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We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral
potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized
to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been
the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He,
16,22,24O, and 40,48Ca. These resonance modes have been widely observed in experiment. In addition, we use a
renormalized chiral potential Vlow-k , based on the N3LO two-body potential by Entem and Machleidt [Phys. Rev.
C 68, 041001 (2011)]. This introduces a dependency on the cutoff parameter used in the normalization procedure
as reported in previous works by other groups. While NNLOsat can reasonably reproduce observed multipole
resonances, it is not possible to find a single cutoff parameter for the Vlow-k potential that simultaneously describes
the different types of resonance modes. The sensitivity to the cutoff parameter can be explained by missing induced
three-body forces in the calculations. Our results for neutron-rich 22,24O show a mixing nature of isoscalar and
isovector resonances in the dipole channel at low energies. We predict that 22O and 24O have low-energy isoscalar
quadrupole resonances at energies lower than 5 MeV.
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I. INTRODUCTION

The occurrence of collective resonances is a common
phenomenon of many-body quantum systems. At excitation
energies above particle thresholds, the response of the nucleus
to an external nuclear or electromagnetic field is dominated by
collective vibrations of various multipolarities. The isovector
giant dipole resonance (IVGDR) [1–3] was one of the earliest
collective vibrational modes observed in nuclei. In the IVGDR,
the protons and neutrons oscillate against each other in a
dipole mode [4]. Giant resonances can occur on the whole
nuclear chart and are directly connected to bulk properties of
nuclei, such as incompressibility and symmetry energy [5–8].
For neutron-rich isotopes, there exist electric dipole (E1)
responses at low energy with weak strengths, named pigmy
dipole resonances (PDRs) [9]. These are interpreted as dipole
oscillations of excess neutrons against the N = Z proton-
neutron saturated core [10]. Furthermore, in weakly bound
nuclei along the driplines, it has been speculated that there exist
resonances called soft dipole resonances [11], a dipole mode
where loosely bound nucleons oscillate against a core. The soft
resonances can occur at even lower energies, attracting much
interest in both theory [12–14] and experiments [15,15–17].
A soft dipole resonance has been observed in the halo nucleus
11Li at an excitation energy of only 1.03 MeV [16]. Low-energy
monopole and quadrupole resonances have also been observed
in neutron-rich nuclei (see, e.g., Refs. [18–20]). A microscopic
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description of multipole resonances, based on realistic nuclear
forces, is challenging because of the computational complexity
involved in solving the nuclear many-body problem.

Within the Hartree–Fock (HF) approach with nonrelativistic
Skyrme or relativistic meson-exchange potential, the random-
phase approximation (RPA), which describes nuclear collec-
tive vibrations by particle-hole excitations, has been success-
fully applied to describe multipole responses in nuclei (see,
e.g., the reviews [14,21,22] and references therein). However,
details of the calculations depend on nuclear forces used. In
particular, the calculations of low-lying resonance strengths
can be drastically different with different forces. For example,
it was pointed out that the tensor force in the Skyrme interaction
has a significant effect on charge-exchange dipole excitations
[23], while the tensor force is missing in many other calcula-
tions. In theory, the collective responses of nuclei are directly
related to certain properties of the underlying nuclear force.

Recent nuclear structure calculations have highlighted the
use of realistic nuclear forces that accurately describe nucleon-
nucleon scattering. The giant dipole resonances (GDRs) of 3H,
3He, and 4He, have been investigated within the framework
of the correlated hyperspherical harmonic expansion [24,25],
using the Argonne AV18 [26] two-body (NN) potential plus
the Urbana [27] three-body (NNN) force. It was found that
three-body forces had a strong effect in the region of excitation
energies higher than 50 MeV. The 4He giant resonances were
further studied by the no-core shell model [28] and with the
effective interaction hyperspherical harmonics method [29],
using interactions from chiral effective field theory (EFT).
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In heavier nuclei, the random-phase approximation based
on realistic forces has been successful. In Refs. [30–33], a
correlated interaction derived from the AV18 potential by using
the unitary correlation operator method (UCOM) [34] was used
with HF-RPA. These calculations reproduced experimental
multipole resonances reasonably well, but the details depended
on the UCOM cutoff parameter of the potential.

The dipole resonances of closed-shell nuclei have also been
studied by using the coupled-cluster approach with chiral
forces [35,36]. Chiral effective field theory offers a consistent
framework to derive two- and three-nucleon forces. Recently,
the Oak Ridge group suggested a chiral EFT potential called
NNLOsat where two-nucleon and three-nucleon forces were
optimized simultaneously to low-energy nucleon-nucleon scat-
tering data, as well as binding energies and radii of few-nucleon
systems and selected isotopes of carbon and oxygen [37].
This potential has been successfully used to describe the
electric-dipole polarizabilities of 4He, 40Ca, and 16,22O [38,39].

The RPA has been proved to be an efficient approximation
to describe collective resonances and long-range correlations.
The low computational cost makes it feasible to describe mul-
tipole resonances of medium-mass nuclei. These resonances
are considered by using a one-body operator response of
the nucleus, thus the resonance strength should come mainly
from one-particle one-hole (1p1h) excitations. In this paper,
we perform self-consistent HF-RPA calculations with the
chiral NNLOsat potential and describe multipole resonances
of closed-shell helium, oxygen, and calcium isotopes. In
this context, self-consistence means that the HF and RPA
calculations are performed by using the same interaction.
However, the three-nucleon force has only been included fully
in the Hartree–Fock calculations, while in the RPA calculations
we keep only the normal-ordered zero-, one-, and two-body
terms of the three-body force [40,41]. For comparison, we also
performed HF-RPA calculations with a chiral two-body N3LO
potential [42,43] renormalized by the Vlow-k technique [44] at
different low-momentum cutoff parameters.

II. THEORETICAL FRAMEWORK

A. Random-phase approximation formulation

The RPA equations can be derived within different theoret-
ical frameworks, such as Green’s function theory, the small-
amplitude limit of time-dependent Hartree Fock (TDHF), and
the equation of motion (EOM). In the framework of the EOM,
the details of the RPA formulation can be found in a standard
textbook [45]. In this paper, we briefly state the RPA equations
in an angular-momentum coupled representation. The A-body
intrinsic Hamiltonian can be written as

H =
A∑

i=1

p2
i

2m
+

A∑
i<j=1

Vij −
( ∑A

i=1 pi

)2

2mA
+

A∑
i<j<k=1

Wijk

=
(

1 − 1

A

) A∑
i=1

p2
i

2m
+

A∑
i<j=1

(
Vij − pi · pj

mA

)

+
A∑

i<j<k=1

Wijk, (1)

where m is the average mass of a nucleon, A is the mass number
of the nucleus, pi is the nucleon momentum in the laboratory
frame, Vij is the two-body nucleon-nucleon force, and Wijk is
the three-nucleon force.

We first perform a spherical HF calculation for the full
Hamiltonian (1) in the harmonic oscillator (HO) basis. In the
spherical case, the angular momentum is preserved. In the
HF numerical iteration, the three-nucleon force and center-of-
mass correction remain included, i.e., we are performing the
HF calculation with three-nucleon force and center-of-mass
correction. After the HF calculation, the three-nucleon force is
written in a normal-ordered form in the HF basis as [40,41]

WNO = 1

6

∑
ijk

〈ijk|W |ijk〉 + 1

2

∑
ijps

〈pij |W |sij 〉{a†
pas}

+ 1

4

∑
ipqst

〈pqi|W |sti〉{a†
pa†

qatas}

+ 1

36

∑
pqrstu

〈pqr|W |stu〉{a†
pa†

qa
†
r auatas}, (2)

where â
†
q and âq are operators that respectively create and

annihilate a particle in the HF single-particle state labeled by
q, and the symbol {. . .} indicates the normal-ordered form
of the operators with respect to the HF ground state. We
can see that, in the normal-ordered form, the three-nucleon
force separates into zero-, one-, two-, and three-body terms.
In the present RPA calculations, we consider the effects of
the three-nucleon force at the normal-ordered two-body level
[40,41], while the residual three-body term [i.e., the last term in
Eq. (2)] is neglected. Then we obtain a two-body Hamiltonian
but including normal-ordered three-nucleon forces and the
center-of-mass correction, for the RPA calculation,

H = EHF +
∑

s

εs{â†
s âs} + 1

4

∑
pqst

〈pq|V |st〉{â†
pâ†

q ât âs}, (3)

where EHF is the HF ground-state energy, and V is the nucleon-
nucleon interaction with contributions from the normal-
ordered three-nucleon force, and εs are the HF single-particle
energies. Effects from the three-nucleon force and center-of-
mass correction appear in all the terms, i.e., EHF, εs , and
〈pq|V |st〉 in the Hamiltonian (3). The excited states can be
written as

|ν,JM〉 = Q
†
ν,JM |0〉, (4)

where |0〉 is the ground state. The operator Q
†
ν,JM creates

excited states with angular momentum J and its projection
M and other quantum numbers (ν). In the RPA, this operator
is approximated as

Q
†
ν,JM =

∑
ph

[
X

ν,JM
ph AJM

ph

† − (−1)J+MY
ν,JM
ph A

J,−M
ph

]
, (5)

where X
ν,JM
ph and Y

ν,JM
ph are forward and backward-going

particle-hole amplitudes of the state (ν,JM), respectively. The
labels ph represents 1p1h excitations, and the operator AJM

ph

†

couples the 1p1h configuration to the angular momentum J
and projection M . The summation runs over all allowed 1p1h

054306-2



CHIRAL NNLOsat DESCRIPTIONS OF NUCLEAR … PHYSICAL REVIEW C 97, 054306 (2018)

excitations with (JM) in the model space. The operator AJM
ph

†

can be expressed in the HF basis as

AJM
ph

† =
∑
mpmh

(−1)jh−mh〈jpmp,jh − mh|JM〉â†
jpmp

âjhmh
, (6)

where j and m are the total angular momentum and its
projection of a HF single-particle state, with p for a particle
state and h for a hole state.

The EOM [46] gives a set of coupled equations for the
amplitude vectors Xν,J and Y ν,J ,(

AJ BJ

−BJ ∗ −AJ ∗
)(

Xν,J

Y ν,J

)
= h̄�ν

(
GJ 0
0 GJ ∗

)(
Xν,J

Y ν,J

)
, (7)

where h̄�ν is the excitation energy of the νth eigenstate
(Xν,J ,Y ν,J ). The matrices are given by their matrix elements

AJ
ph,p′h′ = 〈

0
∣∣[AJM

ph ,H,AJM
p′h′

†]∣∣0〉
,

BJ
ph,p′h′ = −〈

0
∣∣[AJM

ph ,H, (−1)J+MA
J,−M
p′h′

]∣∣0〉
, (8)

GJ
ph,p′h′ = 〈

0
∣∣[AJM

ph ,AJM
p′h′

†]∣∣0〉
,

where the double commutator [A,B,C] is defined as
2[A,B,C] = [A,[B,C]] + [[A,B],C] [46], and |0〉 is the cor-
related ground state.

The ground state in Eq. (8) can be approximated in different
ways. If we approximate it by the HF ground state |0〉 = |HF〉,
it is usually known as the quasiboson (QB) approximation, and
we obtain the matrix elements as done in the standard RPA,

AJ
ph,p′h′ = (εp − εh)δpp′δhh′ + 〈ph−1,J |V |p′h′−1,J 〉,

BJ
ph,p′h′ = 〈ph−1,J |V |p′−1h′,J 〉, (9)

GJ
ph,p′h′ = δpp′δhh′,

where εp and εh are the energies of the HF single-particle and
-hole states, respectively. The cross-coupled matrix elements
are defined as follows:

〈ac−1,J |V |b−1d,J 〉
≡ (−1)jb−jd+J 〈ac−1,J |V |db−1,J 〉

≡
∑
J ′

(2J ′ + 1)(−1)jb+jc+J+J ′
{
ja jc J
jd jb J ′

}
6j

×
√

(1 + δab)(1 + δcd )〈ab,J ′|V |cd,J ′〉, (10)

where a, b, c, and d indicate the HF single-particle states, and
〈ab,J ′|V |cd,J ′〉 is the coupled nucleon-nucleon interaction
matrix element defined by

〈ab,J ′|V |cd,J ′〉
=

∑
mambmcmd

〈jama,jbmb|J ′M〉〈jcmc,jdmd |J ′M〉

× 1√
(1 + δab)(1 + δcd )

〈ab|V |cd〉. (11)

In the QB approximation, the double commutators are
calculated by using the HF ground state rather than the actual
as-yet-unknown ground state, which is somewhat inconsistent.
Efforts have been made to mitigate the problem by taking the

dispersion of the Fermi surface in the ground state, known
as the extended RPA (ERPA) [31,47]. The ERPA adopts an
iteration procedure. Starting from the HF ground state, the
initial amplitudes X and Y are determined by using Eqs. (7)
and (9) and are used to calculate one-body densities of the cor-
related ground state [48]. After this step, new matrix elements
in Eq. (8) which depend on the density are calculated, and then
new amplitudes X and Y are obtained. The iterative procedure
is repeated until convergence is reached. However, it turns out
that the effect of the ground-state correlation on collective
multipole resonances is rather small [31]. As commented in
Ref. [46], the calculations of the double commutators should
be less sensitive to the choice of the ground state |0〉. In this
paper we will not use this approach, but we will calculate a
correction to the ground-state energy as described below.

B. Ground-state correlation

The RPA calculates relative quantities, such as excitation
energy and transition densities. It does not pay much attention
to the ground state explicitly. Following the QB approximation,
the total binding energy of the ground state can be evaluated
by considering contributions from the zero-point energies of
all possible particle-hole excitation modes [45],

ERPA-QB = EHF − 1

2
TrA + 1

2

∑
ν

h̄�ν, (12)

where TrA is the trace of all the AJ matrices appearing in
Eqs. (7)–(9), and the summation is over all possible particle-
hole excitation modes including charge-exchange excitations
where isospins are changed. The particle-hole excitations can
have various coupled spins and parities allowed in the truncated
model space. For example, in the 16O calculation, the coupled
spins and parities are from 0± to 14± in the basis truncation
with Nmax = 12.

It has been known that the QB approximation overestimates
the correlation energy. In Ref. [49] it was shown that the
coupled-cluster doubles equation including only ring terms
(ring-CCD) is equivalent to RPA, except for a factor of 1/2
in the ring-CCD correlation energy. More precisely, by com-
paring the contributions from the ring diagrams of many-body
perturbation theory (MBPT) to all orders, the RPA correlation
energy from the QB approximation is overestimated by a
factor of two in the second-order perturbation diagram [50].
This means that the a better approximation to the ground-
state energy can be obtained by subtracting the second-order
correlation term,

ERPA = ERPA-QB − E(2), (13)

where E(2) is the second-order perturbation diagram [51]. The
binding-energy calculation now includes contributions from all
ring diagrams. In energy calculations based on realistic nuclear
forces, this second-order correction plays an important role
[51]. Figure 1 shows the uncorrected (ERPA-QB) and corrected
(ERPA) binding energies, and MBPT calculations up to third
order (MBPT3) compared with experimental data. The chiral
interaction NNLOsat [37] was used for these calculations,
where the three-body force was truncated at the normal-
ordered two-body level in the Hartree–Fock basis. We see
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FIG. 1. Calculated RPA ground-state energy with the second-
order MBPT correction ERPA, compared with MBPT3 calculations
and experimental data. The quasiboson RPA energy ERPA-QB given
by Eq. (12) is also displayed for comparison. The chiral NNLOsat

interaction is used. We take h̄ω = 22 MeV for the harmonic-oscillator
basis and truncate the basis with Nmax = 2n + l = 12.

that the usual RPA energy given by Eq. (12) without the E(2)

correction gives poor results, and that the E(2) correction plays
a crucial role.

C. Responses and transitions

The nuclear response to the electromagnetic field can be
described by multipole operators (Oλμ) that come from a
multipole expansion of the nuclear coupling with the field
[52]. In the long-wavelength limit, the lowest-order electric
multipole transition operators of interest are given below.

The isoscalar monopole operator is defined as

OIS
00 =

A∑
i=1

r2
i , (14)

where ri = |r i | is the distance in radius for the ith nucleon.
The effective isovector dipole operator with the center-of-mass
motion removed is

OIV
1μ = e

N

A

Z∑
i=1

riY1μ(r̂ i) − e
Z

A

N∑
i=1

riY1μ(r̂ i)

= e

A∑
i=1

(
N − Z

2A
− t (i)

z

)
riY1μ(r̂ i), (15)

where N and Z are the neutron and proton numbers, respec-
tively, e is the charge of a proton, Yλμ(r̂ i) is the spherical
harmonics for the multipole mode (λμ), while t (i)

z is the isospin
projection of the ith nucleon. The isoscalar dipole operator [53]
that corresponds to the compressional dipole mode is

OIS
1μ =

A∑
i=1

r3
i Y1μ(r̂ i). (16)

For the multipolarity l � 2 isoscalar operators, the usual forms
are taken as

O IS
lμ =

A∑
i=1

rl
i Ylμ(r̂ i). (17)

We have omitted the charge e in isoscalar operators, since
the transition is not necessarily induced by the electromagnetic
interaction. In the Jπ = 1− dipole channel, a spurious state
associated with the center-of-mass motion emerges as the HF
breaks the transitional symmetry. In principle, the energy of the
spurious state is exactly zero in the RPA [45], which gives an
easy way to identify the spurious state. In practice, the energy
of the spurious state is not exactly zero due to a limited model
space. It is, however, close to zero and well separated from
other states. For example, in our calculations with a model
space of Nmax = 12 the energies of the spurious states in 4He
and 16O are as small as 10−15 MeV. The maximum energy of
the spurious state happens in 48Ca, where it is 0.8 MeV, well
separated from the lowest resonance peak at ≈11 MeV. There-
fore, we can easily identify and remove the 1− spurious state.

The reduced l-pole electric transition probability is given
by

B(El,0 → ν) =
∑

μ

|〈ν|Olμ|0〉|2

≈
∣∣∣∣∣∣
∑
ph

(
Xl∗

ph + (−1)lY l∗
ph

)〈p‖ol‖h〉
∣∣∣∣∣∣
2

, (18)

where 〈p‖ol‖h〉 is the reduced matrix element of the single
transition operator, e.g., ol = r3Y1μ(r̂) for an isoscalar dipole
mode. Because we are discussing the transition between the 0+
ground state and excited state ν with an angular momentum J ,
we have l = J .

The response strength distribution against excitation energy
E is given by

R(E) =
∑

ν

B(EJ )δ(E − h̄�ν). (19)

The above discrete distribution is smoothed by using the
Lorentzian function to simulate escaping and spreading widths.
Finally, we obtain the continuous strength function,

R(E) =
∑

ν

B(EJ )
1

π

	/2

(E − h̄�ν)2 + (	/2)2 , (20)

where the width of 	 = 2 MeV is used in this paper. This is a
typical value for 	 that has been adopted in the literature (see,
e.g., Refs. [30,31]).

The transition density can give detailed information about
the resonance, which is defined as the transition amplitude
of the density operator. For the state |ν〉, the radial transition
density is defined as

δρJ
ν (r) =

∑
μ

〈
ν

∣∣∣∣∣
∑

i

δ(r − ri)

r2
YJμ(r̂ i)

∣∣∣∣∣0
〉

≈
∑
ph

(
XJ∗

ph + (−1)J Y J∗
ph

)〈
p

∥∥∥∥δ(r − ri)

r2
YJμ(r̂ i)

∥∥∥∥h

〉
,

(21)
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where for the proton (neutron) transition density, the summa-
tion runs over the protons (neutrons) only.

III. CALCULATIONS AND DISCUSSIONS

In the present paper, we use the chiral NNLOsat potential to
calculate collective multipole resonances within the framework
of the random-phase approximation. We focus on monopole,
dipole, and quadrupole resonances which have been observed
in various experiments. The NNLOsat interaction contains the
NNN force in the normal-ordered two-body approximation
[40,41]. The NNN effects on the giant resonances of light
nuclei have been investigated with few-body ab initio ap-
proaches [24,25,28,29]. In Refs. [24,25], with the Argonne
NN and Urbana NNN forces, the authors used the correlated
hyperspherical harmonics method to calculate the photodisin-
tegrations of the giant dipole resonances in 3H, 3He, and 4He.
The chiral potential with N3LO (NN) and N2LO (NNN) was
used for the 4He giant monopole resonance within the ab initio
few-body Jacobi coordinates [29] and for the 4He giant dipole
resonance with the no-core shell model [28]. The calculations
indicate that the NNN effects appear mainly for high excitation
energies (Ex > 50 MeV), increasing the total resonance cross
sections.

Figure 2 shows the NNLOsat-RPA calculations of strength
distributions for isoscalar giant monopole resonances (IS-
GMRs), isovector giant dipole resonances (IVGDRs) and
isoscalar giant quadrupole resonances (ISGQRs) in 40Ca. For
comparison, we have also shown results using the chiral N3LO
(NN) potential from Entem and Machleidt [42], softened
to various cutoffs using the Vlow-k method [44]. We first

FIG. 2. Calculated 40Ca isoscalar (IS) and isovector (IV) strength
distributions using NNLOsat and N3LO (at different Vlow-k cutoff �).
The experimental centroid energies from Refs. [3,54] are indicated
by arrows. The harmonic-oscillator basis parameter h̄ω and the basis
truncation Nmax are same as in Fig. 1.

TABLE I. NNLOsat(NN + NNN) calculated charge radii (in fm)
with the HF and CCSD [37] approximations for 4He, 16,22,24O, and
40,48Ca, compared with available experimental data [60,61].

Present CCSD Expt.

4He 1.76 1.6755(28)
16O 2.76 2.71 2.6991(52)
22O 2.75 2.72
24O 2.78 2.76
40Ca 3.47 3.48 3.4776(19)
48Ca 3.46

performed a spherical HF calculation in a harmonic-oscillator
basis, then used the normal-ordered two-body approximation
[40,41] to arrive at a two-body interaction used in the residual
RPA ph calculations. We see that the NNLOsat calculations
are in overall agreement with experimental resonance peaks,
while the N3LO (NN) calculations are sensitive to the Vlow-k

momentum cutoff parameter �. No single � value is found
to describe ISGMR, IVGDR, and ISGQR simultaneously. The
dependence on the softening parameter has been commented
in the RPA calculations based on the AV18 potential by the uni-
tary correlation operator method (UCOM) [30]. This is a clear
indication that induced three-body forces must be included for
this approach to be valid. With the coupled-cluster method, the
bare N3LO (NN) interaction was successfully applied to the
4He, 16,22O, and 40Ca giant dipole resonances [35,36]. Using
bare forces, there are no induced three-body forces; however,
explicit three-body forces must still be considered.

According to the macroscopic interpretation of the giant
dipole resonance by the Goldhaber–Teller [55] or Steinwedel–
Jensen model [56], the resonance energy is inversely propor-
tional to the radius of the nucleus. It has been known that
ab initio calculations based on realistic two-body interactions
neglecting three-body forces give smaller radii compared
with experimental data [37,51,57,58]. NNLOsat is optimized
with nuclear radii [37], which improves the descriptions
of nuclear bulk properties including nuclear electric-dipole
polarizabilities [38,39]. Table I shows the calculated charge
radii using NNLOsat, compared with the experimental data.
The calculated charge radius rch is obtained from the HF point-
proton radius rpp by using the standard expression [37] 〈r2

ch〉 =
〈r2

pp〉 + R2
p + N

Z
R2

n + 3h̄2

4m2
pc2 , where 3h̄2

4m2
pc2 = 0.033 fm2, R2

n =
−0.1149(27) fm2, and Rp = 0.8775(51) fm. For comparison,
we also give the NNLOsat calculations of the radii with the
coupled-cluster method in the singles and doubles approxi-
mation (CCSD) [37]. We see that the calculated charge radii
using NNLOsat are in good agreement with the experimental
data. It would be interesting to calculate nuclear matter using
NNLOsat. Unfortunately, we have not been able to calculate
the properties of nuclear matter by using the present model.
It is not as straightforward as in energy density functional
theory. However, in Ref. [37], the coupled-cluster method with
NNLOsat has calculated some properties of symmetric nuclear
matter, giving an incompressibility of K = 253 MeV, which
agrees with the empirical value [59].
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FIG. 3. Calculated strength distributions of isoscalar monopole resonance using NNLOsat. The experimental centroid energies are indicated
by arrows. Experimental data are taken from Refs. [62] (16O), [54] (40Ca), and [63] (48Ca). For 4He, the first-excited-state energy is adopted as
the centroid energy [29]. The harmonic basis parameter and basis truncation are same as in Fig. 1.

1. Monopole resonances

The ISGMR is a breathing mode in which neutrons and
protons move in phase. The ISGMR excitation energy is
connected to the incompressibility of nuclear matter [64].
It provides important information on nuclear matter which
cannot be probed directly in ordinary laboratories.

The calculated ISGMR strength distributions using
NNLOsat are displayed in Fig. 3 for the closed-shell nuclei,
4He, 16,22,24O, and 40,48Ca. The centroid energies obtained from
experimental data with inelastic (α,α′) scattering are given for
comparison. For 4He, our calculations show that the first 0+
excited state has a breathing excitation mode, consistent with
Ref. [29]. We see that the present calculations are in reasonable
agreement with the available data. The small discrepancies
(≈1–4 MeV) between the calculations and data could originate
from missing correlations in RPA.

2. Dipole resonances

The IVGDR has been the subject of a large number of
studies. Many of these have focused on low-lying dipole
strengths in nuclei away from the valley of stability [14,65].
Isovector resonances are connected to the symmetry energy
and the slope of the symmetry-energy curve, and thus provide
critical information of constraints on the equation of state of
nuclear matter [8].

In Fig. 4, the calculated isovector dipole strength distribu-
tions are displayed and compared with experimental data. The
calculations are in reasonable agreement with experiments.
For 16,22O and 40Ca, the strength functions extracted from

experimental photoabsorption cross sections are also dis-
played. The centroid energies obtained from RPA calculations
are about 1–3 MeV lower than the experimental data. This may
be improved by including additional many-body correlations.

In the literature, the enhancement factor for the Thomas–
Reiche–Kuhn (TRK) sum rule is widely used to characterize
the size of momentum-dependent and isospin exchange con-
tributions in the employed nuclear force [21]. The TRK sum
rule reads [70]

S(E1) =
∑

ν

h̄�νB(E1,0 → ν) = h̄2e2

2m

9

4π

NZ

A
(1 + κ),

(22)

where κ is the so-called enhancement factor. Table II summa-
rizes the TRK sum-rule enhancement factor obtained in our
NNLOsat calculations by integrating the strength functions.
The calculated values are consistent with other calculations
with the chiral N3LO interaction [36].

The plots for 22O and 24O show evidence of low-lying
strengths around 10 MeV. It is more pronounced in 24O.
This low-energy resonance is usually called the pygmy dipole
resonance (PDR), which is interpreted as the oscillation of
excess neutrons against the N = Z core. In our calculations,
the strength below 15 MeV exhausts about 4.3% of the classical
TRK sum rule in 22O and 10.7% in 24O. The experimental data
of 22O give about 8% of the classical TRK sum rule up to
excitation energy of 15 MeV [69].

To investigate the nature of these resonances, we calculate
transition densities shown in Figs. 5 and 6 for 22O and 24O
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FIG. 4. Calculated strength distributions of isovector dipole resonances using NNLOsat. The experimental centroid energies are indicated
by arrows. Experimental centroids are taken from Ref. [66] for 48Ca and from Ref. [3] for other nuclei. The experimental photoabsorption cross
sections for 16O, 22O, and 40Ca are from Refs. [67–69]. The harmonic-oscillator basis parameter h̄ω and the basis truncation Nmax are same as
in Fig. 1.

at the prominent peaks. For the 22O peak at 10.8 MeV, the
protons and neutrons oscillate in phase in the interior, while
in the surface region the neutron transition density dominates.
This is consistent with a PDR. At the higher resonance peaks,
the transition densities show that the protons and neutrons
oscillate out of phase, exhibiting the typical and well-known
picture of a GDR. Figure 6 shows a similar behavior in the
transition densities of 24O. The present results are consistent
with the relativistic RPA calculations given in Refs. [71,72]. It
was discussed that low-energy soft dipole resonances in halo
nuclei have similar in-phase transition densities [13,73]. The
soft dipole resonance appears due to the oscillation of the halo
neutrons against a core. The excitation energy of the soft res-
onance is low, e.g., ≈2–3 MeV in 6He, 11Li, and 12Be [13,73].
The low-energy dipole strength in light neutron-rich nuclei is
interpreted as mainly arising from single-neutron transitions
rather than showing much collectivity [65,74]. The oxygen
isotopes 22,24O have larger neutron separation energies than
the loosely bound light nuclei, thus the low-energy strengths
are less pronounced because of the threshold effect [75].

The RPA formalism also provides a way to analyze the
wave function of a peak state. For 22O, the main components

TABLE II. The TRK sum-rule enhancement factor κ obtained in
the present NNLOsat calculations for 4He, 16,22,24O, and 40,48Ca.

4He 16O 22O 24O 40Ca 48Ca

κ 0.57 0.53 0.56 0.55 0.56 0.58

of the wave function for the excited state at 10.8 MeV are the
neutron excitations: 62% 0d5/2 → 1p3/2, 15% 0p1/2 → 1s1/2,
and 8% 0d5/2 → 0f7/2, while relativistic RPA calculations
give 93% 0d5/2 → 1p3/2 and 3% 0d5/2 → 0f7/2 [71]. For 24O,
the main components for the state at 8.7 MeV are the neutron
excitations: 87% 1s1/2 → 1p3/2 and 5% 0d5/2 → 0f7/2, while
relativistic RPA calculations give 93% for the neutron particle-
hole excitation 1s1/2 → 1p3/2.

The PDR mode is of special interest in neutron-rich nu-
clei [76]. The transition densities indicate that the low-lying
strengths are mainly of isoscalar nature; see Figs. 5(a) and
6(a). However, Fig. 7 contrasts the isoscalar dipole resonance
(isoscalar compressional dipole mode) strength distributions
with the isovector dipole resonances for 22O, 24O, and 48Ca
and shows that, for 22O and 24O, the low-energy peaks of the
isoscalar and isovector channels appear at the same energy.
This indicates that the PDR excitation has a nature of isoscalar
and isovector mixing. Figure 8 shows the transition densities
at the main peaks of the isoscalar dipole resonances around
30 MeV in Fig. 7 for 22,24O. The strength distributions for
48Ca does not display a similar mixing, as only an isoscalar
peak is found at low energy around 11 MeV. In experiment,
low-energy ISGDR strengths can be obtained by the isoscalar
compressional dipole transitions caused by inelastic scatter-
ings with an isoscalar particle (e.g., α particle) [59], while
excitations due to electromagnetic interaction (usually by
electron scatterings) give the total strength of the ISGDR and
IVGDR transitions. Therefore, the comparison of the scattering
data may give information about the isoscalar and isovector
mixing.
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FIG. 5. Calculated 22O transition densities for the protons and neutrons at the prominent peaks of the dipole resonance: (a) 10.8 MeV,
(b) 16.5 MeV, (c) 19.8 MeV, and (d) 22.1 MeV.

3. Quadrupole resonances

Figure 9 shows the calculated isoscalar quadrupole strength
distributions, as well as the available experimental centroid
energies. The calculations are in good agreement with experi-
mental data where available. It is interesting that the neutron-
rich 22,24O and 48Ca have pronounced low-energy peaks in the
calculated quadrupole strengths. The low-lying peak should
be compared with the experimental excitation energy of the
corresponding 2+ state. We have analyzed the RPA wave
function, and find that the low-lying peak is predominantly
a single-neutron excitation. The calculated peak at 2.5 MeV in
22O is a one-neutron excitation from 0d5/2 to 1s1/2, compared
with the excitation energy of the observed first 2+ state at

3.2 MeV [77]. For 24O, the present calculations give that
the low-energy peaks at 3.7 and 7.0 MeV are due to the
single-neutron excitations from 1s1/2 to 0d3/2 and from 0d5/2

to 0d3/2, respectively, while the experimental 2+
1 state energy

is 4.7 MeV [78].
The present NNLOsat-RPA calculated excitation energies

of the low-lying 2+ resonance states are also consistent
with our previous calculations using the Gamow shell model
(GSM) with the CD-Bonn potential [79]. The Gamow shell
model takes into account resonance and continuum by using
a complex-momentum Berggren coordinates. The GSM cal-
culations give that 22O has a 2+ excited state at 3.3 MeV
with a one-neutron excitation from 0d5/2 to 1s1/2 as the

FIG. 6. Calculated 24O transition densities for the protons and neutrons at the prominent peaks of the dipole resonance: (a) 8.7 MeV and
(b) 18.3 MeV.
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FIG. 7. Comparison of isoscalar and isovector dipole resonance
strength distributions. For visibility, different scales have been used
for the isoscalar (left) and isovector (right) channels.

dominant configuration. The nucleus 24O has a 2+ resonance
state at 4.5 MeV, dominated by a one-neutron excitation from
1s1/2 to 0d3/2 [79]. The energy gap between neutron 1s1/2

and 0d3/2 is larger than the gap between neutron 0d5/2 and
1s1/2.

IV. SUMMARY

In the present work, the chiral NNLOsat potential, which
includes a three-body force, has been used to investigate the
monopole, dipole, and quadrupole resonances of the closed-
shell nuclei 4He, 16,22,24O, and 40,48Ca. The calculations were
done in the HF-RPA approach. Due to strong short-range
correlations, the HF calculation based on realistic nuclear
forces cannot give the correct binding energies of nuclei. The
energy of the ground state is calculated by the RPA energy and

a correction from second-order perturbation theory. The RPA
NNLOsat calculations reproduce the available experimental
centroid energies of isoscalar monopole, isovector dipole, and
isoscalar quadrupole resonances of these nuclei reasonably
well. The HF-RPA resonance calculations using a softened
two-body realistic interaction without three-body force are
sensitive to the softening parameter, indicating the importance
of induced three-body force.

In neutron-rich 22O and 24O, we obtain low-energy dipole
resonances at excitation energies around 10 MeV. The cal-
culations of response strengths show that the low-energy
resonances are a mix between isoscalar and isovector dipole
resonances. However, the transition density calculations in-
dicate that the low-energy dipole resonances are dominated
by the isoscalar mode, while the dipole resonances at higher
energies exhibit the characteristic of the isovector mode. The
RPA calculations reveal that the low-energy dipole resonance
is dominated by a single-neutron excitation, which is consis-
tent with other RPA calculations based on phenomenological
interactions. Prominent peaks at low energies between 2
and 7 MeV are found in the isoscalar quadrupole response
functions of neutron-rich 22,24O and 48Ca. The low-energy
quadrupole resonances are identified as single-neutron tran-
sitions. The peak positions are in reasonable agreement with
the experimental energies of the corresponding 2+ states and
Gamow shell-model calculations. The RPA calculation may
be improved by including high-order correlations(e.g., 2p2h,
3p3h, ... excitations).
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