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Large longitudinal spin alignment generated in inelastic nuclear reactions
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Large longitudinal spin alignment of E/A = 24 MeV 7Li projectiles inelastically excited by Be, C, and
Al targets was observed when the latter remain in their ground state. This alignment is a consequence of an
angular-momentum-excitation-energy mismatch, which is well described by a DWBA cluster-model (α + t). The
longitudinal alignment of several other systems is also well described by DWBA calculations, including one where
a cluster model is inappropriate, demonstrating that the alignment mechanism is a more general phenomenon.
Predictions are made for inelastic excitation of 12C for beam energies above and below the mismatch threshold.
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I. INTRODUCTION

The generation and manipulation of nuclear spin align-
ment or polarization has led to many applications in physics.
In nuclear physics, the production of polarized beams has
enabled vector and tensor analyzing power measurements
[1]. Theoretical predictions of these quantities are sensitive
to the spin-spin and spin-orbit coupling derived from the
effective nucleon-nucleon (NN) and 3N forces used, so these
studies can put a constraint on the effective potentials. Spin
alignment generated in nuclear reactions can give insight into
the underlying reaction mechanisms [2,3], and has also been
utilized for g-factor measurements, which elucidate nuclear
wave functions used to understand nuclear structure [4,5].

Methods for measuring the spin alignment of excited nuclei
are dependent on the nuclear state of interest and its decay
mode. For bound excited states, the population of magnetic
substates (and thus the spin alignment/polarization) can be
measured by analyzing the angular distribution of an emitted
γ ray [6–12]. However, for unbound excited states, the an-
gular correlations of the sequential breakup fragments can be
measured to determine the final magnetic substate distribution
[13,14], which is the approach taken in this work.

The motivation for this study comes from the observation of
large longitudinal spin alignment of inelastically excited 7Be∗

projectiles scattered off a 9Be target [13]. In that work, the
proposed mechanism for generating spin alignment evoked the
unusual molecular structure of the 9Be target. However, sub-
sequently large longitudinal alignment of 7Li∗ was observed
with Be, C, and Al targets [14]. This observation prompted the
search for a more general mechanism. Such a mechanism does
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exist and originates from an angular-momentum-excitation-
energy mismatch that forces the exit-channel reaction plane to
tilt to conserve angular momentum [14]. This mechanism is
reminiscent of Brink’s condition for optimal nucleon transfer
stemming from angular momentum conservation [15]. For
this mismatch to occur, the excitation energy of the projectile
must be small compared to the beam energy. This alignment
mechanism is independent of the scattering partner (and thus
scattering potential), and as a consequence, it should be
possible to find large longitudinal alignment in many nuclear
systems.

Our previous letter on this alignment mechanism focused
on the 7Li + 12C system [14]. The present work presents the
data for all three targets. The details of the experiment are
discussed in Sec. II and the results are presented in Sec. III.
The theory behind the DWBA calculations and the resulting
alignment mechanism are presented in Sec. IV. An optical-
model analysis was carried out for the 7Li + 12C reaction using
the arguments of Sec. IV, and the results of this analysis are
presented in Sec. V. The effect of spin-orbit coupling on the
observed alignment is also discussed in Sec. V. Other reaction
examples where we believe this mechanism has been active are
mentioned in Sec. VI. Also included in Sec. VI are predictions
for the 12C + 12C system.

II. EXPERIMENTAL METHOD

The Texas A&M K-500 Cyclotron provided an E/A =
24.0 MeV 7Li beam that impinged on targets of 9Be, 12C,
and 27Al with thicknesses of 9.47, 9.60, and 10.38 mg/cm2,
respectively. The breakup fragments of 7Li (α + t) were
detected by two annular Si-CsI(Tl) telescopes, one looking
through the hole of the other, mounted on a rail parallel to the
beam axis. A schematic of the experimental setup is shown in
Fig. 1. The upstream telescope contained an 85-mm-diameter
(3-cm-diameter hole) segmented annular Si (32 rings and 48
pie-shaped sectors) placed 15 cm from the target position.
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FIG. 1. A schematic of the detector setup consisting of two Si-
CsI(Tl) telescopes. The first telescope was placed 15 cm, and the
second 36 cm, downstream of the target position.

The downstream telescope contained a 70-mm-diameter (22-
mm-diameter hole) segmented annular Si (48 incomplete rings
and 16 pie-shaped sectors) placed 36 cm from the target
position. For each telescope, the Si detector were backed by 16
2-cm-thick CsI(Tl) crystals, which were used to measure the
residual energies of the decay fragments and, in conjunction
with the Si detector, to determine the particle type.

Energy calibrations for the CsI(Tl) detectors were per-
formed with proton, deuteron, and α beams at several energies.
These beams impinged upon a thin Au target and several
Al targets of varying thicknesses, giving different degraded
energies. A summary of the calibration beams, degraders, and
resulting energies is shown in Table I. The degraded energies
were determined from SRIM energy-loss tables [16]. The
energy calibrations determined for the deuterons were used
for tritons.

For the downstream telescope, angle-independent CsI(Tl)
calibrations were found for deuterons and alphas. On the
upstream telescope, the photo-diode readouts of the scintillated
light were placed on the outside radius of the CsI(Tl) crystals
(Fig. 1). This external radial readout introduced nonuniform
light collection that depended on the polar angle of the energy
deposition in the CsI(Tl) crystal. To correct for this, energy
calibrations were performed as a function of polar angle, taking
into account the effective degrader thickness and kinematic
effects, by gating on eight different regions of polar angle as
determined by the Si detector.

Energy calibrations for the Si detectors were performed
with a mixed α source of 148Gd, 239Pa, 241Am, and 244Cm. For
the downstream Si detector, the α calibrations were sufficient,

TABLE I. Calibration beams and the energies generated with the
degraders.

Species Energy Target Thickness Degraded energy
[MeV/A] [mg/cm2] [MeV/A]

p 24.2 Au 20.0 24.0
Al 429 15.8

d 24.2 Au 20.0 24.1
Al 429 20.3
Al 858 15.8

12.0 Au 20.0 11.9
α 24.0 Au 20.0 23.8

Al 429 15.6
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FIG. 2. The invariant-mass spectrum for α + d events showing
the first particle-unbound state of 6Li. The solid red line is a fit to the
measured distribution, shown by the histogram, with the background
modeled by a Fermi function. The dashed blue line is the expected
experimental resolution from Monte Carlo simulations.

however, they were not sufficient for the upstream Si detector
either due to a nonuniform dead layer or an incomplete
depletion region. Therefore, the upstream Si detector was
used solely for determination of the scattering angle and
particle identification. The energy lost in the upstream Si was
determined from the energy deposited in the CsI(Tl) and SRIM
[16] energy-loss tables.

To check the robustness of the energy calibrations, an
invariant-mass reconstruction was made for α + d events, and
the spectrum is shown in Fig. 2. The width of the first particle-
unbound state in 6Li at 2.185 MeV is 24 keV, much smaller than
the experimental resolution, so the measured width of this state
is a good indicator of the intrinsic resolution of the detector
system. The solid red line in Fig. 2 is a fit to the measured
distribution using a Fermi function to model the background.
The centroid of this fit is 2.177 MeV, with a FWHM of 235
keV. The measured width is a little larger than predictions from
Monte Carlo simulations of the detector system, shown as the
blue dashed line in Fig. 2. The discrepancy is most likely due
to imperfect energy calibrations.

III. EXPERIMENTAL RESULTS

Figure 3(a) shows the α + t invariant-mass spectrum for all
targets. The first two particle-unbound states of 7Li (at E∗ =
4.63 and 6.68 MeV, respectively) are clearly seen.

To ensure that only events where 7Li is excited to the
4.63 MeV (Jπ = 7/2−) state were considered in the magnetic
substate extraction, the gate G1, shown in Fig. 3(a), was
applied. After reconstructing the 7Li momentum, the targets’
excitation energy was deduced from two-body kinematics.
These excitation energy distributions are shown for the C,
Be, and Al targets in Figs. 3(b)–3(d), respectively. The dashed
red lines correspond to energy levels in the respective nuclei.
The large separation between the ground and first excited
state of 12C (4.44 MeV, Jπ = 2+) allowed a clean selection
of the ground state (via gate G2) without contributions from
excited states. The energy resolution of the detector system was
insufficient to separate the ground and first excited state of 9Be
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FIG. 3. (a) The excitation energy distribution for 7Li, summed
from all three targets. The gate employed to select the J π = 7/2−

state is indicated. The 12C, 9Be, and 27Al target excitation energy
distributions after selecting 7Li excited to the 4.63 MeV (J π = 7/2−)
state are shown in (b), (c), and (d), respectively. The dashed vertical
red lines correspond to energy levels for the respective nuclei.

(1.68 MeV, Jπ = 1/2+). Nevertheless, a tight gate on the 9Be
ground state peak, shown as G3 in Fig. 3(c), can be used to
bias the dataset with events where 9Be remains in its ground
state. In the case of Al, there are many low-lying excited states,
and these can be observed as the long tail in the reconstructed
27Al excitation energy distribution. Subsequently presented
spectra are gated on the target “ground-state” peak by requiring
the reconstructed target excitation energy to fall within the
indicated G2, G3, or G4 gates.

Monte Carlo simulations were also used to understand the
geometrical efficiency of the detector array. An example of the
simulated geometrical efficiency is shown for the 7Li + 12C
system in Fig. 4(a). The angle ψ is defined as the angle of the
breakup with respect to the beam axis, which is also our quan-
tization axis. The angle χ is measured from the reconstructed
scattering plane. A diagram defining these angles is provided
in Fig. 4(b). The efficiency-corrected angular correlations for
the decay of 7Li∗ projectiles, after interaction with C, Be,
and Al targets, are shown in Figs. 4(c)–4(e), respectively. The
resulting angular correlations are all very similar with preferred
fragment emission transverse to the beam [cos(ψ) = 0]. This
result is consistent with the prior study using a beam of
7Be at E/A = 65.5 MeV [13]. The projections of the angular
correlations and the associated Legendre-polynomial-squared
fits to the data are shown in Figs. 4(f)–4(h). The asymmetry
in the cos(ψ) distributions is likely due to imperfect energy
calibrations. This was determined by introducing a small linear
shift to the assigned energies of the tritons in the Monte Carlo
simulations which reproduced the observed asymmetries. The
magnetic-substate distributions of 7Li∗ extracted from the

angular correlations are shown in Figs. 4(i)–4(k) for the three
targets.

The magnitude of alignment can be quantified by a scalar
conventionally denoted by A (sometimes called Pzz) that
incorporates the population of specific magnetic substates.
Given a quantization axis, the scalar can be defined as

A =
∑
mf

3m2
f − J (J + 1)

J (2J − 1)
ρJ

mf ,mf
. (1)

The magnetic substate populations are denoted in this work by
the diagonal density matrix elements of the final state, ρJ

mf ,mf
.

The formulation of the density matrix for sequential breakup
can be found in Ref. [13]. For 7Li∗ inelastically excited to the
Jπ = 7/2− state, the magnitude of longitudinal alignment was
found to be A = 0.49(1), 0.53(1), 0.53(1) after scattering off
C, Be, and Al nuclei, respectively. This magnitude of alignment
for 7Li∗ is quite large compared to other types of reactions at
similar energies. For example, longitudinal spin alignment has
been observed in several projectile fragmentation experiments
[17,18], but the level of alignment produced varies drastically.
In the production of 32Al from projectile fragmentation, the
alignment was found to be A = 0.08. The population of the
Jπ = 19/2− high spin isomer of 43mSc, produced by projectile
fragmentation, yielded an alignment A = 0.35. The similarity
of the alignment found for 7Li in this work, for each target,
requires an explanation, and this is provided in the following
section.

IV. THEORY

The longitudinal alignment arising from an angular-
momentum-excitation-energy mismatch should be present in
any single inelastic process X(Y,Y*)X or X(Y,Y)X*, provided
the excitation energy is sufficiently small compared the beam
energy. A change in intrinsic spin must be accommodated
for by one or more different processes: a change between
the incoming and outgoing orbital angular momenta (either
a reduction in magnitude or tilting [6,14]), a coupling of
the fragment spins and the incoming orbital momentum (i.e.,
spin-orbit effects [19]), or some other spin-spin interaction.

A. Semiclassical argument for an angular-momentum-
excitaiton-energy mismatch

For sufficiently large energies, the mechanism for generat-
ing longitudinal spin alignment can be understood classically,
where a loss of center-of-mass kinetic energy directly corre-
sponds to a change in magnitude of the reaction orbital angular
momentum, �L, assuming a fixed radius of interaction, R.
Repeating the analysis in Ref. [14], an upper limit on the
possible transfer of reaction orbital angular momentum can
be found by assuming pin,pout ⊥ R. This gives the Newtonian
result,

�L = R
√

2μEc.m.

(
1 −

√
1 − E∗

Ec.m.

)
, (2)

where μ is the reduced mass of the system, and Ec.m. is
the kinetic energy in the center-of-mass frame. Applying
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FIG. 4. (a) The geometrical efficiency of the detector system determined from Monte Carlo simulations for the 12C target system. (b) A
diagram of the angles ψ and χ used for the correlations. The efficiency-corrected angular correlations for the breakup of 7Li∗ after interacting
with (c) C, (d) Be, and (e) Al targets over the measured angular range; (f, g, h) the projections of the angular correlations onto the cos(ψ)
axis; and (i, j, k) the extracted magnetic-substate distributions of 7Li∗ with the separate targets, respectively. All data have been gated on the
ground-state peak of the respective target nucleus.

this equation to the studied 7Li + 12C system by using an
excitation energy of E∗ = 4.63 MeV, a beam energy of E/A =
24.0 MeV, and a radius of R = 5 fm, one finds �L < 1h̄.
This means a change in magnitude of the reaction orbital
angular momentum alone cannot excite 7Li to the 4.63 MeV
state, as the excitation requires a change in intrinsic spin
of 2h̄. When the center-of-mass energy is much larger than
the excitation energy, Ec.m. � E∗, L must tilt to conserve
angular momentum when there is a change in spin of the
reactant (in the absence of a spin flip of either reactant). As
a result the final reaction angular momentum is likely to have
a finite projection, M , on the beam axis. This argument for an
angular-momentum-excitation-energy mismatch suggests this
phenomenon is a threshold effect. As one increases the beam
energy (i.e., Ec.m.), the mismatch becomes greater.

B. Constructing the transition amplitude for inelastic processes

To probe the connection between the final projection of
L and the inelastic excitation, it is useful to look at the
transition amplitude, or T matrix, which gives the probability
of going from an initial magnetic substate, mi , to a final
magnetic substate, mf . Ultimately, it will be shown that the
final projection of L is related to the change in fragment
spin by M = mf − mi . By integrating the squared T matrix
over a given angular region (and summing over the initial
states because the beam is unpolarized), one can predict the

final outcome of the magnetic-substate distribution for an
exit-channel fragment in the reaction.

To construct the T matrix for the inelastic processes of
interest, we assume a general form for the projectile-target
interaction. It should be able to induce multipolar excitations
of the projectile by coupling the projectile-target relative
motion, described with the vector R, with the internal degrees
of freedom of the projectile, described with some intrinsic
coordinate ξ . The interaction

�(R,ξ ) = 4π
∑
K

(−1)K√
2K + 1

�K (R,ξ )[YK (ξ̂ )YK (R̂)]0
0 (3)

satisfies the above requirement and is rotationally invariant.
The square brackets denote angular momentum coupling,
where [Yp1Yp2 ]PMP

= ∑
m1,m2

〈p1m1p2m2|PMP 〉Yp1
m1 Y

p2
m2 . The

requirement that P = 0 and MP = 0 generates a scalar that
only depends on the angle between ξ and R. The actual form
of the � functions will depend on the case under consideration
and, more specifically, on the model used to describe inelastic
excitation.

Focusing on breakup experiments, the population of the
particle-unbound resonance is described as an inelastic ex-
citation of the fragment-core system in terms of the relative
coordinate r. This can be easily extended to cluster-model
calculations, provided the fragment is treated as a nucleus
instead of a nucleon. We define the model interaction (using
p-t,f -t, and c-t as projectile-target, fragment-target, and
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FIG. 5. The coordinates r and R as well as the fragment-target
and core-target coordinates for the 7Li + 12C system.

core-target, respectively),

�(R,rc-t ,rf -t ) = Up-t (R) − Uc-t (rc-t ) − Uf -t (rf -t ), (4)

where these effective interactions are taken as central phe-
nomenological optical potentials. This transition potential can
be cast into the general form of Eq. (3),

�(R,rc−t ,rf −t ) =
∑
K

�K (R,r)PK (θ ) = 4π
∑
K

(−1)K√
2K + 1

×�K (R,r)[YK (r̂)YK (R̂)]0
0, (5)

where θ is the angle between r and R (diagrammed in
Fig. 5), PK (θ ) are the Legendre polynomials. The multipole
components �K (R,r) can be computed from the interaction
Eq. (4),

�K (R,r) = 2K + 1

2

∫ π

0
�(R,rc-t ,rf -t )PK (θ ) sin θ dθ. (6)

The population of the resonance is modeled as a direct,
one-step inelastic excitation of the fragment-core system. The
cross section is proportional to the squared modulus of the
transition amplitude Tmi,mf

, which is calculated in the distorted
wave Born approximation (DWBA).

The distorted waves describing the relative projectile-target
motion in the initial [χi,mi

(R,ki)] and final [χf,mf
(R,kf )]

channels are solutions of the phenomenological central op-
tical potential Up-t (R) used in Eq. (4). Note that, to avoid
complications inherent in the treatment of the continuum, the
final particle-unbound state is modeled with a very weakly
bound wave function (quasibound approximation). With these
ingredients the T matrix is

Tmi,mf
=

∫
χ

(−)∗
f (R,ki)φ

∗
f,mf

(r)�(R,rc−t ,rf −t )

×χ
(+)
i (R,kf )φi,mi

(r) dr dR, (7)

and the differential cross section for a specific mi → mf

transition is

dσ

d

(θc.m.; mi,mf ) = kf

ki

μ2

4π2h̄4

∣∣Tmi,mf

∣∣2
. (8)

In the last expression, θc.m. is the scattering angle in the center-
of-mass frame. For the sake of numerical computation, but also
to gain further insight, it is convenient to work out the partial

wave analysis of Eq. (7). We thus write down the standard
expressions of the scattering and bound wave functions in terms
of a spherical harmonics series,

χ
(+)
i (R; ki) = 4π

kiR

∑
Li

iLi eiσ
Li
i fLi

(R)
√

2Li + 1

× [YLi (R̂)YLi (k̂i)]
0
0, (9)

χ
(−)∗
f (R; kf ) = 4π

kf R

∑
Lf

i−Lf eiσ
Lf
f gLf

(R)
√

2Lf + 1

× [YLf (R̂)YLf (k̂f )]0
0, (10)

φi,mi
(r) = ui(r)

∑
μi,mfrag

〈�i μi Jfrag mfrag|Ji mi〉

×Y �i
μi

(r̂)�ms
(σ ), (11)

φ∗
f,mf

(r) = uf (r)
∑

μf ,mfrag

〈�f μf Jfrag mfrag|Jf mf 〉

×Y
�f

μf (r̂)(−1)μf �†
ms

(σ ). (12)

The radial wave functions ui(r) and uf (r) are computed
with a simple Woods-Saxon potential which reproduces the
particle-emission threshold. The functions fLi

(R) and gLf
(R)

are the solutions of the radial Schrödinger equation for the
potential Up-t (R) in the initial and final channel, respectively,

and σ
Li

i ,σ
Lf

f are the corresponding Coulomb phase shifts. The
spinors �ms

(σ ) describe the spin degrees of freedom. Since all
the interactions we are considering are spin-independent, the
spin projection mfrag remains unchanged during the collision
process, while the employed version of � and the partial
wave expansion enforces angular momentum conservation. We
define the transition density for a multipolarity K ,

ρK (R) =
∫

ui(r) uf (r)�K (R,r)r2 dr. (13)

Using Eqs. (9)–(13) in Eq. (7), and after some algebra, we
obtain

Tmi,mf
=

∑
K,Li ,Lf

〈Li 0 K M|Lf M〉 〈Ji mi K M|Jf mf 〉

×Y
Lf

−M (k̂f )I (K,Li,Lf ), (14)

with I (K,Li,Lf ) defined as,

I (K,Li,Lf ) = 2π1/2iLi−Lf ei(σ
Li
i +σ

Lf
i )

× (2Li + 1)3/2(2K + 1)(2�i + 1)

×√
(2Ji + 1)(2�f + 1)

{
�i Jfrag Ji

Jf K �f

}
×〈Li 0 K 0|Lf 0〉〈�i 0 K 0|�f 0〉,

×
∫

fLi
(R) gLf

(R)ρK (R) dR. (15)

C. Properties of the transition amplitude

Partial waves, or L waves, are semiclassically related to
the impact parameter, b, which characterizes the distance of
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closest approach for the projectile’s trajectory. The relationship
between these two parameters is given by L = p∞b, where
p∞ is the momentum of the particle at far distances, or rather
the momentum of the beam in scattering experiments. Small
impact parameters, and thus small L, represent head-on colli-
sions that result in processes such as fusion and projectile/target
fragmentation. Larger impact parameters give rise to transfer
and inelastic scattering before giving way to pure Coulomb
scattering at even larger impact parameters.

If the beam energy and/or the reduced mass of the colliding
systems is large, the process is rather well localized in space.
Due to the absorptive nature of the optical potential, the main
contribution to the inelastic process comes from the nuclear
surfaces (peripheral collisions). In this situation, the partial
waves contributing to the cross section are large compared
to the multipolarity of the transition and are narrowly peaked
around the grazing angular momentum, Lgraz � K . Here we
define the grazing angular momentum by the touching spheres
approximation with Lgraz = p∞rgraz, where the grazing ra-
dius is given by rgraz = 0.5 fm + (1.36 fm)(A1/3

p + A
1/3
t ) [20].

Above the grazing angular momentum, the partial wave con-
tribution to the total reaction cross sections drops steeply.

Assuming there is one dominant multipolarity, K ′, and if
only processes where Li = Lf are considered (employing the
angular-momentum-excitation-energy matching argument) we
can take advantage of the fact that as L → ∞ the first Clebsch-
Gordan coefficient in Eq. (14) is independent of L. Since only
L around Lgraz, which is large at intermediate energies, will
contribute to the cross section, the Clebsch-Gordan coefficients
in Eq. (14) can be factored out resulting in the expression,

Tmi,mf
≈ 〈Lgraz 0 K ′ M|Lgraz M〉 〈Ji mi K ′ M|Jf mf 〉

×
∑
L

YL
−M (k̂f )I (K ′,L,L). (16)

The angle dependence and implicit energy dependence of the
T matrix is represented in the sum over L in Eq. (16).

Oscillations in alignment with angle are expected from
the high-order spherical harmonics required for the target-
projectile motion in the wave function, although, at larger
angles the alignment should become fairly constant. This is due
to the mixing of several L waves about Lgraz, which is taken
into account by the sum,

∑
L YL

−M (k̂f )I (K ′,L,L), in Eq. 16.
If the angle dependence of the T matrix is integrated over
(i.e., angle averaged), then the magnetic-substate distribution
of inelastically excited species should show large longitudinal
alignment at beam energies above the mismatch threshold,
when the reaction partner remains in its ground state. In
fact, the observed alignment should be very similar to the
Clebsch-Gordan coefficients presented in Eq. (16).

V. OPTICAL-MODEL ANALYSIS OF 7Li + 12C

The DWBA breakup calculations outlined in Sec. IV were
performed for the 7Li + 12C system using FRESCO [21],
assuming an α + t cluster structure of 7Li. The optical po-
tentials used were obtained from a fit of the relative elastic and
inelastic scattering angular distributions, as well as the angular
correlations for the breakup of 7Li∗ [4.63 MeV] shown in Fig. 4.

FIG. 6. Data (black circles) and DWBA predictions (solid red
lines) for the 7Li + 12C system: (a) elastic scattering and the single
inelastic excitation of 7Li to the 0.48 MeV state and (b) the single
inelastic excitation of 7Li to the 4.63 MeV state. The predicted angular
distributions were used as inputs into the Monte Carlo simulations
of the detector system and the expected detector distributions are
compared to the data (blue dashed lines).

Absolute cross sections were not available from our measure-
ments, and so the relative cross section data [black circles in
Figs. 6(a) and 6(b)] were scaled to the DWBA predictions in the
fitting procedure. The volume terms for the phenomenological
optical potentials are described by a Woods-Saxon form, while
the spin-orbit coupling uses a differential Woods-Saxon form.
The radii of the potentials follow the form r = r0(A1/3

1 + A
1/3
2 ),

where A1 and A2 are the mass numbers for the nuclei in the
system and r0 is specified separately for the real and imaginary
potentials. The initial α-12C effective interaction was obtained
from [22] and the magnitude of the interaction was allowed
to vary in fitting. The t-12C potential was extrapolated from
a 3He-12C effective interaction. The α-t and 7Li-12C potential
parameters were allowed to vary during the fitting procedure,
as well as the spin-orbit coupling of 7Li. The fitted potential
parameters are listed in the Table II and the resulting fits to the
elastic and single inelastic excitation cross sections of 7Li are
shown in Figs. 6(a) and 6(b) as the solid red lines.

The predicted angular distributions were then used as inputs
into the Monte Carlo simulations, which take into account a
tilt of the beam axis with respect to the detector axis of 0.62◦, a
beam divergence characterized by a two-dimensional Gaussian
with σY = 1.53◦ and σX = 0.32◦, and a beam spot size 4 mm
in diameter at the target. The tilt with respect to the beam
axis was determined from Monte Carlo simulations by rotating
the beam in the simulation until the experimental hit-map
of elastic scattering events was reproduced. The divergence
parameters were calculated from LISE++ simulations of the
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TABLE II. Fitted optical potential parameters for the 7Li + 12C
DWBA calculations, assuming a cluster model for 7Li (α + t). The
volume terms use a Woods-Saxon form. The spin-orbit coupling uses
a differential Woods-Saxon form.

System Type V rreal areal W rimag aimag

[MeV] [fm] [fm] [MeV] [fm] [fm]

7Li-12C Volume 169.4 1.28 0.800 34.8 1.67 0.758
Spin-Orbit 0.550 1.48 0.727 0.720 1.48 0.485

α-12C Volume 72.0 1.43 0.692 32.0 1.43 0.692
t-12C Volume 65.3 1.15 0.400 30.9 1.35 0.407
α-t Volume 71.6 1.20 0.736

several quadrupole and dipole magnet settings used to tune
the beam [23]. The beam was tuned through a 4-mm-diameter
hole in a target blank covered in scintillator. By minimizing the
amount of scintillated light viewed by a camera, the beam spot
size at the target position was constrained. These combined
features of the 7Li beam severely limited the scattering angle
resolution, and the expected measured distributions are shown
as the blue dashed lines in Figs. 6(a) and 6(b).

The reactions of interest, single inelastic excitations, are
well described by peripheral collisions with large orbital
angular momentum between the projectile and target. The
solid black line in Fig. 7 shows the contributions to the total
reaction cross section of each J , where J is the addition of
L and incoming spin of the projectile, for E/A = 24 MeV 7Li
interacting with 12C from a DWBA cluster-model calculation.
The dashed red line in Fig. 7 shows the partial cross section as
a function of J for the inelastic excitation of interest, where
7Li is excited to the E* = 4.63 MeV (Jπ = 7/2−) state while
the target remains in its ground state.

As can be seen in Fig. 7, the inelastic excitation of interest
occurs at very large J corresponding to a peripheral reaction

J ( )

σ
J

(m
b)

FIG. 7. The partial cross section as a function of J for the total
reaction cross section of the system E/A = 24 MeV 7Li + 12C using
DWBA calculations (solid black line) and for the inelastic excitation
of 7Li to the 4.63 MeV excited state while the target remains in its
ground state (dashed red line). The inelastic cross section has been
scaled by a factor of 10 for comparison.

(i.e., is near Lgraz = 35h̄). The DWBA cluster-model calcula-
tions indicate that this particular inelastic excitation of 7Li takes
up a relatively small part of the overall reaction cross section.
The calculations also suggest that the inelastic excitation of
7Li studied is a purely nuclear process. This is consistent with
relativistically correct calculations of the Coulomb excitation
cross section [14].

A. Spin-orbit effects on alignment

When spin-orbit effects are introduced to the effective
potential spin-flip processes become possible. These spin-flips
are accompanied by a tilt of the orbit between the projectile
and target [19]. This spin-orbit tilting can potentially diminish
or destroy the overall alignment generated from an angular-
momentum-excitation-energy mismatch. This should be a
miniscule effect due to the typically small coupling strength of
the spin-orbit potential. However, small spin-orbit couplings
can have a large effect on the resulting angular correlations.
Figure 8(a) shows the predicted ψ-χ correlations from a
DWBA cluster-model calculation for inelastically excited 7Li∗

[4.63 MeV] after interacting with a 12C target, at a beam energy
of E/A = 24 MeV, with no spin-orbit potential (in the angular
range of 3◦ < θc.m. < 23◦). The pattern of the calculated
correlations is very similar to the data [Fig. 8(e)] although the
centroid of the central ridge is shifted to negative cos(ψ) values,
as opposed to the positive values in the experiment. It was found
that the the inclusion of a small complex spin-orbit coupling
for the projectile resulted in an angular correlation pattern
[Fig. 8(b)] much more consistent with the data. Small spin-orbit
couplings do not affect the alignment (i.e., the magnetic-
substate distribution). Increasing the real spin-orbit coupling
strength to VSO = 3.0 MeV distorts the angular correlations but
also preserves the alignment [Fig. 8(c)]. The angular correla-
tions, and differential cross sections, are even more sensitive
to further increases of the complex spin-orbit strength. Figure
8(d) shows the predicted correlations with WSO = 1.44 MeV,
at which point the pattern of the correlations is completely
distorted and the longitudinal alignment is destroyed. In fact,
larger increases of WSO result in spin alignment transverse
to the beam axis. This study suggests that angular correlation
measurements, in concordance with differential cross section
data, can put a constraint on the strength of spin-orbit effects
in reactions. These constraints are analogous to those made by
analyzing power measurements [1]. However, these alignment
effects do not require a polarized beam.

VI. OTHER CASES FOR LARGE LONGITUDINAL
SPIN ALIGNMENT

Large longitudinal spin alignments were observed in the
inelastic excitation of 7Be and 6Li to particle-decaying states
[13]. 6Li is modeled well by an α + d, and 7Be by an α +
3He, cluster structure, so the manifestation of this alignment
mechanism in the cluster-model directly applies to these nuclei.
Another example for this large longitudinal spin alignment
is the inelastic excitation of 17Ne to the 1.76 MeV state
(Jπ = 5/2−), which subsequently 2p decays to 15O. The decay
is purely sequential, and in the first step, 17Ne decays directly
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cos(ψ) cos(ψ)

cos(ψ)

FIG. 8. Angular correlations from DWBA cluster-model calculations of 7Li∗ [4.63 MeV] breakup after interaction with a 12C target, which
remains in its ground state, with: (a) no spin-orbit term, (b) VSO = 0.55 and WSO = 0.72 MeV, (c) VSO = 3.0 MeV and WSO = 0.72, and (d)
VSO = 0.55 MeV and WSO = 1.44. (e) For comparison, the measured angular correlations for the breakup of 7Li∗ after interacting with the 12C
target.

to the ground state of 16F (Jπ = 0−) [24]. At sufficiently
high beam-energies, the first proton is preferentially emitted
perpendicular to the beam-axis, indicating large longitudinal
spin alignment of 17Ne∗ [25]. This observation of alignment
illustrates that the alignment mechanism outlined is not a
consequence of cluster structure.

Using the same breakup model and optical-model potential
parameters for 7Li (changing the fragment and core for each
case), DWBA calculations were performed for the inelastic
excitations to particle-decaying states of 6Li, 17Ne, and 7Be

at the appropriate experimental energies (E/A = 36.6, 58.5,
and 65.5 MeV, respectively) and angular regions [13,24,25].
The experiments show, and the calculations predict, that the
alignment produced is fairly constant above the grazing angle.
However, the calculations indicate that transverse alignments
must be present at small scattering angles due to the inclu-
sion of the spherical harmonics YL

0 in the wave function.
Indeed at θc.m. = 0◦, the only contribution to the alignment
is from M = 0 (no tilting), and thus mf = mi meaning no
longitudinal alignment is possible. The green dashed lines

FIG. 9. Magnetic-substate distributions extracted from the data (solid squares) and predicted by DWBA (lines) for single inelastic excitation
to particle-decaying states in (a) 6Li, (b) 17Ne, (c) 7Li, and (d) 7Be. Note for (a) 6Li the magnetic substate distribution is for the decay angular
momentum (�decay = 2). The blue and red solid lines are the DWBA predictions for angular regions including and excluding small angles,
respectively. The green dashed lines are predictions from the Clebsch-Gordan coefficients in Eq. (16), omitting the energy and angle dependence.
The black squares are data from this and other works.
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in Fig. 9 correspond to the squared T matrix predictions
from Eq. (16) for a single L (equal to Lgraz) and omitting
the angle and implicit energy dependence. These lines are
in remarkable agreement with the solid blue line obtained
from the T matrix integrated over the entire angular region.
If small-angle scattering is removed, the T matrix calculations
(solid red lines) show significant enhancement to the alignment
due to the suppression of M = 0 transitions (non-tilting). This
feature of the alignment mechanism was observed for 7Be [13].
The experimental magnetic-substate distributions for 6Li∗[3+],
7Li∗[7/2−], 17Ne∗[5/2−], and 7Be∗[7/2−] are shown as black
squares in Fig. 9. The data for 6Li, 17Ne, and 7Be are from
Refs. [13,25]. The agreement between the data and the DWBA
predictions, excluding small angles, is remarkable for several
of the cases, and demonstrates the limited acceptance of the
detector arrays for small angles. There is a small discrepancy in
the predicted alignment for 7Be. Although the optical potential
parameters found for 7Li + 12C should be more reasonably
suited for the 7Be + 9Be system than the other presented
systems (since the projectiles are isobaric analogs), the 7Be
experiment was performed at a much larger beam energy
(E/A = 65.5 MeV) and so the phenomenological optical po-
tentials used may not be as representative of the 7Be + 9Be
system due to the implicit energy dependence of the potentials.

It should be noted that the predictions and data for 6Li∗

in Fig. 9 are for magnetic-substate populations of the decay
channel angular momentum. In principle, one can reconstruct
the final angular momentum state, Jf , from the relationship
Jf = �decay + score + sfrag, assuming there is only one decay
channel angular momentum. However, only systems where
score = 0 and sfrag = 1/2, or vice-versa, are completely con-
strained and allow for the extraction of ρJ

mf ,mf
. In the 6Li

case, the measured magnetic-substates of the decay angular
momentum indicate large longitudinal alignment, but the
magnetic-substate populations of the excited projectile cannot
be extracted. This is made clear by repeating the density matrix
analysis in Ref. [13] for the 6Li case (Jf = 3,�decay = 2,score =
0,sfrag = 1) resulting in the set of equations,

ρ�
2,2 = ρJ

3,3 + 1
3ρJ

2,2 + 1
15ρJ

1,1, (17)

ρ�
1,1 = 2

3ρJ
2,2 + 8

15ρJ
1,1 + 1

5ρJ
0,0, (18)

ρ�
0,0 = 4

5ρJ
1,1 + 3

5ρJ
0,0. (19)

There is no fully constrained solution for the final magnetic-
substate populations for J given the measurement of magnetic-
substate populations for �decay. If 6Li decayed with a smaller
�decay, then almost no alignment information would be recov-
erable.

A. Predictions for 12C + 12C

The 12C + 12C system is simpler than 7Li + 12C as there are
no spin-spin or spin-orbit interactions. Extensive studies mea-
suring the spin alignment of a single 2+ [4.44 MeV] inelastic
excitation of 12C have been performed at low energies [6,9,26].
These studies were focused on correlating gross structures in
the alignment with intermediate structures in the excitation
function of the reaction cross section. While no strong correla-
tion was found, these studies were consistent with the reduction

A
θc.m.(deg)

d
σ

d
Ω

(m
b/

sr
)

FIG. 10. (a) Differential cross sections for the single inelastic
excitation of 12C∗ [4.44 MeV] predicted by a DWBA soft-rotator
model for the beam energies E/A = 2.0, 5.8, 12.0, and 17.0 MeV
(purple dashed, blue dot-dashed, green dot-dot-dashed, and red solid
line, respectively). (b) A coarse excitation function of the spin
alignment for 12C∗, as a function of scattering angle, for the same
beam energies.

in magnitude of the incoming partial wave by 2h̄. Furthermore,
these studies suggest the reaction is dominated by only one
incoming partial wave due to molecular-like resonances in
the experimental energy regime. Without the smoothing effect
produced by a range of partial waves, a single partial wave
will produce large oscillations in the alignment with angle. To
effectively measure the gross structure in alignment (because
of these oscillations) the alignment measurements need to
be angle-averaged and weighted by the differential cross
section [9]. All of the previously mentioned studies restricted
themselves to center-of-mass angles θc.m. > 30◦, and thus a
large portion of the reaction yield, and resulting alignment,
was missed.

Even still, the transfer of angular momentum generated
in the reaction to the intrinsic spin of 12C∗ is consistent
with the alignment mechanism outlined in this work, and at
larger beam energies tilting of the exit-channel reaction plane
should occur resulting in a longitudinal spin alignment of 12C∗.
Predictions for the spin alignment of 12C∗ [4.44 MeV] have
been made previously using a variety of models including
DWBA predictions [27], but these studies focused on the
previously mentioned low-energy data sets.

The proposed alignment mechanism can be tested by
measuring a coarse excitation function of the generated spin

054605-9



D. E. M. HOFF et al. PHYSICAL REVIEW C 97, 054605 (2018)

alignment as a function of scattering angle. These measure-
ments would allow one to probe the predicted threshold of
the alignment mechanism. By measuring the spin alignment
over a large portion of the reaction yield (i.e., scattering angles
around the grazing angle) the gross structure of the alignment
can be found and compared to theoretical predictions. Fig-
ure 10(a) shows the differential cross sections predicted by a
DWBA soft-rotator model for the beam energies E/A = 2.0,
5.8, 12.0, and 17.0 MeV (purple dashed, blue dot-dashed,
orange dot-dot-dashed, and red solid line, respectively), while
Fig. 10(b) shows the corresponding alignments. The optical-
potential parameters employed came from the literature [28].
To do a proper phenomenological optical-model analysis, the
optical potential parameters should be fit to differential elastic
and inelastic cross section data at each energy because of
the implicit energy dependence of phenomenological optical
potentials.

Well below the angular-momentum-excitation-energy mis-
match threshold, around E/A = 5 MeV (deduced from semi-
classical calculations), the overall alignment should be trans-
verse to the beam axis (A < 0). This is predicted for mea-
surements at a beam energy of E/A = 2.0 MeV. Larger
longitudinal alignment should be observed after passing this
threshold (this is seen for the E/A = 5.8 MeV prediction in
Fig. 10). Interestingly, the minima in the alignment corre-
spond with diffraction minima in the differential scattering
cross section. This a consequence of the fact that the same
spherical harmonics are responsible for the diffraction minima
in the differential cross section and angular distributions for
the alignment. Further, these minima in alignment will not
be observed in the angle-averaged alignment because it is
weighted by the differential cross section. Well above this
threshold, the generated alignment does not vary significantly
with energy (comparing E/A = 12.0 and 17.0 MeV) and
the gross structure of alignment should be similar to the
Clebsch-Gordan coefficients in Eq. (16). Also, the contri-
bution of many partial waves to the cross section result in
a spin alignment that is fairly constant at large scattering
angles. Since the overall yield of the alignment has to be
weighted by the differential cross section, the overall (i.e.,
gross) alignment will be largely longitudinal at intermediate
energies.

VII. CONCLUSION

We have found large longitudinal spin alignment of 7Li∗

produced in single inelastic excitations with targets of C,
Be, and Al. Large longitudinal spin alignment has also
been observed in several other particle-unbound systems.
These observations are explained by an alignment mechanism
stemming from an angular-momentum-excitation-energy mis-
match. Above a certain beam-energy threshold, which depends
on the excitation energy and change in fragment spin, the
reaction-plane is forced to tilt to conserve angular momentum.
The 7Li + 12C reaction studied, where 7Li is excited to the
Jπ = 7/2−[4.63 MeV] state and 12C remains in its ground
state, is well characterized by DWBA calculations and suggest
the reaction is purely a nuclear transition. DWBA calculations
are consistent with the semiclassical argument for tilting of the
exit-channel reaction plane and predict longitudinal alignment
to be present in single inelastic excitations of many nuclear
systems. The effect of spin-orbit coupling on the alignment
produced is discussed, and it was found that angular correlation
measurements, along with differential cross section data, can
put constraints on the strength of these spin-orbit effects.
With the observation of longitudinal alignment generated by
an angular-momentum-excitation-energy mismatch in systems
where a cluster-model is inappropriate, it is clear that this
alignment phenomenon is more general and should also ap-
ply to Coulomb excitation as well. The proposed alignment
mechanism may be the primary mechanism for large longitu-
dinal alignments already utilized in g-factor measurements at
intermediate energies [4].
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