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The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is
found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced
microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be
important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density
although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and
our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably
describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry
restoration in PNM at high densities.
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I. INTRODUCTION

An equation of state (EOS) of cold pure neutron matter
(PNM) is an interesting and important problem at least from
two aspects. On the one hand, at subsaturation even to very low
densities, the PNM composed of spin-down and -up neutrons
with a large s-wave scattering length shows several universal
properties [1] such as the simplicity of its EOS characterized
by a few universal parameters [2–5]; the high momentum tail
above the Fermi surface of the single nucleon momentum
distribution function in cold PNM is also found to be very
similar to that in ultracold atomic Fermi gases [6] although the
magnitude of the density for the two systems differs by about
25 orders [7]. Thus, the cold PNM at low densities provides a
perfect testing bed to explore novel ideas in the unitary region
[8,9], helping to find deep physical principles behind these
quantum many-body systems [10]. On the other hand, cold
PNM at densities up to 3–5ρ0, with ρ0 ∼ 0.16 fm−3 the nuclear
saturation density, is extremely important to the properties of
neutron stars [11–15], such as the mass-radius relation of a
neutron star and its transport properties [16], since the EOS of
neutron star matter is very close to that of PNM.

Conventionally, since there is a lack of direct experimental
probes on the PNM [17], people usually rely on phenomeno-
logical models [18,19] to explore its properties. However, due
to the fact that the fitting scheme in these models is usually
implemented by a number of phenomenological parameters,
the microscopic origin of the uncertainties on the EOS of
PNM are often averaged. Consequently, any microscopic
approaches to EOS of PNM, especially those inheriting the
quantum chromodynamics (QCD) spirit, such as the effective
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field theories [20–26] and simulations [27], are appealing and
exciting.

The QCD sum rules (QCDSRs) method [28] provides
an important nonperturbative QCD approach to explore the
properties of nuclear matter (see, e.g., Refs. [29]). Intuitively,
when the QCD coupling constant is small at high ener-
gies/small distances, the theory becomes asymptotically free,
guaranteeing the applicability of perturbative calculations. As
the energy scale decreases, the coupling constant of the theory
becomes large, perturbative methods break down eventually,
and nonperturbative effects emerge. Among these effects,
the most important is the appearance of the quark/gluon
condensates. The basic idea of QCDSR for nuclear matter cal-
culations [29–37] is to relate these condensates to the nucleon
self-energies using the operator product expansion (OPE)
technique, where information on the self-energies is introduced
via nucleon-nucleon correlation functions. Within the QCDSR
method, the exact information on the nucleon self-energies
and nuclear matter EOS can thus provide constraints on the
in-medium quark condensate, which is an order parameter of
spontaneous chiral symmetry breaking in QCD. The QCDSR
method is expected to work well at lower densities/momenta
where effects of the poorly known high mass-dimensional
condensates as well as continuum effects are small enough.

In this work, we mainly focus on the properties of PNM
obtained with the QCDSRs, and leave the detailed descriptions
and more physical issues about asymmetric nuclear matter to
be reported elsewhere [38]. The EOS of PNM defined by the
energy per neutron can be obtained as [39,40]

En(ρ) = 1

ρ

∫ ρ

0
dρ

[
e∗

n(ρ) + �n
V

(
ρ,kn

F

) − M
]
, (1)

where we denote e∗
n(ρ) = {[M + �n

S(ρ,kn
F)]2 + k

n,2
F }1/2 with

M the nucleon rest mass, and �n
S/V(ρ,kn

F) is the scalar/vector
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self-energy of a neutron in PNM at its Fermi surface kn
F =

(3π2ρ)1/3. This Lorentz structure of the single neutron en-
ergy en = e∗

n + �n
V is very general owing to the transla-

tional/rotational/parity and time-reversal invariance as well as
the hermiticity in the rest frame of neutron matter [19,41]. The
main motivation of this work is to obtain the En(ρ) by Eq. (1)
with the density and momentum dependent self-energies, i.e.,
�n

S/V(ρ,|k|), determined by the QCDSRs.
Successes of QCDSRs in nuclear matter calculations can be

traced back to the prediction on the large nucleon self-energies
on the GeV scale [30]. And the present work is a natural
generalization to the study of PNM with QCDSRs. As we
shall see, the results on EOS of PNM and quark condensates
at low densities obtained via the QCDSRs are consistent with
predictions by other state-of-the-art microscopic many body
theories, demonstrating that QCDSRs can be applied to explore
properties of PNM quantitatively.

Section II briefly introduces the QCDSR method. In Sec. III,
the results on the En(ρ) from the QCDSRs are presented.
Section IV is devoted to the study on the chiral condensates in
PNM. Section V is the summary of this work.

II. A BRIEF INTRODUCTION TO QCDSRs

As discussed in the Introduction, the essential task of the
QCDSR calculations for nuclear matter is to relate, via OPE,
the quark/gluon condensates with the nucleon self-energies,
and the latter are usually encapsulated in the nucleon-nucleon
correlation functions �μν constructed by quantum hadrody-
namics [19]. The form of �μν at zero density (vacuum) is
generally given by [33]

�μν(q) ≡ i

∫
d4xeiqx〈0|Tημ(x)ην(0)|0〉

= −
∫

da0

[
ρμν(a)

q0 − a0 + i0+ + ρ̃μν(a)

q0 − a0 − i0+

]
, (2)

where q is the momentum transfer and a = (a0,q), |0〉 is the
nonperturbative vacuum, μ,ν are the Dirac spinor indices.
Moreover, ημ is the interpolation field of nucleons, and for
the proton, ηp(x) = 2[tηp

1(x) + η
p
2(x)], where two indepen-

dent terms are given by η
p
1(x) = εabc[uT

aCγ5db(x)]uc(x) and
η

p
2(x) = εabc[uT

aCdb(x)]γ5uc(x), with C the charge conjugate
operator, and t called the Ioffe parameter whose value is
around −1 [42]. In this work, the value of t is determined
via the nucleon mass in vacuum [38]. In order to obtain the
interpolation field for neutron, one can make the exchange
“u ↔ d.”

In Eq. (2), ρμν = (2π )−1
∫

d4xeiqx〈0|ημ(x)ην(0)|0〉 and
ρ̃μν = (2π )−1

∫
d4xeiqx〈0|ην(0)ημ(x)|0〉 are nucleon spectral

densities. Moreover, Lorentz symmetry and parity invariance
together indicate that the general structure of the spectral
density is ρμν(q) = ρs(q2)δμν + ρq(q2)/qμν

[33], where ρs and

ρq are two scalar functions of q2. Correspondingly, we have

�μν(q) = �s(q
2)δμν + �q(q2)/qμν

, (3)

where the coefficients are [33]

�j (q2) =
∫ ∞

0
ds

ρj (s)

s − q2
+ polynomials, j = s,q, (4)

with s the threshold parameter (∼M2 for a nucleon). For exam-
ple, the simplest phenomenological nucleon spectral densities
take the form ρ

phen
s (s) = Mδ(s − M2) and ρ

phen
q (s) = δ(s −

M2), corresponding to �(q) = −(/q + M)/(q2 − M2 + i0+),
which is the standard nucleon propagator in vacuum, i.e., the
two-point nucleon-nucleon correlation function.

For two operators A and B, the OPE gives T A(x)B(0) =∑
n CAB

n (x,μ)On(0,μ) as x → 0, where CAB
n ’s are the Wil-

son’s coefficients, which can be obtained by standard per-
turbative methods [43], and μ is the renormalization energy
scale. In the momentum space, we thus have �j (Q2) =∑

n C
j
n (Q2)〈On〉, where Q2 = −q2, and 〈On〉’s are different

types of quark/gluon condensates [33]. We note that the OPE
is only meaningful in the deep-space-like region.

Furthermore, for any function of momentum transfer, the
Borel transformation B[f (Q2)] ≡ f̂ (M 2) is defined by [33]

f̂ (M 2) ≡ lim
Q2,n → ∞
Q2/n=M 2

(Q2)n+1

n!

(
− d

dQ2

)n

f (Q2), (5)

where M ∼ M is the Borel mass [42]. Under the Borel
transformation, the correlation function Eq. (4) becomes

�̂j (M 2) =
∫ ∞

0
dse−s/M 2

ρj (s), j = s,q, (6)

where polynomials in Eq. (4) disappear.
After making the Borel transformation on the correlation

functions both from the phenomenological side (i.e., �phen,
which encapsulates information of the spectral densities) and
from the OPE (�OPE) under some assumptions [33], we obtain
the QCDSR equations apparently relating the nucleon self-
energies and correspondingly the En(ρ) via Eq. (1) on the
phenomenological side, and the quark/gluon condensates on
the OPE side [30,33,38]. Physically, the correlation functions
from OPE are not the same as those from the phenomenological
side, and they may even be very different from each other. The
basic assumption of QCDSRs is that in some range of q2, these
different correlation functions are the same, in the sense that
the physical quantities are insensitive to the Borel mass M
introduced [33]. This range of M is often called the QCDSR
window [33,42].

It should be pointed out that QCDSRs will become a
little difficult as density/momentum increases for the neutron
matter problem. The spectral densities in nuclear medium
are very complicated owing to the complicated medium ef-
fects (such as excitations and correlations), and only at low
densities/momenta does there exist a narrow resonance state
(the δ peak) corresponding to the nucleon degree of free-
dom [ρs ∼ Mδ(s − M2) + · · · and ρq ∼ δ(s − M2) + · · · ].
As density/momentum increases, continuum excitations will
eventually emerge and these high density/momentum states
will have increasing importance at high densities/momenta.
While on the other hand, in QCDSRs, contributions from these
poorly known complicated high-order states are suppressed
by Borel transformation of the correlation functions (charac-
terized by the factor e−s/M 2

), and they can be even removed
[as the polynomials in Eq. (4)]. As a rough estimate on the
density region above which the QCDSR for nucleonic matter
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becomes broken down, we consider the formation of the �
resonance as an excited state in dense nucleonic matter. As
shown in Ref. [44], the formation density of the first charged
state of �(1232) could be smaller than 2ρ0, even to be around
the saturation density. Thus it is conservative to expect that the
QCDSR for nucleonic matter should not be applied at densities
around or above 2ρ0. However, a comprehensive analysis of the
applicable region of the conventional QCDSRs for nucleonic
matter deserves further work.

At finite densities, a new term proportional to the nucleon
velocity, i.e., �u(q2,qu)/uμν with qu = qμuμ [33], should be
added to Eq. (3). Similarly, the correlation functions con-
structed from quark/gluon condensates are then given by

�j (q2,qu) =
∑

n

Cj
n (q2,qu)〈On〉ρ, (7)

where 〈On〉ρ are the condensates at finite densities [32,33].
In this work, the quark/gluon condensates at finite densities

up to mass dimension 6 are included in the QCDSR equations,
i.e., 〈qq〉, 〈(αs/π )G2〉, 〈gsqσGq〉, 〈gsq

†σGq〉, 〈q�1qq�2q〉,
and 〈q�1λ

Aqq�2λ
Aq〉; see Refs. [36,38] for more details. For

the very relevance for the discussion in this paper, we write
down the expression for the quark condensates, i.e.,

〈qq〉ρ,δ ≈ 〈qq〉vac + σN

2mq
(1 ∓ ξδ)ρ + �(1 ∓ gδ)ρ2, (8)

where “−” (“+”) is for the u (d) quark, δ = (ρn − ρp)/(ρn +
ρp) is the isospin asymmetry of neutrons and protons in
asymmetric nucleonic matter (ANM) with ρn/p the neu-
tron/proton density. The corresponding condensate in vac-
uum takes 〈qq〉vac ≈ −(252 MeV)3 [33]. Moreover, ξ ≈ 0.1
characterizing the density dependence of the condensates for
different quarks is fixed by the mass relation of the baryon
octet [36], mq ≡ (mu + md)/2 ≈ 3.5 MeV is the average mass
of two light quarks, and σN ≡ mqdM/dmq ≈ 45 MeV is the
pion-nucleon σ term [45].

The motivation of including the last term “�(1 ∓ gδ)ρ2”
in Eq. (8) is as follows: As the density increases, the linear
density approximation for the chiral condensates becomes
worse eventually, and high-order terms in density should be
included in the 〈qq〉ρ,δ . However, the density dependence of
the chiral condensates is extremely complicated, and there
is no general power counting scheme to incorporate these
high density terms. Besides the ρ2 term we adopted here, for
instance, based on the chiral effective theories [22,46], a term
proportional to ρ5/3 was found in the perturbative expansion of
〈qq〉ρ,δ in ρ. On the other hand, using the chiral Ward identity
[47], a ρ4/3 term was found in the density expansion in the
chiral condensates. In our work, including the higher-order ρ2

term is mainly for the improvement of describing the empirical
EOS of PNM around and above saturation density, for which
we use the celebrated Akmal-Pandharipande-Ravenhall (APR)
EOS [48]. In this sense, the � term we adopted here is an
effective correction to the chiral condensates beyond the linear
leading order. Two aspects related to the � term should be
pointed out: (1) Without the higher-order ρ2 term, the EOS of
PNM around and above saturation density cannot be adjusted
to be consistent with that of APR EOS, i.e., there exists a
systematic discrepancy between the QCDSR EOS and the

FIG. 1. EOS of PNM obtained by QCDSRs and by the naive
QCDSR. Results from other approaches are also shown for compari-
son (see the text for details).

APR EOS around and above saturation density. (2) Using an
effective correction with a different power in density, e.g., a
ρ5/3 term, the conclusion does not change, i.e., the EOS of
PNM around and above saturation density can still be adjusted
to fit the APR EOS, and the sign of the coefficients � and
g does not change, and this will be seen in Fig. 1 in the
following. Moreover, the physical origin of the high density
term in the chiral condensates is an interesting issue, and one
of the possibilities is the three-body force. For instance, in
the Skyrme-Hartree-Fock (SHF) model, a traditional two-body
force contributes a term proportional to ρ to the EOS, and
a ρ1+α term emerges once the effective three-body force is
considered [49]. Here α is a parameter characterizing the three-
body force. Exploring the three-body force in the QCDSRs
[35] and its connection to the high density term in the chiral
condensates will be useful for further applications of the
QCDSR in nucleonic matter calculations. In the following, we
abbreviate the QCDSR using the chiral condensate without the
last term in Eq. (8) in “naive QCDSR.”

Furthermore, the four-quark condensate used in this work
takes the conventional decomposition structure as

˜〈qq〉2
ρ,δ = (1 − f )〈qq〉2

vac + f 〈qq〉2
ρ,δ, (9)

where f is an effective parameter introduced in
Refs. [32,33,36]. Besides the above input on the
chiral/conventional four-quark condensates, the other
condensates are adopted as the same as those in
Refs. [32,33,36]. Effects of twist-four four-quark condensates
[36] on the En(ρ) are not considered and will be discussed
at the end of the next section. Finally, in carrying out the
QCDSR calculations, we fix the central value of the En(ρ) at
a very low density ρvl = 0.02 fm−3 to be consistent with the
prediction by the chiral perturbative theories (ChPT) [20,21],
i.e., En(ρvl) = 4.2 MeV, the central value of the symmetry
energy Esym(ρ) at a critical density ρc = 0.11 fm−3 to be
Esym(ρc) = 26.65 MeV [50], and fit the EOS of PNM to the
APR EOS, via varying �, g, and f . We note that the parameter
f is essentially determined by En(ρvl), and the overall fitting
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of the EOS of PNM to the APR EOS and the symmetry energy
at ρc determines the other two parameters � and g.

III. EOS OF PNM FROM QCDSRs

In Fig. 1, we show the predictions on the En(ρ) by QCDSRs
with 〈qq〉vac = −(252 MeV)3, ξ = 0.1, mq = 3.5 MeV, σN =
45 MeV, �′ ≡ � × 〈qq〉vac = 3.45, g = −0.64 and f =
0.43. In the case of the naive QCDSR, we fix En(ρvl) =
4.2 MeV via varying the f parameter, and find f = 0.50. Also
included in Fig. 1 are the results from ChPT [20,21] (green
band), quantum Monte Carlo (QMC) simulations combined
with chiral force to next-to-next-to-leading order (N2LO) with
[51] (blue band) and without [52] (magenta band) leading-
order chiral three-nucleon interactions forces, next-to-leading
order (NLO) lattice calculation [53] (magenta circle), and
QMC simulations for PNM at very low densities [54] (green
diamond). The result from analyzing experimental data on the
electric dipole polarizability αD in 208Pb [17] is also shown
for comparison. Based on the obtained � and g, we can
estimate the density below which the � term has a minor
contribution to the quark condensates. This density can be
estimated from |�(1 − g)ρ2|  |(σN/2mq)(1 − ξ )ρ|, i.e., the
last term in Eq. (8) is significantly less than the second term in
Eq. (8), and we thus obtain ρ  ρes ≈ 2.13 fm−3. Therefore,
the effects of � and g on the En(ρ) are trivial at subsaturation
densities, e.g., when one artificially takes �′ = 0 and keeping
f fixed, the En(ρvl) (En(0.1 fm−3) changes from 4.20 to
4.22 MeV (from 11.15 to 10.01 MeV). It is thus reasonable
to expect that effects of � and g on the En(ρ) at low densities
�0.1 fm−3 are small. However, as the density increases, there
is no guarantee that the � term still has small effects on the
EOS of PNM since the En(ρ) is obtained by integrating over
the density [see Eq. (1)].

The inset in Fig. 1 shows the EOS of PNM at very
low densities where the results are almost the same for the
QCDSR and the naive QCDSR. Actually, after neglecting the
contributions from dimension-4 and higher-order terms, we
can obtain an analytical approximation for EOS of PNM as
[38]

En(ρ) ≈ EFFG
n (ρ) − ρ

2

M

〈qq〉vac

(
5 − σN

2mq
+ ξσN

2mq

)
, (10)

where EFFG
n (ρ) = 3k

n,2
F /10M ∼ ρ2/3 is the free Fermi gas

(FFG) prediction. Equation (10) clearly demonstrates how the
chiral condensate goes into play in the EOS of PNM, i.e.,
the second term characterized by several constants (ξ,σN,mq,
and 〈qq〉vac) is negative, leading to a reduction on the En(ρ)
compared to the FFG prediction. In Fig. 1, we also plot the
results obtained from Eq. (10) at densities �0.02 fm−3 (violet
solid square). One can see that the approximation Eq. (10)
can already produce reasonably the En(ρ) at low densities.
Furthermore, it is seen from Fig. 1 that the prediction on
the En(ρ) from QCDSRs is consistent with several QMC
simulations and lattice computation, showing QCDSRs is a
reliable approach in the study of PNM, especially at lower
densities, where the naive QCDSR is good enough.

Another feature of Fig. 1 is that compared with the APR
EOS, the prediction on the EOS of PNM in the naive QCDSR

is well behaved for ρ � 0.1 fm−3. However, as the density
increases, the discrepancy between the overall shape of En(ρ)
predicted by the naive QCDSR and by the APR becomes large
and this cannot be improved by adjusting the parameter f
in the naive QCDSR, indicating that the leading-order linear
density approximation for the chiral condensates dose not
work well enough and the higher-order density terms in the
chiral condensates are needed for PNM calculations in the
density region of ρ � 0.1 fm−3. Once we consider the term
�gρ2 in Eq. (8) for PNM, and recalculate the EOS of PNM,
we find that compared with the case of the naive QCDSR,
the obtained prediction can be largely improved to fit the
APR EOS. For example, the EOS of PNM at 0.12 fm−3 is
now found to be 12.9 MeV, which is very close to the APR
prediction 13.3 MeV. This feature suggests that the QCDSRs
with effective higher-order density terms in quark condensates
can be used to study the EOS of dense nucleonic matter
at higher densities. It is necessary to point out that using
a different high density term in Eq. (8) and refixing the
parameters f , �, and g by the same fitting scheme, the density
behavior of the En(ρ) is almost unchanged. For instance,
when adopting a ρ5/3 term, i.e., �(1 ∓ gδ)ρ5/3, we then obtain
f ≈ 0.46, �′ ≡ � × 〈qq〉2/3

vac ≈ 1.61, and g ≈ −0.34, and the
corresponding En(ρ) is shown in Fig. 1 by the magenta dotted
line. It is clearly seen that using a different high density term
in the chiral condensates will not change our conclusions on
the EOS of PNM.

Furthermore, it should be noted that once the twist-four
four-quark condensates [36] are included in the QCDSR
equations and the En(ρ) is still fixed at 0.02 fm−3 and made to
be consistent with the APR EOS as much as possible, we find
that the EOS of PNM at densities �0.12 fm−3 is essentially
the same as the one without these condensates. And at nuclear
saturation density ρ0 = 0.16 fm−3, the En(ρ0) changes from
about 17.1 to 15.9 MeV. As the high-twist operators have
some impact on several processes in hadronic physics [55], the
exact knowledge on density dependence of the EOS of PNM
may provide a novel tool to study them. Since including the
twist-four four-quark condensates does not affect our present
conclusions, we will not discuss effects of these terms again
in the following sections and leave the details to be reported
elsewhere [38].

Finally, we would like to briefly discuss the properties of
the EOS of symmetric nuclear matter (SNM) obtained in the
QCDSRs. Although our main point on the above fitting scheme
is the EOS of PNM at densities of ρ � ρ0 and the symmetry
energy at ρc with the inclusion of an effective correction in
ρ2, the predictions on the saturation properties of the SNM
are significantly improved from (ρ0,E0(ρ0)) ≈ (0.6 fm−3, −
99 MeV) in the naive QCDSR to (0.2 fm−3,−26 MeV) in the
QCDSRs. It suggests from another viewpoint that the effective
� term in Eq. (8) is important, implying the breakdown of
the chiral condensates at linear order at densities even smaller
than the saturation density. In fact, it is a challenging problem
on how to improve the saturation properties of the SNM in
the microscopic theories (see, e.g., Ref. [56]). Improvement
on the saturation properties of the SNM in the QCDSR is
important, and this is beyond the main motivation of the present
work.
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FIG. 2. Density dependence of quark condensates in PNM from
QCDSR. Also shown are the results from ChPT [22,46,57] and FRG
approach [23].

IV. CHIRAL CONDENSATES

In Fig. 2, we show the density dependence of the quark
condensates from QCDSR as well as the corresponding predic-
tions from ChPT [22,46,57] and the functional renormalization
group (FRG) approach [23]. At low densities, the chiral con-
densate is dominated by the linear density term. Specifically,
we have (〈uu〉ρ − 〈dd〉ρ)/〈qq〉vac ≈ −ρσNξ/mq〈qq〉vac > 0
at low densities, since 〈qq〉vac is negative. As density in-
creases, the � term in Eq. (8) begins to dominate and even
to flip the relative relation of the magnitude between 〈uu〉ρ
and 〈dd〉ρ , leading to 〈uu〉ρ/〈qq〉vac < 〈dd〉ρ/〈qq〉vac when
the density ρ is larger than about 0.15 fm−3. For example,
〈dd〉ρ0/〈qq〉vac (〈uu〉ρ0/〈qq〉vac) in PNM changes from 0.45
(0.56) in the linear density approximation to 0.60 (0.59)
with the inclusion of the � term in Eq. (8), leading to an
enhancement of about 33% (5%). It is interesting to point out
that the flip is a direct consequence of the inclusion of the
higher-order � term in Eq. (8).

Furthermore, it is interesting to see that the high-order �
term in Eq. (8) tends to stabilize the chiral condensate both
for u and d quarks at higher densities, while the leading-order
linear density approximation Eq. (8) leads to chiral symmetry
restoration at a density of about 2ρ0. This hindrance of the
chiral symmetry restoration due to the high-order density
terms in quark condensates has important implications on the
physical degrees of freedom in the core of neutron stars where
the matter is very close to PNM. This feature is consistent with
the recent analysis on the same issue using the FRG method
[23].

At this point, we would like to discuss the role played by
the σN. In our calculations above, the value of σN is fixed at
45 MeV. The physical value of σN still has a sizable uncertainty.
With a different σN, however, we need to readjust the values

of the parameters f , �, and g based on the fitting scheme we
adopted above, i.e., fixing the physical value of the EOS of
PNM at ρvl and the symmetry energy at ρc, and meanwhile
fitting the En(ρ) to the APR EOS. Consequently, in this way,
the σN has very little influence on the EOS of PNM. Different
values of σN will lead to different values of � and g, but the
density dependence of the chiral condensates will change only
quantitatively, instead of qualitatively since the σN term (linear
order) is a perturbation to the vacuum chiral condensates.
Similarly, the � term is a perturbation to the linear term.
Besides the quantities involved in the fitting scheme, the σN

will also have influence on some other quantities such as
the density dependence of the nucleon effective mass, which
will be explored in detail elsewhere [38]. Finally, it should
be mentioned that the study on the σN itself is an important
issue, and it will help improve our understanding of the relevant
aspects of the strong interaction.

V. SUMMARY

We have studied the EOS of PNM En(ρ) within the
framework of QCDSRs by effectively taking into account the
higher-order density effects in the quark condensates. First,
the En(ρ) thus obtained is found to be consistent with the
predictions from current advanced microscopic many-body
theories. Our results have indicated that although the higher-
order density terms in quark condensates play a minor role for
EOS of PNM at subsaturation densities (ρ � 0.1 fm−3), they
play an important role in describing the EOS of PNM in the
density region around and above nuclear saturation density.

Second, our results have demonstrated that the higher-order
density terms in quark condensates tends to stabilize the u/d
chiral condensates at higher densities, which is consistent with
the predictions from other advanced microscopic many-body
calculations. This feature has important implications on the
QCD phase diagram under extreme conditions of low tem-
peratures, large isospin, and large baryon chemical potentials,
which is essential for understanding the physical degrees of
freedom in the core of neutron stars.
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