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Ab initio study of the Jπ = 0± continuum structures in 4He
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The J π = 0± continuum structures in 4He are investigated by using an ab initio reaction theory with the
microscopic R-matrix method. In the Ex �∼ 20 MeV excitation energy region of 4He, the continuum states are
mainly described by the t + p, h + n, and d + d channels. The J π = 0± elastic phase shifts of the t + p and
h + n channels show an apparently resonant behavior which might indicate the existence of excited 0+

3 and 0−
2

resonance states of 4He above the known 0+
2 and 0−

1 ones. However, the corresponding 0+
3 and 0−

2 resonances
have not been observed yet, although an experimental candidate with a large decay width is reported for 0−

2 . In
this paper, by analyzing the J π = 0± S matrices, we discuss why the observation of these states is unlikely.

DOI: 10.1103/PhysRevC.97.054305

I. INTRODUCTION

The 4He nucleus has attracted much attention because it is
an important building block in the nuclear system, which is
often called the α cluster. It is strongly bound with respect
to the four-nucleon threshold, E = −28.296 MeV, and the
first excited state (0+

2 ) lies at the high excitation energy Ex =
20.21 MeV [1]. This 0+

2 level lies between the t + p and
h + n thresholds and is considered as having a 3N + N (i.e.,
{t + p} + {h + n}) structure [2,3]. The triton (t) and 3He (h)
clusters are also known as important units in describing nuclear
systems. Recently, ab initio reaction theories for more than
three-body systems have been developed and applied to four-
nucleons systems [4–9]. A benchmark calculation is performed
for the t + p and h + n scatterings between the 3N + N and
d + d thresholds in Ref. [10]. Therefore, at present, one can
quantitatively study the continuum structures of 4He when
investigating the p + p + n + n system by using such an ab
initio reaction theory. In a previous quantitative study, we have
already shown that the long-standing problem of the flat behav-
ior of the astrophysical S factor in d(d,γ )4He is solved as an
effect of the tensor part of the nucleon-nucleon interaction [4].

Experimentally, in the energy region below the p + p +
n + n threshold, nine excited states (0+

2 ,0−
1 ,0−

2 ,1−
1 ,1−

2 ,1−
3 ,2−

1 ,
2−

2 ,2+
1 ) are reported in the compilation of the 4He properties

[1]. In our calculation with the realistic interactions AV8′+3NF
and G3RS+3NF (see details in Ref. [5]), the phase shifts
exhibit seven excited states (0+

2 ,0+
3 ,0−

1 ,0−
2 ,1−

1 ,2−
1 ,2+

1 ). The
calculated phase shifts for 1± and 2± were partly displayed
in Ref. [5] and are not shown in the present paper. In a
resonating-group calculation with the different realistic in-
teraction AV18+UIX by Hofmann and Hale [11], similar
phase shifts (corresponding to the seven resonance states)
are also reported. There are no large ambiguities in the
four-body system, when the two-nucleon realistic interaction
reproduces very precisely the deuteron binding energy and
the scatterings of two nucleons, and also, the three-nucleon
interaction reproduces the binding energy of the three-nucleon
systems.

Hofmann and Hale explain that the absence of observation
of a 0+

3 resonance originates from a coupling matrix element
close to the unitary limit of the S matrix [11,12], i.e., from
the smallness of the amplitude of the S matrix in the elastic
channel. This mechanism of the small amplitude is also valid
for 0−

2 as will be discussed in the present paper. But these
authors suggest that the observed 0−

2 state may correspond to
the calculated 0−

2 state, which would be rather inconsistent with
the explanation for 0+

3 .
In order to obtain the S matrix, we calculate the matrix

elements of the Hamiltonian by using the techniques of
the correlated Gaussians plus the triple global representation
(CG+TGV) [5]. The CG+TGV method is one of the most
sophisticated versions of the so-called Gaussian expansion
method (GEM) [13,14]. The GEM is also employed in a
benchmark calculation of the 4He ground state [15]. The
original GEM cannot treat the asymptotic wave function
because the Gaussian basis functions quickly damp in the
asymptotic region. Therefore, together with the CG+TGV
method, we employ the microscopic R-matrix method (MRM)
to describe the asymptotic wave function [5,16,17]. The R-
matrix approach [17] is also employed in another ab initio
reaction theory, the no-core shell model with the resonating
group method [18].

The purpose of the present paper is to investigate the unusual
resonant-like behavior of the Jπ = 0± phase shifts around
E

t+p
r ∼ 6 MeV, measured from the t + p threshold. We do

not investigate other spin states in this paper, because the phase
shifts do not show any abnormal behavior [5]. We also discuss
the complete (p,n) exchange reaction for these partial waves in
a wide low-energy region (Ex > 3 MeV) of the 4He spectrum.

The methods are described in Sec. II. The results of the
calculations are given and discussed in Sec. III. A summary is
presented in the last section.

II. METHODS

Here, we briefly summarize the CG+TGV and MRM
methods. Details are given in Ref. [5]. The Hamiltonian of
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the four-body system is written as

Ĥ =
4∑

i=1

T̂i − T̂c.m. +
4∑

i<j

V̂ij +
4∑

i<j

V̂ C
ij +

4∑
i<j<k

V̂ijk, (1)

where r i and T̂i are the coordinate and kinetic energy of the
ith nucleon, V̂ij is the nuclear potential between nucleons i

and j , and V̂ C
ij is the Coulomb potential between them. The

center-of-mass kinetic energy, T̂c.m., is subtracted. We employ
a typical realistic interaction called AV8′ [19], which is used by
many authors. The AV8′ force has spin-orbit and tensor parts
in addition to the central part. Furthermore, we introduce an
empirical three-nucleon force (3NF) [2].

The wave function of 4He is written as

�JM =
∑

α

cα�α
JM (K) +

∑
β

dβ�
β
JM (H ), (2)

where K and H represent the type of Jacobi coordinates, and
α and β are abbreviations of the channels in the K-type (3N +
N ) and H -type (2N + 2N ) coordinates, respectively. For each
α and β value, the partial wave functions take the form

�α
JM (K) = A[[

ψ
(1)
I1

(x1,x2)ψ (2)
I2

]
I
ψ

(3)
l (x3)

]
JM

× [[τ (1)τ (2)]T12τ
(3)]T123M123τ

(4)
1
2 M4

, (3)

�
β
JM (H ) = A[[

ψ
(1)
I1

( y1)ψ (2)
I2

( y2)
]
I
ψ

(3)
l ( y3)

]
JM

× [τ (1)τ (2)]T12M12 [τ (3)τ (4)]T34M34 . (4)

The K-type coordinates are defined as x1 = r2 − r1, x2 =
r3 − (r1 + r2)/2, x3 = r4 − (r1 + r2 + r3)/3, and the H -
type coordinates are defined as y1 = r2 − r1, y2 = r4 −
r3, y3 = (r3 + r4)/2 − (r1 + r2)/2. The channel spin I re-
sults from the coupling of the cluster spins I1 and I2, T12,
T34, and T123 are isospins arising from various couplings, and
l is a relative angular momentum. The basis functions ψ

(1)
I1

and ψ
(2)
I2

describe cluster wave functions (e.g., [ψ (1)
I1

(x1,x2)]
I1

represents a t configuration for the t + p channel). The param-
eters for the basis functions in ψ (1) and ψ (2) are determined
by the stochastic variational method (SVM) [14]. They are
explained in Ref. [5]. The relative wave functions are assumed
to be expressed by superpositions of Gaussian-type functions
such as

ϕ
(3)
l (x3) = Nlx

l
3 exp

(
− x2

3

b2
3

)
Ylm(x̂3), (5)

where Nl is a normalization factor. Parameter b3 is given by
the geometric progression b3 = bmin

3 γ i−1 (i = 1, . . . ,N). The
minimum value bmin

3 is 0.2 fm and the maximum value bmax
3 is

20 fm.
The Gaussian asymptotic behavior in Eq. (5) is corrected

by using the procedure of the MRM [4,5,16,17]. One obtains
microscopically the R matrix elements Rαα′ , where α and α′
represent open or closed channels. The details of the MRM are
described in Refs. [5,16,17]. The S matrix is deduced from the
R matrix as

SJπ = (Z∗)−1Z (6)

TABLE I. Channel spins and orbital momenta (2I+1lJ ) of the
physical t + p, h + n, and d + d channels for J π = 0± with l � 2.

No.

��������������channel
J π

0+ 0−

1 t( 1
2

+
) + p( 1

2

+
) 1S0

3P0

2 h( 1
2

+
) + n( 1

2

+
) 1S0

3P0

3 d(1+) + d(1+) 1S0
3P0

4 5D0

with

Zαα′ ≡ Iα(kαa)δαα′ − Rαα′kαaI ′
α(kαa), (7)

where I (kr) is the incoming Coulomb wave, k is the wave
number, and a is the channel radius. The matrix elements of
the S matrix, where α is an entrance channel and α′ is an exit
channel, are expressed by their modulus and phase as

SJπ
αα′ = ηJπ

αα′e
2iδJπ

αα′ , (8)

where ηJπ
αα′ and δJπ

αα′ are real. The elastic phase shifts δJπ
α ≡ δJπ

αα

of channel α are defined by its diagonal elements SJπ
αα . The

magnitude ηJπ
α ≡ ηJπ

αα of a diagonal element is not necessarily
unity due to the coupling with other channels.

In Table I, we describe the channel spins (2I+1lJ ) of
the physical d + d, t + p, and h + n channels for Jπ = 0±
with l � 2. In the MRM, since the R matrix is obtained by
connecting to two-body asymptotic wave functions, we do not
directly treat the three-body asymptotic form as d + p + n
and the four-body one as p + p + n + n. In place of includ-
ing d + p + n and p + p + n + n, we employ the so-called
pseudostates of deuteron breakup [5]. The pseudostates are
discretized continuum states obtained after the diagonalization
of the Hamiltonian matrix, which is a typical approximation
including the effect of the continuum states and is also widely
employed by several methods (e.g., CDCC [20]).

III. 0+ AND 0− CONTINUA

A. Jπ = 0+

For Jπ = 0+ of 4He, the elastic phase shifts are plotted in
Fig. 1. The solid, dashed, and dotted lines represent those of
the t + p (1S0), h + n (1S0), and d + d channels (1S0 for the
lower line, 5D0 for the upper line), respectively. The interaction
is AV8′+ 3NF. The experimental 0+

2 resonance is observed a
little above the t + p threshold at E

t+p
r = 0.40 MeV [1]. The

corresponding 0+ resonance state is clearly seen in the t + p
phase shift, which crosses π/2 at E

t+p
r = 0.14 MeV.

The 1S0 phase shift of the h + n channel exhibits an attrac-
tive behavior at ∼6 MeV, whereas that of the t + p channel
exhibits a repulsive behavior at ∼6 MeV. This resembles a
typical resonant behavior of a phase shift in two open channels
[21]. Therefore, one could naively expect that this would make
a peak of the elastic cross section at ∼6 MeV. However, this is
not true for this case as discussed later. Also, the corresponding
0+ resonance has not been observed yet.

We now discuss the behavior of a resonant-scattering phase
shift with a schematic two-open-channels model (only the
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FIG. 1. 0+ elastic phase shifts obtained with the AV8′+3NF
interaction: t + p (full line), h + n (dashed line), and d + d (dotted
line) as a function of the t + p center-of-mass energy.

t + p and h + n channels). The S matrix at a resonance is
written as [21]

Sii = e2iδ′
i (E)

(
1 + ii

Er − E − 1
2 i

)
, (9)

= e2iδ′
i (E)S̄ii , (10)

= τie
2i(δ′

i (E)+δ̄i (E)), (11)

where the subscript i represents the channel, i = 1 for the t + p
channel, and i = 2 for the h + n channel, δ′

i is a potential-
scattering phase shift, δ̄i is a resonant scattering phase shift,
i is a partial decay width, and  = 1 + 2 is the total decay
width. The resonance part of the S matrix for t + p is rewritten
by introducing x = 1/,

S̄11(E) = τ1e
2iδ̄1(E), (12)

= (1 − x) + x
E − Er − i 

2

E − Er + i 
2

. (13)

The S̄11 matrix element behaves like a step function at x = 0.5.
The phase shift increases for x > 0.5 and decreases for x < 0.5
around the resonance energy Er . It is noted that the magnitude
of the S matrix τ1 at the resonance energy is 0 for x = 0.5
because of S̄11(Er ) = 1 − 2x. Thus, the observation of such a
resonance is very difficult.

The calculated phase shifts (δ = δ′ + δ̄) in Fig. 1 behave
as those at x ∼ 0.5. When the resonance lies at a high energy
above the decay thresholds, it is not so strange that the partial
decay width for t + p has a similar value to that of h + n
because the essential difference between them is originating
only from the Coulomb interaction.

In Fig. 2, we plot the magnitudes ηα of the S matrix for
Jπ = 0+. The lines have the same meaning as those in Fig. 1.
As seen from Fig. 2, the magnitude of the S matrix is ∼1 for
the d + d channels (1S0, 5D0), which indicates a very weak
coupling between the 3N + N and 2N + 2N channels. The
magnitude of the S matrix for the t + p and h + n channels

 0
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FIG. 2. Magnitudes ηα of the S matrix of 0+ obtained with the
AV8′+3NF interaction.

becomes very small when the energy rises. Actually, |η11|2 is
5.1 × 10−5 at 6 MeV (Table II) for the t + p channel, which
means that the t + p elastic scattering is completely forbidden
in this partial wave.

It is also interesting that the magnitude of the S matrix is
very small over a wide energy region, which means that the
t + p elastic scattering does almost not occur. In other words,
one can expect that a complete (p,n) exchange reaction occurs
above 3 MeV from the t + p threshold in this partial wave,
where t + p is almost completely transformed into h + n.
Although the results are obtained for the reverse reaction
and with a different interaction, this is also expected from
the benchmark calculation of Ref. [10] because the inelastic
amplitude η of h + n drops to zero with increasing energy (e.g.,
η = 0.086 at E = 3.5 MeV for AGS and FY, 0.074 for HH,
see Table II and details in Ref. [10]).

In order to confirm the complete (p,n) exchange for 0+, we
display in Fig. 3 the Argand plot for the off-diagonal part of
the S matrix S0+

12 . The left and right subscripts of the S matrix
correspond to the entrance and exit channels, respectively. For
0+, channel 1 is 1S0 of t + p and channel 2 is 1S0 of h + n.
As seen from Fig. 3, the modulus of S0+

12 becomes large when
the energy is higher than 3 MeV and almost reaches the unit
circle.

As described in Table II, the magnitude of the off-diagonal S
matrix reaches the unitary limit, |η12|2 + |η13|2 + |η14|2 ≈ 1.
Due to the strong coupling, the diagonal part of the S matrix
becomes zero. Thus, the 0+ elastic scattering does almost not

TABLE II. Squared magnitudes of the S matrix.
�������η

Energy
4 MeV 5 MeV 6 MeV

|η11|2 0.0083 0.0020 5.124 × 10−5

|η12|2 0.9881 0.9759 0.9666
|η13|2 0.0036 0.0220 0.0331
|η14|2 1.954 × 10−7 5.561 × 10−5 1.998 × 10−4∑

k |η1k|2 1.0000 1.0000 1.0000

054305-3



S. AOYAMA AND D. BAYE PHYSICAL REVIEW C 97, 054305 (2018)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

1MeV

0.69MeV

2MeV

4MeV

5MeV

6MeV

7MeV

8MeV

3MeV

S0+
12(E)

Real(S12)

Im
ag

.(S
12

)

AV8’+3NF

FIG. 3. Argand plot of S0+
12 . The initial channel is t + p and the

final channel is h + n.

occur in a wide energy region above 3 MeV. It is interesting to
see that the maximum of η12 is realized around 4 MeV, which
is different from the 6 MeV region for the minimum of η11

in Fig. 2. This can be understood by considering the coupling
with the d + d channel. Indeed, |η13|2 is as small as 0.0036
at 4 MeV, whereas |η13|2 = 0.0331 is larger at 6 MeV. Thus,
|η12|2 + |η13|2 + |η14|2 at 6 MeV is larger than at 4 MeV, which
makes |η11|2 at 6 MeV smaller.

To confirm the absence of effect from 0+
3 on the cross

section at ∼6 MeV, we investigate the so-called eigenphase
shifts or eigenphases. The eigenphases are obtained when one
diagonalizes the S matrix as

SJπ yk = e2iδJπ
k yk, (14)

where yk is an eigenvector, eigenphase δJπ
k is real, and k =

{a,b,c,d}. Since the modulus of the eigenvalues of the unitary
S matrix is unity, the anomaly of the phase shift discussed
above does not appear.

In Fig. 4, we plot the eigenphases together with the elastic
phase shifts (the same as in Fig. 1) in order to compare
them. The suffix α for the elastic phase shift δα means
{1,2,3,4} = {t + p,h + n,d + d,d + d} as given in Table I.
For the eigenphases, the relation with a physical channel is
lost in principle because the physical channels are mixed
through the diagonalization of the S matrix. Thus, the suffix
k = {a,b,c,d} in δk represents a mixing of the channels {t +
p,h + n,d + d,d + d}. We observe that δa and δb are similar
to δ1 and δ2, respectively. The phase shifts δc and δd are almost
the same as δ3 and δ4, which is easily understood from η ∼ 1
for the d + d channels in Fig. 2. In Fig. 4, one cannot see
any resonant behavior of the phase shifts except for the 0+

2
resonance above the t + p threshold.
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FIG. 4. 0+ eigenphases. The elastic phase shifts in Fig. 1 are also
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B. Jπ = 0−

In this subsection, we discuss the 0− states of 4He. Experi-
mentally, two resonances, 0−

1 (T = 0, Ex = 21.01 MeV,  =
0.84 MeV) and 0−

2 (T = 1, Ex = 25.28 MeV,  = 7.97 MeV)
are reported below the p + p + n + n threshold [1]. The
excitation energy is measured from the ground state of 4He
bound by 28.296 MeV. Since the observed 0−

2 has a larger
decay width ( = 7.97 MeV) than the resonance energies
measured from the 3N + N thresholds (Et+p

r = 5.47 MeV,
Eh+n

r = 4.71 MeV), it would not make a peak in the cross
section. Therefore, it is difficult to distinguish whether it is a
true resonance of the four nucleons or the so-called responses
of the continuum states due to the reaction mechanism [22,23].

Theoretically, two resonances, 0−
1 and 0−

2 , have been pre-
dicted by the phase shift calculation of Ref. [11]. The calculated
0−

1 state well corresponds to the observed 0−
1 state. Hofmann

and Hale suggest that the calculated 0−
2 may correspond to the

experimental 0−
2 resonance with the large decay width [11].

This may be inconsistent with the discussion for the 0+
3 state.

If the 0−
2 state is observed, there is not much reason why the

0+
3 state is not observed, which was discussed in the previous

section. In this subsection, we argue that the same mechanism
of the zero magnitude of the S matrix also works for the 0−

2
state.

For Jπ = 0−, the elastic phase shifts δα are plotted in Fig. 5
and the magnitudes ηα of the S-matrix elements in Fig. 6.
The solid, dashed, and dotted lines represent the 3P0 phase
shifts of the t + p, h + n, and d + d channels, respectively.
A 0−

1 resonance state is clearly seen at the h + n threshold.
The estimated energy is E = −7.55 MeV with respect to the
four-body threshold [5], whereas the experimental energy is
E = −7.29 MeV.

The h + n and t + n phase shifts also show a resonant-like
behavior for two open channels at E

t+p
r ∼ 6.2 MeV above the

t + p threshold. Therefore, one may think that it corresponds
to the experimental 0−

2 state at a glance. However, since the
magnitude of the S matrix is almost zero at E

t+p
r ∼ 6.2 MeV

in Fig. 6 as in the case of 0+
3 in Fig. 2, the elastic scatterings
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FIG. 5. 0− elastic phase shifts obtained with the AV8’+3NF
interaction: t + p (full line), h + n (dashed line), and d + d (dotted
line).

of t + p and h + n are almost forbidden in this partial wave.
Thus, the observation of 0−

2 would be unlikely.
In Fig. 7, we display the Argand plot for the off-diagonal part

of the S matrix, S0−
12 . Channel 1 is 3P0 of t + p and channel 2 is

3P0 of h + n. As seen from Fig. 7, the modulus of the S matrix
becomes large when the energy is high and almost reaches the
unit circle above 4 MeV. Therefore, if the t + p scattering of
0− occurs above 4 MeV, it is almost completely transformed
to h + n as in the case of 0+.

The eigenphases and the elastic phase shifts are displayed
in Fig. 8. If the eigenphase shows a resonant behavior at Er =
6.2 MeV, a 0−

2 resonance state may be observed as a peak of the
cross section. The suffix α for the elastic phase shift δα means
{1,2,3} = {t + p,h + n,d + d} as given in Table I. In δa and
δb, except for the 0−

1 resonance, a resonant-like behavior is not
seen. Therefore, we conclude that an observation of such a 0−

2
resonance is as unlikely as in the discussion of 0+

3 .
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FIG. 6. Magnitudes ηα of the S matrix for 0− obtained with the
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IV. SUMMARY

By using an ab initio reaction theory with the MRM,
we investigate the continuum structures of Jπ = 0± in 4He.
Beyond the known 0+

2 and 0−
1 resonances, the Jπ = 0± elastic

phase shifts for the t + p and h + n channels show a typical
resonant behavior for two open channels. These states are
candidates for the 0+

3 and 0−
2 resonance states in 4He, although

the 0+
3 state has not been observed yet. The difficulty of the

observation is originating from the magnitude of the S matrix
for the elastic channel which is almost zero.

Although the existence of the observed 0−
2 resonance state

may be open to question because of its large decay width, it
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plotted for comparison.
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is interesting to know whether the 0+
3 resonance state is also

observed as a large-decay-width state like 0−
2 . Both 0+

3 and 0−
2

states of 4He should be understood consistently. At least, the
theoretical resonant structure is very similar for both states, as
discussed in this paper.

Furthermore, we discuss the complete (p,n) exchange in
the Jπ = 0± partial waves, which is seen in a wide low-
energy range of the t + p reaction. A complete (n,p) exchange
reaction would also occur in the h + n reaction because of
the unitarity of the S matrix. In the future, we will discuss
how the cross section should be observed by using the present

ab initio reaction theory with the MRM for higher partial
waves.
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