so-called phase-shift function, which includes
all information of the high-energy nuclear collision. The elastic
scattering differential cross section can be calculated by

dσ

d�
(θ ) = |F (θ )|2 (2)

with the elastic scattering amplitude

F (θ ) = iK

2π

∫
e−iq·b(1 − eiχ(b)) db, (3)

where K is the wave number in the relativistic kinematics, q
the momentum transfer vector, and b is the impact parameter
vector perpendicular to the beam direction (z), and thus
q · b = 2Kb sin θ

2 . Evaluation of eiχ(b) is in general difficult
because it involves multiple integration [19]. Though it could
be possible to perform the integration by using a Monte Carlo

technique [24,25] or a factorization procedure by using a Slater
determinant wave function [26–29], we, however, employ the
optical-limit approximation (OLA) for the sake of simplicity.
The phase-shift function of the OLA is given as the leading
order of the cumulant expansion of the full phase-shift function
[19,30]

iχ (b) � −
∑

N=p,n

∫
ρN (r)	pN (b − s) d r, (4)

where r = (s,z) with s being a two-dimensional vector per-
pendicular to z. Inputs to the theory are density distribu-
tions ρN (r) of proton (N = p) and neutron (N = n), and
the proton-nucleon profile function 	pN . As exemplified in
Refs. [24–26,28,29], the OLA works well for many cases
of nucleon-nucleus scattering. The multiple scattering effect
would be neglected and even becomes smaller for systems in-
volving medium to heavy nuclei as was shown in Refs. [28,29].

The nucleon-nucleon profile function at incident energy per
nucleon E is usually parametrized as [31]

	NN (b,E) = 1 − iαNN (E)

4πβNN (E)
σ tot

NN (E) exp

[
− b2

2βNN (E)

]
, (5)

where αNN is the ratio of the real and imaginary parts of the
scattering amplitude at the forward angle, and βNN is a slope
parameter. For the sake of simplicity, we first use averaged
NN profile function given in Ref. [32] for most of discussions
made in this paper. We can safely use the profile function,
say E � 300 MeV, where the difference between pn and pp
cross sections are not significant. The validity of adopting the
averaged NN profile function here is discussed in Appendix.
We distinctively use the pn and pp profile functions [33] when
more realistic cases are considered in Sec. III E. The spin-orbit
term is not explicitly included in the profile function [33]. As
long as we are focusing on the analysis of the elastic scattering
differential cross sections at the forward angles, this effect is
small at the peak positions [20], whereas the cross sections
at the diffraction minima are significantly influenced by the
spin-orbit interaction [34]. In fact, as shown in Ref. [35], the
elastic scattering differential cross-sections data at the forward
angles are fairly well reproduced using the profile function (5)
without the spin-orbit term. The elastic and inelastic Coulomb
contributions are ignored since the effects are negligible in the
proton-nucleus scattering [35].

III. RESULTS

In this section, we show the results of the analyses explained
in the previous section.

A. Elastic scattering differential cross section
and nuclear surface distribution

Here we discuss how much information the elastic scatter-
ing cross sections of the first diffraction peak has on the nuclear
surface. In the present work, we are interested in medium
to heavy nuclei whose central densities are well saturated. It
would be reasonable to assume a two-parameter Fermi (2pF)
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FIG. 1. Elastic scattering differential cross sections of (a) N -120Sn
and (b) N -208Pb systems calculated with 2pF density distributions at
325, 550, and 800 MeV. The cross sections are multiplied by 105 and
1010 for those at 550 and 800 MeV, respectively. The bottom panels
plot the corresponding 2pF density distributions of (c) 120Sn and
(d) 208Pb, respectively, with various diffuseness parameter a. All
density distributions give the same root-mean-square radius.

function as an approximate nuclear density distribution:

ρ(r) = ρ0

1 + exp
(

r−R
a

) , (6)

where ρ0, R, and a are the central density, radius, and
diffuseness parameters, respectively. For given R and a,
ρ0 is uniquely determined by the normalization condition:
4π

∫ ∞
0 ρ(r)r2dr = A, where A is the mass number of a

nucleus. The root-mean-square (rms) matter radius can be
calculated by

rm =
√

〈r2〉 =
√

4π

A

∫ ∞

0
dr r4ρ(r). (7)

We note that the limit a → 0 in Eq. (6) results in a sharp-cut

square-well density distribution with a radius R =
√

5
3 rm.

We perform the Glauber model calculation with the 2pF
density distribution of Eq. (6). The rms radius of the 2pF
density distribution is set to follow the empirical rms radius

rm =
√

3
5 1.2A1/3 [36] as a convenient choice so that the radius

parameter R is determined for each given a. Note that the
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FIG. 2. Scattering angles at the first peak positions of the
elastic scattering differential cross sections incident at 325, 550, and
800 MeV as a function of mass number.

resultant R is in general different from the radius obtained by

the sharp-cut square-well density distribution,
√

5
3 rm.

1. Nuclear radius ↔ First peak position of the
elastic scattering differential cross section

First, we discuss the relation between the nuclear radius
and the scattering angle at the first peak position of the
elastic scattering differential cross section. Figure 1 plots
the elastic scattering differential cross sections of N -120Sn
and N -208Pb systems incident at 325, 550, and 800 MeV
with various diffuseness parameter, a. Corresponding 2pF
density distributions are also plotted in the bottom panels of
Fig. 1. Focusing on the first diffraction peak, all the cross
sections are peaked at almost the same scattering angle for
all incident energies under consideration. Since the BS model
works well in the nucleon-nucleus scattering, the one-to-one
correspondence between the peak position and the nuclear
radius can be naturally understood, remarking that all the 2pF
density distributions give the same rms radius.

For more quantitative discussions, we display, in Fig. 2, the
scattering angles at the first peak position, θM , as a function
of mass number. Incident energies of 325, 550, and 800 MeV
are chosen. We again confirm that the first peak positions do
not depend on the diffuseness parameter of the 2pF density
distribution. The peak position is determined mostly by the
nuclear radius. For a small A � 70, the θM values show some
dependence on a, especially with large a = 0.7 fm. Since we
assume the 2pF distribution, in the case of small A, i.e., small
R, large diffuseness parameter substantially affects the density
profile at small distances, which is a large increase of the central
density as already seen in the bottom panels of Fig. 1.

2. Nuclear diffuseness ↔ Magnitude of elastic scattering
differential cross section at the first peak position

Second, we discuss the relation between the nuclear dif-
fuseness and the magnitude of the elastic scattering differential
cross section at the first peak position. In Fig. 1, it is interesting
to note that the elastic scattering differential cross sections at
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FIG. 3. Elastic scattering differential cross sections at the first
peak position incident at (a) 325, (b) 550, and (c) 800 MeV as a
function of mass number.

the first peak position are mostly determined by a. The authors
of Ref. [37] pointed out a relation between the nuclear surface
diffuseness and the elastic scattering differential cross section,
in which the cross section at the first peak position is enhanced
with smaller nuclear diffuseness. The calculated cross sections
actually show a larger value at the first peak position with
smaller a.

Figure 3 plots the magnitude of the elastic scattering
differential cross section at the scattering angle of the first peak
position θM as a function of mass number. Incident energies
of 325, 550, and 800 MeV are chosen. The cross section
significantly decreases with increasing a, which would easily
be distinguished by measurement. Though the sensitivity to a
becomes a little bit less at 800 MeV, higher incident energy
gives larger cross sections. We find that for a given A, i.e., rms
radius, the cross sections with different a do not intersect each
other for all the incident energies, indicating that the R and
a parameters of the 2pF density distribution can uniquely be
determined if the elastic scattering differential cross section is
measured at the first peak position.

B. Scattering amplitude at the first and second peak positions

We have seen so far that the nuclear diffuseness information
can be extracted from the elastic scattering differential cross
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FIG. 4. (Top) Imaginary part of the spatial distribution of the
scattering amplitude, and (bottom) its cumulative sum at the first
peak of the elastic scattering differential cross section of (a), (c) 120Sn
and (b), (d) 208Pb, as a function of impact parameter b, incident at
325, 550, and 800 MeV. An arrow indicates the half-density radius of
(c) 120Sn and (d) 208Pb, respectively. See text for details.

section at the first peak position. In this section, we discuss
what the incident nucleon actually probes. To answer this,
we calculate the scattering amplitude of the differential cross
section at the first peak position θM as a function of the impact
parameter b = |b|

f1(b) = iK

2π
e−iqM ·b(1 − eiχ(b)), (8)

where qM · b = 2Kb sin θM

2 , and the relation to the scattering
amplitude at the first peak position

F (θM ) =
∫

f1(b) db. (9)

Figure 4 plots the imaginary part of the spatial distribution
of the scattering amplitude of Eq. (8) for 120Sn and 208Pb and
its cumulative sum defined by 2πb

∫ b

0 Imf1(b′)db′/ImF (θM ),
at various incident energies as a function of impact parameter
b. The real part is not shown because it is small. The dif-
fuseness parameters are set commonly to an empirical value
a = 0.54 fm [36]. The half-density radius ρ(Rh) = ρ0/2 for
each nuclide is indicated by an arrow. All curves exhibit
positive and negative peaks inside the nuclear half-radius. The
cumulative sum of 120Sn (208Pb) indicates that the amplitude
up to ∼4.5 fm (∼5.5 fm) does not contribute to the integrated
scattering amplitude as they are canceled out through the
integration over b. As a result, only the scattering amplitude at
around Rh is contributed to the cross sections in such a special
kinematic condition. The nucleon-nucleus cross section at the
first peak position can be a useful observable to extract the
density profiles at around the half-density radius.

We comment on what information can be obtained in
the higher-order diffraction peak. We see, in Fig. 1, that
peak positions of the higher-order diffraction are shifted to

054607-4



NUCLEAR SURFACE DIFFUSENESS REVEALED IN … PHYSICAL REVIEW C 97, 054607 (2018)

-10

-5

 0

 5

 10

 15

      

2π
b 

Im
[f 2

(b
)]

 (
sr

-1
/2

)

 

(a) 120Sn

325 MeV
550 MeV
800 MeV

 

 

 

 

 

 

      
 

 

(b) 208Pb

325 MeV
550 MeV
800 MeV

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10

C
um

m
ur

at
iv

e 
su

m
 (

fm
 s

r-1
/2

)

 

(c)
325 MeV
550 MeV
800 MeV

 

 

 

 

 

 

 

 

 

 0  2  4  6  8  10

 

b (fm)

(d)
325 MeV
550 MeV
800 MeV

FIG. 5. Same as Fig. 4 but at the second peak of the elastic
scattering differential cross section.

larger scattering angles with increasing a, implying different
sensitivity to the nuclear density profile. Figure 5 plots the
same quantity as Eq. (8) but at the second peak position, f2(b).
The spatial distribution allows one more node and varies more
rapidly with increasing b. The cumulative sum also oscillates
and shows some contribution, reaching at the tail region, which
is a bit distant from the half-density radius. The cross section
at the second peak would have some other information on the
density profile than that at the first peak. Further investigation
would be interesting since it is useful to extract a higher order
of the density profile beyond the half-density radius, which
characterizes weakly bound systems, e.g., halo nuclei, but it is
beyond the scope of this paper.

C. Extraction of nuclear radius and diffuseness

Thus far, we have discussed that the nuclear radius and
diffuseness information is embedded in the first peak position
and its magnitude of the elastic scattering cross section. In
this section, we demonstrate how we can extract the nuclear
diffuseness as nuclear structure information when the nucleon-

nucleus elastic scattering differential cross sections are given.
For this purpose, we employ general proton and neutron density
distributions obtained by a microscopic mean-field model as
inputs to the Glauber model.

We take the density distributions of Ca, Ni, Zr, Sn, Yb,
and Pb isotopes obtained by the Skyrme-Hartree-Fock (HF) +
BCS method [38] used in Refs. [35,39] (one can also take
them from the theoretical database [40]). The calculation was
performed self-consistently in a three-dimensional Cartesian
mesh, in which any nuclear deformation can be taken into
account. The density distribution in the laboratory frame is
obtained by taking an average on the angles as in Ref. [8]. We
remark that the theoretical justification of this treatment was
made in Ref. [7]. The Skyrme-type effective interaction (SkM*
[41]) with a monopole-type pairing interaction is employed as
detailed in Refs. [13,42]. The SkM* parameter set is superior to
describe the nuclear deformation. For example, kink behavior
due to the nuclear deformation in the total reaction cross
sections of neutron-rich Ne and Mg isotopes are reproduced
very well with the help of the Glauber model [8,43].

To deduce the diffuseness of the realistic density distribu-
tion through reaction data, we calculate the elastic scattering
differential cross sections with the 2pF density distribution of
Eq. (6). Regarding that those calculated cross sections with
the HF+BCS density distributions are experimental data, we
determine the R and a in the 2pF density distribution in
such a way that the calculated elastic scattering differential
cross section matches the first peak position as well as its
magnitude of the elastic scattering differential cross section
obtained by the numerical experiment. To assure the accuracy
of the extracted R and a, we confirm that our cross-section
calculations are converged within four digits.

1. Uncertainties of the extraction

Following the procedure mentioned above, we determine
the parameters in the 2pF density distributions for each isotope
and each incident energy. In this section, we evaluate the
robustness of this analysis.

Figure 6 plots the relative deviations of the rms radius
obtained by the HF+BCS density, rm(HF), and that extracted
from this analysis, rm(2pF) for Ca, Ni, Zr, Sn, Yb, and Pb
isotopes. These results indicate the difference between realistic
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HF+BCS and simple 2pF density distributions, which will
be commented later in this section and Sec. III C 2. Here
we choose three incident energies (a) 325, (b) 550, and
(c) 800 MeV. The deviations are typically less than 1% for all
the incident energies. The extracted rms radius agrees very well
with the correct rms radius and is successfully obtained from
this analysis. The 2pF density distribution can be a reasonable
approximation to simulate the realistic density distributions of
medium- to heavy-mass nuclei.

For the extraction of the diffuseness parameter a, we display
in Fig. 7 the deviations of the diffuseness parameter a at
325 and 800 MeV from that at 550 MeV. The incident-
energy dependence is small at most by ∼0.005 fm. Though
some systematic errors exist, which come from the difference
between the realistic and 2pF density distributions, we can
however determine, within this model approach, such an a
value in the accuracy of two digits. The a value, which is
extracted in this way, can be used as a measure of the surface
diffuseness for the realistic density distribution.

Figure 8 compares the HF+BCS density with the 2pF
distributions deduced from the first peak position and its
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FIG. 9. Nuclear diffuseness deduced from the HF+BCS density
distributions incident at 550 MeV.

magnitude of the elastic scattering differential cross section.
The 2pF density distributions well simulate the HF one at
around the nuclear surface at the three incident energies, E1 =
325, E2 = 550, and E3 = 800 MeV. However, we see some
deviations beyond ∼9 fm for the neutron-rich Zr and Sn nuclei,
which cannot be expressed by a simple 2pF distribution. This
trend can also be seen in the behavior of the relative deviations
of the rms radius plotted in Fig. 6. We also determine the
2pF density distribution by minimizing the root-mean-square
deviation between the 2pF and HF+BCS density distributions.
As plotted in Fig. 8, the resultant 2pF density distributions are
almost identical with those extracted from the first peak of the
elastic scattering differential cross sections. The extracted R
and a values can be robust structure information independently
from the choice of the incident energy.

2. Systematic trend of the nuclear diffuseness

It is interesting to see the behavior of the nuclear diffuseness
deduced from the HF+BCS density distributions. Figure 9
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denotes the 2pF density distribution deduced directly from the HF+BCS density. See text for details.
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displays the deduced a values at 550 MeV. The a values
are scattered around a ∼ 0.5 fm, which is quite reasonable
by pointing out the empirical value ∼0.54 fm for stable
nuclei [36]. As discussed in Ref. [39], the nuclear diffuseness
is closely related to the width of the nuclear surface that
determines the surface tension of the nuclear droplet. A
systematic analysis of the surface widths clearly shows some
exotic nuclear structure, such as nuclear deformation, and
weakly bound orbits. We note that the diffuseness parameters
or the surface widths extracted in this paper are those for the
matter density distributions. The neutron number dependence
is somewhat weaker than that of the neutron surface widths
obtained in Ref. [39] because the proton surface widths are
small and almost stay at a constant in the neutron-rich isotopes.
Though it exhibits the weaker dependence on the neutron
number than that of the neutron diffuseness, we can still see
the structural information on the exotic neutron-rich isotopes.
As expected, the a values show local minima at the magic
numbers. The a values exhibit sudden rises at N = 50 for
Ca and Ni isotopes, and at N = 82 for Sn isotopes, in which
weakly bound neutron orbits play a role [13,14]. Large a values
in the open shell regions of Zr and Yb isotopes are due to
the nuclear deformation, similarly to the cases of the Ne and
Mg isotopes [5–9]. A systematic measurement of the elastic
scattering differential cross sections covered up to the first
diffraction peak will have of particular importance in order to
reveal the evolution of the exotic structure of unstable nuclei.

It should be noted that this method may not be applicable to
very weakly bound systems, such as halo nuclei, because the
density profile deviates considerably from the 2pF assumption.
To get higher resolution of the density profile, one may consider
an analysis including higher-order diffraction peaks with more
general density distribution other than the 2pF distribution.

D. Black sphere estimate of the first peak position

We have discussed that one can obtain the rms radius
and nuclear diffuseness simultaneously from the first peak
position and its magnitude of the elastic scattering differential
cross section. It would be helpful to know the peak position
before measurement of the elastic scattering differential cross
sections. For this purpose, we investigate quantitative relation
between the first peak position and the total reaction cross
section using a concept of the strong absorption, i.e., the
framework of the BS model [20].

If a nucleus is a completely absorptive object within a sharp-
cut nuclear radius aBS, the total reaction cross section reads
exactly as

σBS = πa2
BS. (10)

Note that the same thing holds for the total elastic cross
section as well. The BS radius aBS is obtained by the angle
θM corresponding to the first diffraction peak as [20]

aBS = 5.1356 · · ·
2p sin(θM/2)

, (11)

where p (=K) is the momentum between the two colliding
particles.

As in Eq. (10), the total reaction cross section is directly
related to the scattering angle of the first peak position, but, in
reality, the total reaction cross section deviates from the one
obtained from Eq. (10) due to the nuclear transparency, which
comes from the surface diffuseness. In the Glauber model, the
total reaction cross section is calculated by

σR = πa2
R =

∫
(1 − |eiχ(b)|2) db, (12)

where we see similarity to Eq. (10) by introducing a reaction
radius aR [35,44]. In contrast, the aBS is determined from
the first peak position of the calculated elastic scattering
differential cross section [20], using Eq. (11), and obtain σBS

by the formula (10).
Figure 10 compares the total reaction cross sections incident

at 325, 550, and 800 MeV obtained by the Glauber calcu-
lation and the BS estimate using Eq. (10). The 2pF density
distributions are employed. Since the BS model assumes the
sharp-cut square-well nuclear surface and complete absorption
in r � aBS, the deviation must include the information on
the nuclear diffuseness or nuclear transparency at around the
surface. If the nucleon-nucleus scattering is the ideal black
sphere, all results will be on a y = x line drawn in this figure.
However, some deviation is found indicating the difference
between the BS model and actual proton-nucleus scattering.
Since more nucleons at around the nuclear surface contribute to
the scattering process, the deviation becomes larger and larger
with increasing nuclear size and diffuseness, which is typically
by ∼5%, at most by ∼10% at Pb isotopes in the ranges of the
standard diffuseness parameters a = 0.5–0.6 fm.

We note that the energy dependence of the deviation
cannot be explained simply by the magnitude of the total
nucleon-nucleon cross section, but it comes from the difference
of the nucleon-nucleon scattering processes or the profile
functions in the present model, which is reflected in the nuclear
transparency at around the surface. In fact, we confirm that the
BS estimate gives the same cross section at any incident energy
when the same profile function is used.

We have shown that the BS model explains more than 90%
of the nucleon-nucleus scattering. Moreover, it is practically
important to know how accurate we can obtain the first peak
position if one converts the total reaction cross section to the
scattering angle of the first peak position using the relation of
Eq. (11). Figure 11 displays the difference between θM and θR .
The former can be obtained directly from the first peak position
of the elastic scattering differential cross sections, and the latter
can be calculated by converting the relation

aR =
√

σR

π
= 5.1356 · · ·

2p sin(θR/2)
, (13)

through Eq. (12). Again, we note that if the nucleon-nucleus
scattering is completely absorptive, the difference must be
zero. Despite the fact that the σBS slightly deviates from σR

as shown in Fig. 10, the differences of those scattering angles
appear to be small, only within a few degrees. Therefore,
Eq. (13) works well for the estimation of the first peak of the
nucleon-nucleus diffraction, and thus the total reaction cross
section can be complementary information to set up scattering
angles to be covered by measurement.
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FIG. 10. Comparison of the total reaction cross sections obtained by the Glauber (horizontal axis) and BS models (vertical axis). A solid-thin
line indicates a y = x line plotted to guide the eyes.

E. Diffuseness of proton and neutron surfaces

To extract detailed structure information of unstable nuclei,
separation of proton and neutron diffuseness is important be-
cause the neutron diffuseness is expected to be more sensitive
to the ground-state structure of neutron-rich isotopes as it is
dominated by the neutron motion at the nuclear surface. As
was done in Refs. [16,17], neutron distributions of stable nuclei
can be extracted from the proton-nucleus elastic scattering
cross section measurements using a known proton density
distribution, but it is in general unknown for unstable nuclei.
Here, we discuss the possibility of making use of the incident
energy dependence of the pn and pp total cross sections as
utilized in Refs. [35,44]. We extend that idea in order to extract
both the proton and neutron surface diffuseness and radii.

We respectively assume the 2pF density distributions (6)
for proton and neutron and determine these four parameters
in such a way so as to reproduce the first peak positions and
their differential elastic scattering cross sections at low and
high incident energies. A realistic profile function [33], which
differs for pp and pn, is used for the Glauber calculation.
Table I lists the extracted diffuseness parameters and rms
radii for proton and neutron. Stable 120Sn, 208Pb and neutron-
rich 132Sn isotopes are chosen as the examples. We choose

several sets of two incident energies among 200, 300, 550,
and 800 MeV. For 120Sn and 208Pb, extracted diffuseness
parameters are scattered although the rms radii are converged
within ∼0.5%. In such cases where the proton and neutron
surfaces are located at almost the same position, the separation
of the proton and neutron surface profiles might be difficult,
whereas, in case of 132Sn, all extracted values are consistent
with each other. This method can be used to extract the
information on the proton and neutron surfaces from the
proton-nucleus elastic scattering in the inverse kinematics,
although the application of the method is limited only to such
neutron(proton)-rich systems that the surfaces of the proton
and neutron density distributions are well separated �0.2 fm.

It should be noted the separation of the proton and neutron
density distributions will be better by employing the cross
sections at lower incident energies �200 MeV, where the pn
total cross section becomes much larger than that of the pp
one. As demonstrated in Ref. [35], the adopted Glauber model
is reliable for a wide range of the incident energies, even at
few tens of MeV. However, with lowering the incident energy,
in-medium effects such as Pauli blocking and Fermi motion
would be important and may modify the parameters of the free
NN profile function [45,46]. Implementing these effects will
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FIG. 11. Difference of the scattering angles of the first peak position obtained by the Glauber calculation and the BS estimate incident at
(a) 325, (b) 550, and (c) 800 MeV.
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TABLE I. Diffuseness parameters and rms radii for matter (rm),
neutron (rn), and proton (rp) extracted from the HF+BCS density
distributions of 120,132Sn and 208Pb. at several choices of two incident
energies among 200, 300, 550, and 800 MeV (EL < EH ). Units are
given in MeV and fm for energy and length, respectively.

Nuclide (EL,EH ) rm rn an rp ap

120Sn (200,300) 4.691 4.725 0.455 4.645 0.619
(200,550) 4.686 4.720 0.506 4.639 0.507
(200,800) 4.685 4.724 0.470 4.629 0.525
(300,550) 4.683 4.708 0.543 4.648 0.455
(300,800) 4.683 4.713 0.543 4.640 0.448
HF+BCS 4.662 4.723 4.576

208Pb (200,300) 5.580 5.604 0.492 5.542 0.604
(200,550) 5.575 5.608 0.532 5.424 0.507
(200,800) 5.574 5.613 0.542 5.514 0.479
(300,550) 5.571 5.592 0.558 5.538 0.463
(300,800) 5.570 5.603 0.557 5.519 0.458
HF+BCS 5.551 5.617 5.448

132Sn (200,300) 4.821 4.851 0.539 4.776 0.448
(200,550) 4.823 4.856 0.539 4.765 0.445
(200,800) 4.822 4.875 0.535 4.723 0.443
(300,550) 4.818 4.844 0.539 4.779 0.446
(300,800) 4.820 4.852 0.537 4.763 0.445
HF+BCS 4.802 4.890 4.656

be interesting for further improvement of the adopted Glauber
model.

IV. CONCLUSION

In order to see how much we can extract information on
density profiles of unstable nuclei at around the nuclear surface,
we have performed a numerical experiment using theoretically
obtained elastic scattering differential cross sections of high-
energy nucleon-nucleus scattering incident at a few to several
hundreds of MeV. The high-energy nucleon-nucleus collision
is described by the Glauber model starting from the nucleon-
nucleon total cross sections.

We have demonstrated that the elastic scattering differential
cross section at the first diffraction peak reflects the nuclear
density profile at around the half-density radius. This can be
understood naturally by extending the idea of the black sphere
(BS) model offering the one-to-one correspondence between
the nuclear radius and the diffraction peak. The deviation of the
BS picture from the actual nucleon-nucleus scattering exhibits
the role of the nuclear transparency due to the diffused nuclear
surface. We have understood that the BS model is accurate but
accompanied with typically ∼5% uncertainties in medium-
mass nuclei, at most ∼10% uncertainties in Pb isotopes.

Towards the application to studies of unstable nuclei, since
experimental data of the elastic scattering differential cross
sections at large scattering angles are hardly obtained, we
restrict ourselves to have only two observables, the first peak
position and its magnitude of the elastic scattering differential
cross section. Assuming that the two-parameter Fermi (2pF)
density distribution as a fitting density, we can uniquely
determine these two parameters, from which the root-mean-

square (rms) radius and nuclear diffuseness can be extracted.
A systematic numerical experiment is performed using realistic
density distributions obtained by a microscopic mean-field
model. The accuracy of the extraction does not depend much
on the incident energy. Though the simple 2pF form is assumed
as an approximate density distribution, the rms radius can be
determined within ∼1%, and the extracted nuclear diffuseness
is robust structure information that reflects interesting surface
profiles on the exotic nuclei such nuclear deformation and shell
evolution.

Since we only need the cross section at the first peak
position, this method has a great advantage to apply to
measurements in the inverse kinematics, in which the scattered
particles are concentrated at the forward angles. The nuclear
structure is actually reflected in the nuclear density profile
at the surface, that is, the nuclear diffuseness. A systematic
measurement along this direction is interesting to understand
structure changes of unstable nuclei played by excess neutrons.

A prescription of separating the proton and neutron radii
and diffuseness is also given by making use of the incident
energy dependence of the proton-nucleus scattering. If one
measures the elastic scattering differential cross sections at
the first diffraction peak at low (E � 300 MeV) and high
(E � 500 MeV) incident energies, one can extract the surface
diffuseness and the rms radii of proton and neutron separately.
Though the method has the limitation that it can only be applied
to a nucleus with large neutron-skin thickness, it will be useful
to extract the structure information of neutron- and proton-rich
unstable nuclei. We note, however, some simplifications of the
model are made in this analysis. In order to obtain more precise
information on the density profile, we need a further study
to quantify the systematic error of this analysis with a more
elaborated model, which includes many-fermion correlations
as well as using a more flexible input density distribution.

We should point out here that the discussion extended in this
paper must be applicable to the analyses of electron-nucleus
elastic scattering differential cross sections, particularly for un-
stable nuclei, because the theoretical structure is quite similar
to the proton scattering case [37], although the interaction is
completely different. By focusing on the first peak angle and
its magnitude of the elastic scattering differential cross section,
one may have a chance to determine the radius of the proton
density distribution and its diffuseness for an unstable nucleus
simultaneously. We believe that this is very important, but leave
it for our future studies [47].
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APPENDIX: TESTS OF AVERAGED N N
PROFILE FUNCTIONS

In this Appendix, we test the validity of the average
procedure of pn and pp total cross section made in the profile

054607-9



S. HATAKEYAMA, W. HORIUCHI, AND A. KOHAMA PHYSICAL REVIEW C 97, 054607 (2018)

5

 10

 15

 20

 25

 30

 100  200  300  500 700 1000

θ M
 (

de
g)

Incident energy (MeV)

(a)

40Ca
58Ni

120Sn

208Pb

pN
Averaged NN

101

102

103

104

 100  200  300  500 700 1000

dσ
/d

Ω
(θ

M
) 

(m
b/

sr
)

Incident energy (MeV)

(b)

40Ca

58Ni

120Sn

208Pb

pN
Averaged NN

FIG. 12. (a) Scattering angles of the first peak position and
(b) its magnitude of the elastic scattering differential cross section at
the peak position with the pN and averaged NN profiles functions.
The HF+BCS density distributions with the SkM* interaction [35,39]
are used.

functions [32] for nucleon-nucleus systems employed in the
analysis of this paper. We calculate the first peak positions θM

and its magnitude of the elastic scattering differential cross
section. The proton and neutron density distributions obtained
by the HF+BCS method using the SkM* effective interaction
[35,39] are employed. Figure 12 compares the results calcu-
lated with the pN [33] and averaged NN [32] profile functions
at various incident energies. We find that the peak positions do
not depend on the choice of the profile functions, while some
differences are found in the cross sections at θM at incident
energies lower than ∼300 MeV, where the difference of the
pn and pp total cross section becomes significant. We can
safely use the averaged NN profile function for the scattering
at �300 MeV, the pN profile functions should be used for
quantitative discussions of the proton-nucleus scattering at the
lower energies.
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