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Light clusters in warm stellar matter: Explicit mass shifts and universal cluster-meson couplings
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In-medium modifications of light cluster properties in warm stellar matter are studied within the relativistic
mean-field approximation. In-medium effects are included by introducing an explicit binding energy shift
analytically calculated in the Thomas-Fermi approximation, supplemented with a phenomenological modification
of the cluster couplings to the σ meson. A linear dependence on the σ meson is assumed for the cluster mass,
and the associated coupling constant is fixed by imposing that the virial limit at low density is recovered. The
resulting cluster abundances come out to be in reasonable agreement with constraints at higher density coming
from heavy-ion collision data. Some comparisons with microscopic calculations are also shown.
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I. INTRODUCTION

Neutron stars are compact objects where a wide range of
densities, pressures, and temperatures can be achieved. In the
outer part of the star, where the baryonic density is below
the central density of atomic nuclei, matter is inhomoge-
neous and clusterized into nuclei. If matter is catalyzed as
in equilibrium neutron stars, the crust is a Wigner solid, and
the nuclear components are sufficiently heavy to be treatable
within the density functional theory [1]. However, above the
crystallization temperature, the crust melts and light clusters
with only a few nucleons contribute to the equilibrium [2]. At
sufficiently low density and high temperature, corresponding
to a large fraction of the post-bounce supernova dynamics,
they constitute the main baryonic contribution [3], and we can
expect that these light particles will play an important role in
neutron star cooling, accreting systems, and binary mergers.

The light clusters will eventually melt when high enough
temperatures are achieved, but they can appear in either warm
neutron stars where T � 2 MeV, core-collapse supernova
environments where T � 20 MeV, or binary star mergers
with T � 10 MeV, as these environments have the perfect
conditions for their formation. Moreover, all these clusters,
light and heavy, may have a non-negligible effect in the core-
collapse supernova mechanism [3], as they affect the neutrino
mean free path and, consequently, the cooling of the star.

Light clusters in nuclear matter have been included within
different approaches: in the single nucleus approximation
(SNA)—such as in the Lattimer and Swesty (LS) [4] equation
of state (EoS) based on the compressible liquid droplet model
or the Shen [5] EoS using a relativistic mean-field (RMF)
model—nonhomogeneous matter is described in the Wigner-
Seitz approximation, with a single nucleus in equilibrium with
a gas of neutrons, protons, electrons, and α clusters. The limit
of these approaches is that they only consider α particles, while
many other nuclear species are expected to contribute to the
equilibrium.

The nuclear statistical equilibrium (NSE) models [6,7]
go beyond SNA, because they consider all possible nuclear
species in statistical equilibrium. However, in the original
formulation of the approach [8], the system is considered
as an ideal gas of clusters, and nuclear interactions of the
clusters among themselves, as well as with the surrounding
gas of free nucleons, are neglected. As a result, the expected
cluster melting at high density is not observed [2], showing
that in-medium effects must be introduced. In the Hempel and
Schaffner-Bielich [7] model, such effects are included within
a geometric excluded-volume mechanism. A more complex
isospin dependence is proposed in the Raduta and Gulminelli
model [9], where an excluded volume-like correction is derived
as a mass shift from the extended Thomas-Fermi energy den-
sity functional [10]. Still, all these approaches are semiclassical
and do not account for temperature effects, which might ex-
plain why they only qualitatively agree with more microscopic
treatments [11]. In particular, the excluded volume mechanism
appears to provide a realistic treatment only at high densities
close to the cluster dissolution density [12]. A better way to
describe light clusters is the quantum statistical (QS) approach
[13] that can describe quantum correlations with the medium,
and takes into account the excited states and temperature
effect. However, the mass shifts calculated within the QS
approach are available only for a few nuclear species and a
limited density domain, therefore they can be implemented in
a complete NSE description of stellar matter only within some
approximations [14].

A different approach was developed within the relativistic
mean-field framework and uses mean-field concepts, such as
the ones used in recent works [2,15–17], where light clusters
are considered as new degrees of freedom. As such, they
are characterized by a density- and possibly temperature-
dependent effective mass, and they interact with the medium
via meson couplings. In-medium effects can thus be incor-
porated via the meson couplings, the effective mass shift, or
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both. In Ref. [2] the description of light clusters was achieved
with a modification of the effective mass, which introduces
a density and temperature dependence of the binding energy
of the clusters. These quantities have been fitted to quantum
statistical outputs for light clusters in warm matter. The meson-
cluster couplings were taken to be proportional to the atomic
number of the cluster, taking as basis the meson-nucleon
couplings. However, it is not mandatory that the nucleons
within the cluster feel the same mean field as free nucleons. In
Ref. [17], the main idea was to obtain adequate phenomeno-
logical parametrizations for the clusters-mesons couplings. In
particular, the authors looked for parametrizations that better
describe both experimentally obtained chemical equilibrium
constants for the formation of light clusters in heavy-ion
collisions [18] and microscopic results obtained from quantum
statistical calculations. It was one goal of the work [17]
to discuss the combination of light cluster approaches with
pasta structure concepts, which are important if going to
high densities. As pointed out there, the coupling to the
isoscalar-vector field was renormalized by a global parameter
η to keep the parameter space restricted, but one should
consider different couplings for the different clusters in future
work to optimize the description of measured data, such as
chemical equilibrium constants. In particular, whereas the α
particles are well described by a suitable fit of η, the chemical
equilibrium constants of the other light elements are not well
reproduced.

To proceed toward a satisfactory description of light cluster
degrees of freedom within the RMF framework, in this article
we explore the possibility of both in-medium mass shifts and
in-medium modification of the cluster couplings. We aim to
obtain a universal though phenomenological set for the cluster-
meson couplings, with the purpose of having a formalism
where different cluster species of arbitrary mass and charge
can be described. The inclusion of heavier clusters, i.e., pasta
phases, will be left for a future work.

At very low densities, a model-independent constraint can
be considered: this is the one set by the virial EoS (VEoS)
[19,20], which only depends on the experimentally determined
binding energies and scattering phase shifts, and provides the
correct zero density limit for the equation of state at finite
temperature. We therefore fix the cluster-meson couplings so
that, at very low densities, the VEoS particle fractions obtained
in Ref. [20] are well reproduced. The deuteron, which is weakly
bound, needs special treatment and will be considered later on.
We know that the VEoS breaks down when the interactions
between particles become stronger as the density increases.
In this regime, we use the fact that the cluster dissolution
mechanism is reasonably well described by the geometrical
excluded volume mechanism [11,12], and employ the Thomas-
Fermi formulation of Ref. [9] in order to evaluate the associated
cluster mass shift.

The final result is a simple analytical formula for the
effective mass shift. To reproduce empirical data, an in-
medium modified coupling of cluster j with the scalar meson
σ of the form gsj = xsAjgs is proposed, where gs is the
coupling constant with the nucleons (n,p), Aj the cluster mass
number, and xs is a universal cluster coupling fraction, with an
associated uncertainty.

II. FORMALISM

In this section, we present the model used in the rest of the
paper and discuss how light clusters, which are considered as
point-like particles, are included within our approach.

A. Lagrangian

Our system includes light clusters: both bosons [deuterons
(d, 2H) and α particles (4He)] and fermions [tritons (t , 3H)
and helions (h, 3He)]. They are immersed in a gas of neutrons
(n) and protons (p), neutralized by electrons. The Lagrangian
density of our system reads [2,15–17]

L =
∑

j=n,p,d,t,h,α

Lj + Lσ + Lω + Lρ + Lωρ. (1)

In the following, the couplings of the clusters to the mesons
are defined in terms of the couplings gs, gv, gρ of the nucleons
to, respectively, the σ , ω, and ρ mesons. We will take for
the vacuum proton and neutron mass an average value, m =
939 MeV. For the fermionic clusters, j = t,h, we have

Lj = ψ̄
[
γμiD

μ
j − M∗

j

]
ψ, (2)

with

iD
μ
j = i∂μ − gvjω

μ − gρ

2
τ j · bμ, (3)

where τ j is the isospin operator and gvj is the coupling of
cluster j to the vector meson ω and, in the present work, it is
defined as gvj = Ajgv for all clusters. The effective mass M∗

j

will be defined in the next section.
The Lagrangian density for the bosonic clusters, j = d,α,

is given by

Lα = 1
2

(
iDμ

α φα

)∗
(iDμαφα) − 1

2φ∗
α(M∗

α)2φα, (4)

Ld = 1
4

(
iD

μ
d φν

d − iDν
dφ

μ
d

)∗
(iDdμφdν − iDdνφdμ)

− 1
2φ

μ∗
d (M∗

d )2φdμ, (5)

with

iD
μ
j = i∂μ − gvjω

μ (6)

For the nucleonic gas, j = n,p, we have

Lj = ψ̄[γμiDμ − m∗]ψ (7)

with

iDμ = i∂μ − gvω
μ − gρ

2
τ j · bμ, (8)

m∗ = m − gsφ0. (9)

For the fields, we have the standard RMF expressions:

Lσ = + 1
2

(
∂μφ∂μφ − m2

s φ
2 − 1

3κφ3 − 1
12λφ4

)
,

Lω = − 1
4�μν�

μν + 1
2m2

vVμV μ,

Lρ = − 1
4 Bμν · Bμν + 1

2m2
ρbμ · bμ,

Lωρ = gωρg
2
ρg

2
vVμV μbν · bν, (10)
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where �μν = ∂μVν − ∂νVμ and Bμν = ∂μbν − ∂νbμ −
gρ(bμ × bν).

B. Mass shift in the clusters

The total binding energy of a light cluster j is given by

Bj = Ajm
∗ − M∗

j , j = d,t,h,α, (11)

with M∗
j the effective mass of cluster j , which is determined

by the meson coupling as well as by a binding energy shift:

M∗
j = Ajm − gsjφ0 − (

B0
j + δBj

)
. (12)

Within the RMF approach, the nucleons are considered as
independent moving particles, neglecting any correlations. The
account of correlations via the introduction of bound states
(clusters) will modify the coupling to the mesonic fields within
the effective Lagrangian as denoted by the coupling constants
gsj and gvj . There is no reason to consider them as the sum of
the couplings of the individual constituents of the cluster, but
they have to be introduced as new empirical parameters which
are fitted to results from microscopic theories or to measured
data. We discuss the choice of the coupling constants gsj in
Sec. III; see also Eqs. (21) and (22) below. In expression (12),
B0

j is the binding energy of the cluster in the vacuum, and
these constants are fixed to experimental values. Following the
formalism of Ref. [9,10], we write for the binding energy shift
δBj

δBj = Zj

ρ0
(ε∗

p − mρ∗
p) + Nj

ρ0
(ε∗

n − mρ∗
n), (13)

which is the energetic counterpart of the excluded volume
mechanism in the Thomas-Fermi approximation. Here, ρ0

is the nuclear saturation density. The energy states already
occupied by the gas are excluded in the calculation of the
cluster binding energy, thus avoiding double counting of the
particles of the gas and the ones of the clusters. The energy
density ε∗

j and the density ρ∗
j are given by

ε∗
j = 1

π2

∫ pFj
(gas)

0
p2ej (p)[fj+(p) + fj−(p)]dp, (14)

ρ∗
j = 1

π2

∫ pFj
(gas)

0
p2[fj+(p) + fj−(p)]dp (15)

for j = p,n, and correspond to the gas energy density and
the gas nucleonic density associated with the gas lowest
energy levels. In the preceding expressions, fj± are the usual
Fermi distribution functions for the nucleons and respective
antiparticles, pFj

is the Fermi momentum of nucleon j ,

given by pFj
= (3π2ρj )1/3, and ej (p) =

√
p2

j + m∗2 is the
corresponding single-particle energy of the nucleon j .

We treat the binding energy shifts δBj as in Ref. [2]: we
replace the density dependence of these quantities by a vector
meson dependence. This is equivalent, in our present study,
to consider in the shifts δBj the neutron and proton densities
replaced by

ρn = m2
v

2gv

V0 − m2
ρ

2gρ

b0, ρp = m2
v

2gv

V0 + m2
ρ

2gρ

b0.

With the inclusion of this extra term, the equations for the
fields read

m2
ρ,effb0 = gρ

2
(ρp − ρn + ρh − ρt )

− m2
ρ

gρρ0

(
−∂ε∗

∂ρn

+ ∂ε∗

∂ρp

+ m∂ρ∗

∂ρn

− m∂ρ∗

∂ρp

)

×
∑

j

Ajρ
j
s , (16)

m2
v,effV0 = gv(ρp + ρn) +

∑
j

gvjρj

− m2
v

2g2
vρ0

(
−∂ε∗

∂ρn

− ∂ε∗

∂ρp

+ m∂ρ∗

∂ρn

+ m∂ρ∗

∂ρp

)

×
∑

j

Ajρ
j
s , (17)

m2
s φ0 + k

2
φ2

0 + λ

6
φ3

0

= gs

(
ρp

s + ρn
s

) +
∑

j

gsjρ
j
s , (18)

with ε∗ = ε∗
p + ε∗

n , ρ∗ = ρ∗
p + ρ∗

n , and

m2
ρ,eff = m2

ρ + 2gωρg
2
ρg

2
vV

2
0 , (19)

m2
v,eff = m2

v + 2gωρg
2
ρg

2
vb

2
0 + 1

6ξg4
vV

2
0 . (20)

For a given baryonic density, proton fraction and temperature,
Eqs. (16)–(18) have to be solved self-consistently.

III. RESULTS

In the following, we look for a possible universal
parametrization for all clusters which only accounts for the
differences through the atomic number and isospin projection.
In the last section, we test the proposed parametrizations by
comparing the predicted chemical equilibrium constants with
the recent experimental results published in Ref. [18]. All
the calculations are performed for the FSU [21] model, at
finite fixed temperatures and for fixed proton fractions yp

which describe the ratio of the total proton density to the
baryon density. For this model, the values of the nucleon
coupling constants are g2

s = 112.1996, g2
v = 204.5469, and

g2
ρ = 138.4701 and the nuclear saturation density is ρ0 =

0.148 fm−3. Further constants (the meson masses and the
couplings of the nonlinear meson terms) are found in Ref. [21].
This model has been chosen because it describes adequately
the properties of nuclear matter at saturation and subsaturation
densities. It has the drawback of not predicting a two-solar-
mass neutron star (NS). However, it is possible to include
excluded volume-like effects above saturation density, mak-
ing the EoS hard enough at high density [22,23]. We have
tested the formalism with two other models that have good
properties at saturation density and below, and, additionally,
describe two-solar-mass NSs: the NL3ωρ [24] and the TM1ωρ
models [25,26] with the symmetry energy slope L ∼ 55 MeV.
The results obtained were within the uncertainty bands of our
approach and, therefore, we do not include them in the present
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TABLE I. Virial cluster fraction Xj for the light clusters triton,
helion, and α, at different densities ρ, for T = 4 and 10 MeV used in
the present work and taken from Ref. [20]. The densities are in units
of 10−6 fm−3.

ρ 1.1 5.3 12.0 52.5 91.2
Xj

cluster T = 4 MeV
t(3H) 1.3×10−6 3.0×10−5 1.5×10−4 2.6×10−3 6.8×10−3

h(3He) 1.1×10−6 2.5×10−5 1.3×10−4 2.1×10−3 5.7×10−3

α(4He) 2.7×10−8 2.9×10−6 3.2×10−5 2.4×10−3 1.1×10−1

cluster T = 10 MeV
t(3H) 2.3×10−8 5.2×10−7 2.7×10−6 5.1×10−5 1.5×10−4

h(3He) 2.1×10−8 4.8×10−7 2.5×10−6 24.7×10−5 1.4×10−4

α(4He) 6.0×10−12 6.7×10−10 7.9×10−9 6.4×10−8 2.3×10−6

study. A more complete thermodynamical study will be left for
a future work.

A. Low-density limit and cluster-meson couplings

We will first take as reference the virial EoS (VEoS) [20].
There, the account of continuum correlations (scattering phase
shifts), which is necessary to obtain the correct second virial
coefficient, was performed by introducing a temperature-
dependent effective resonance energy Eij (T ) in each ij chan-
nel. The cluster-meson couplings are obtained from the best
fit of the RMF cluster fractions, defined as Xj = Ajnj/n, to
these data, using the FSU parametrization. The fit is done with
the choice of a sufficiently low density, close to the cluster
onset, where the virial EoS is still valid and at the same time
the interaction already has non-negligible effects; see Table I.
We have considered densities between 10−6 and 10−4 fm−3,
although, for small temperatures, 10−4 fm−3 is close to the
limit of validity of the VEoS. Still, we expect that at these
densities the VEoS is a good approximation. In this low-density

domain, the binding energy shift δBj of Eq. (13) is completely
negligible and does not affect the particle fractions (see also
Fig. 2 below), therefore it was put to zero for this calculation.
However, already at 5 × 10−6 fm−3 the cluster fractions are
sensitive to the meson couplings.

In principle, both scalar and vector couplings could be
considered for this fit. However, for the present constraints,
it was shown in Ref. [15] that the {gsj ,gvj } parameter space is
somewhat redundant and very similar results can be obtained
either by modifying the scalar coupling (i.e., decreasing the
nuclear attraction) or the vector one (i.e., increasing the nuclear
repulsion). In contrast to Ref. [15] where gv was scaled, in this
work we only optimize the gsj parameters,

gsj = xsjAjgs, (21)

while the vector couplings are set to

gvj = Ajgv. (22)

We have performed calculations for T = 4 and 10 MeV,
keeping the proton fraction at 0.5.

It is clear that we are not able to reproduce the deuteron
fractions predicted by the VEoS. This is somewhat expected,
due to the specificity of the deuteron. Indeed such a loosely
bound structure which is known to correspond to a highly
delocalized wave function can be hardly described in a mean-
field approximation. As detailed in Ref. [13], if the binding
energy per nucleon is small compared with T , the contributions
of the continuum as given by the scattering phase shifts are
essential. For the other clusters our coupling parametrizations
are reasonable within the range of temperatures between 4 and
10 MeV.

Reasonable values for gsj are (0.85 ± 0.05)Ajgs ; see Fig. 1,
where the colored bands show the range of particle fractions
covered by this interval at low densities, for T = 4 and 10 MeV.
The solid vertical black lines represent the upper limit of the
region of validity of the VEoS. This region can be estimated by
imposing ρjλ

3
j � 1, where λj = √

2π/(mjT ) is the thermal
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(b)

2H
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3He
α

FIG. 1. Fraction of deuteron, Xd , triton, Xt , helion, Xh, and α, Xα , as a function of the density for FSU, T = 4 MeV (a) and 10 MeV
(b), with proton fraction yp = 0.5, taking δB = 0, xsj = 0.85 ± 0.05 (variation indicated by the spreading of the bands), and comparing with
results of the virial EoS from [20]. Solid vertical black lines are given by ρλ3

n = 1/10. For more details, see the text.
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FIG. 2. Binding energy of α for the RMF-FSU calculation (this
work), T = 4 MeV, and yp = 0.5 obtained with Eq. (12). For com-
parison, results neglecting the binding energy shift (13) (δBj = 0),
as well as QS calculations of a perturbative approach [27] (Pauli),
Eq. (24), the empirical form Eq. (25) from Typel et al. [2], and results
obtained from a recent QS approach [13] for different center-of-mass
momenta P are also shown.

wavelength of particle j , ρj its density, and mj its mass [20].
The vertical line was defined by ρλ3

n = 1/10, ρ being the
baryon density and λn the nucleon thermal wavelength. In Ta-
ble II, we compare explicitly the RMF abundances of clusters
obtained under these conditions with the ones coming from the
VEoS. Different values for the clusters’ σ -meson couplings
gsj , Eq. (21), were considered for five different values for
the density. In particular, we have taken for the fraction xsj

three values which best describe the VEoS. For the lowest
density in Table II, the cluster fractions are almost independent
of xsj because for this low density the clusters behave like
free particles. At T = 10 (T = 4) MeV the largest deviations
obtained are below 2% (5%) of relative difference for the
largest density considered, the largest deviations occurring
for the α clusters. Choosing the best couplings, these relative
differences can be reduced to ∼1% (∼2%).

Larger values of xsj were considered but we found the
problem already discussed in Ref. [15]: taking gvj = Ajgv , the
light clusters will not dissolve if xsj � 1. We have confirmed
that even including the contribution δBj , the clusters would
not dissolve with this value of xsj .

Next we will discuss the effect of introducing a nonzero
binding energy shift δBj , Eq. (13). In Fig. 2, we compare the
binding energy of the α clusters obtained taking δBα defined
by Eq. (13) with the binding energy

Bj = B0
j + δB

QS
j (23)

obtained from QS calculations. In particular, a perturbation
theory was given in Ref. [27], where the following result for
the Pauli blocking shift of α particles with center-of-mass
momentum (wave number) P = 0 was obtained in the lowest
order of density ρ:

δBPauli
α (P = 0; ρn,ρp,T ) = − 164 371 ρ

(T + 10.67)3/2
(24)

TABLE II. Relative difference in percentage of the cluster frac-
tions between the VEoS and the RMF EoS [�rel = 100 × (XRMF

j −
XVEoS

j )/XVEoS
j ] for different couplings gsj = xsjAjgs , and gvj =

Ajgv , and baryon number densities ρ for the light clusters triton (t),
helion (h), and α, with T = 4 and 10 MeV. The densities are in units
of 10−6 fm−3.

ρ 1.1 5.3 12.0 52.5 91.2
�rel(%)

xsj T = 4 MeV
triton (t)
0.80 0.24 0.01 −0.37 −2.33 −3.76
0.85 0.26 0.07 −0.22 −1.74 −2.85
0.90 0.27 0.14 −0.06 −1.13 −1.92
helion (h)
0.80 0.11 −0.13 −0.36 −2.48 −3.91
0.85 0.12 −0.06 −0.36 −1.88 −2.99
0.90 0.14 0.01 −0.20 −1.28 −2.06
α

0.80 0.07 −0.24 −0.74 −3.35 −5.22
0.85 0.09 −0.15 −0.53 −2.55 −4.02
0.90 0.11 −0.06 −0.33 −1.76 −2.78

T = 10 MeV
triton (t)
0.80 0.62 0.57 0.39 −0.67 −1.64
0.85 0.62 0.59 0.45 −0.40 −1.18
0.90 0.63 0.62 0.51 −0.13 −0.73
helion (h)
0.80 0.48 0.43 0.25 −0.81 −1.78
0.85 0.49 0.46 0.31 −0.54 −1.32
0.90 0.49 0.49 0.38 −0.27 −0.87
α

0.80 0.34 0.27 0.03 −1.36 −2.64
0.85 0.34 0.31 0.12 −1.01 −2.03
0.90 0.35 0.35 0.20 −0.65 −1.43

(in units of MeV, withT in units of MeV andρ in units of fm−3).
Typel et al. [2] performed RMF calculations for a wide density
region. To suppress cluster formation at higher densities, an
empirical quadratic form was introduced,

δBTypel
α (T ) = δBPauli

α (P = 0; ρn,ρp,T )

×
[

1 − δBPauli
α (P = 0; ρn,ρp,T )

2B0
α

]
. (25)

Both results are shown in Fig. 2, together with more recent
calculations for δB

QS
j (P ; ρn,ρp,T ) according to Ref. [13].

In contrast to the Pauli blocking, assuming an ideal Fermi
distribution in the nuclear medium, correlations in the medium
have been taken into account, and the distribution function
of the nucleons in the medium is parametrized there by
a Fermi distribution with effective chemical potentials and
temperature. Also shown in Fig. 2 are QS calculations for
different center-of-mass momenta P = 0,1,2 fm−1.
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The QS calculations show two effects:

(i) Due to the in-medium correlations the perturbation
theory result for the Mott density, according to [27],
is shifted to higher densities.

(ii) The Pauli blocking is strongly dependent on the center-
of-mass momentum P of the cluster. For an α cluster
at temperatures and densities considered here, typical
values of P for the four-nucleon contribution to the EoS
are of the order 1 fm−1.

We can also see that the shifts given by the empirical
reduction of the coupling to the σ meson field proposed in
this work to reproduce the VEoS, and the microscopically
calculated shifts of the binding energies of the QS calculations,
are of the same order. This is a prerequisite for the description
of the composition and the chemical equilibrium constants, as
discussed in the following sections.

The additional binding energy shift δBj given by Eq. (13) is
completely negligible in the domain of validity of the VEoS,
which means that the cluster couplings extracted in Table II
do not depend on this term. Even at higher density, this extra
correction is small in the range of densities where the binding
energies of the clusters are still positive, but rises fast for
larger densities; see Fig. 3. It gives an important contribution
to the self-consistent calculation of matter in thermodynamic
equilibrium at higher densities, as will be shown in Figs. 4, 5,
and 6.

It is also interesting to discuss the effect of the coupling xsj

and temperature T on the binding energy shift. From Figs. 3 we
conclude that, for larger xsj , −δBj increases more slowly, and
also that a larger temperature determines a softer behavior, with
−δBj taking larger values at the lower densities and smaller
ones close to the dissolution density.

The change of slope for ρ > 0.02 fm−3 occurs at the
maximum of the cluster fraction, corresponding to the onset of
decreasing cluster fraction.

However, we should stress that the representations in Figs. 2
and 3 do not give a complete picture of the in-medium
effects and cluster dissolution mechanism. As we can see
from Eqs. (16)–(18), the mass shift deeply modifies the
equations of motion for the meson fields. The particle fractions
are thus affected in a highly complex way because of the
self-consistency of the approach, which additionally induces
temperature effects.

B. Global cluster distributions

We are interested in extending the calculation of ther-
modynamic properties from the low-density region where
perturbation theory can be applied to the entire subsaturation
region ρ � ρ0. It is expected that the light clusters will be
dissolved below ρ0, and the RMF approach is applicable there.
Correlations which are always present in nuclear matter are
included in this density-functional approach, and the fit to data
at saturation density presumes that no further correlations are
considered.

The description of the fractions of different components is
difficult not only because of the problems with the many-body
theory at high densities, but also the conceptual definitions
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FIG. 3. Binding energy shift of α, δBα , as given by Eq. (13) for
the RMF-FSU calculation, yp = 0.5, T = 5 MeV (top), T = 10 MeV
(middle), for xs = 0.8,0.85,0.9. The bottom panel shows the same
shift for all the temperatures and keeping xs = 0.85.

of bound states near the Mott density is problematic. The
QS theory has been worked out for the two-particle case and
extrapolated for the other light clusters; see Ref. [13]. A further
problem is that at higher densities also other structures such
as pasta structures are of relevance, so that one cannot discuss
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FIG. 4. Fraction of α, Xα (a), helion, Xh (b), deuteron, Xd (c), and triton, Xt (d), as a function of the density for FSU, T = 5 MeV, and
yp = 0.41, with and without δBj , for xsj = 0.8,0.85,0.9, keeping gvj = Ajgv .

the thermodynamics at higher densities without accounting for
droplets and other structures.

We show in the present subsection that the clusters are
dissolved below ρ0. This has been achieved, for instance,
by Typel et al. [2], who introduced an empirical quadratic
form (25). A more microscopic approach to the suppression of
the cluster fraction was given in Ref. [13], where the dissolution
of the bound states and the virial contributions for the partial
partition functions are considered. In this work we show that
the account of the binding energy shift δBj , Eq. (13), gives
similar results.

The global effect of the modified meson couplings and
binding energy shifts is presented in Figs. 4, 5, and 6.

In Fig. 4, we show the cluster fractions for matter with a
fixed proton fraction of yp = 0.41 and T = 5 MeV, keeping
gvj = Ajgv and using different values for gsj = xsjAjgs :
xsj = 0.8, 0.85, 0.9. We extend the cluster fractions to larger
densities in order to analyze the δBj contribution. Neglecting
this term, the clusters do not dissolve. Taking xsj = 0.9, the
clusters seem to dissolve but there is just a local reduction
of clusters followed by a reappearance of similar fractions.
The role of the extra term in the binding energy is precisely
to dissolve the clusters at large densities, and the larger the
value of xsj , the larger the dissolution density. Typical values
for the dissolution (Xj < 10−4) of light clusters at conditions
considered here are densities 0.04 < ρ < 0.06 fm−3.

To compare with QS calculations [13], we show in Fig. 5 the
mass fractions of light clusters for the parameter region 0.8 �

xsj � 0.9 including the binding energy shift δBj , Eq. (13), rep-
resented by a band, together with the QS calculation taking into
account the Pauli blocking term in the residual virial coefficient
vi(P; T ,ρ,yp) as a function of the center-of mass momentum
P; see Sec. V D of Ref. [13]. Good agreement between the two
approaches is seen up to density ρ ≈ 0.01 fm−3.

The disappearance of the clusters at higher densities in
the QS approach is not so sharp as expected from the as-
sumption that, near the saturation density, nuclear matter is
fully described by the RMF approach in an empirical way,
similar to a density functional approach. In principle, one has to
analyze which microscopic correlations are always contained
in this effective mean-field approach. These correlations have
to be removed from the contribution of light clusters to the
thermodynamic properties. Whereas this problem has been
solved in the low-density limit (see [13]), a rigorous solution
analyzing continuum correlations near the saturation density
is not in reach yet.

Two approaches to suppress the contribution of clusters at
high densities are shown in Fig. 5: (i) As already discussed
above, according to Typel et al. [2] a quadratic term is
introduced in an empirical way to calculate the shift of the
binding energy of clusters, Eq. (23). The result shown in
Fig. 5 gives a suppression which is too strong compared
with the other approaches; see also Fig. 2. (ii) A stronger
suppression of clusters at increasing density is also obtained if
the residual virial coefficient vi(0; T ,ρ,yp) is used, neglecting
the P dependence, as shown in [13]. This result for P = 0
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FIG. 5. Fraction of α, Xα (a), helion, Xh (b), deuteron, Xd (c), and triton, Xt (d), as a function of the density for FSU, T = 5 MeV, and
yp = 0.41, with δBj , for 0.8 < xsj < 0.9, keeping gvj = Ajgv , compared with the QS EoS from [13] with full P dependence of the residual
virial coefficient (red line with full dots) and neglecting the dependence (P = 0) (red line with empty dots), and with the EoS given by Typel
et al. in [2] (cyan full lines).

is also shown in Fig. 5. Good agreement with the RMF
approach is obtained for the dissolution density, but stronger
deviations (“bumps”) occur for densities ρ > 0.01 fm−3. This
is a consequence of the fact that the composition is strongly
interdependent: an overproduction of α particles is connected
with an underproduction of other clusters.

In conclusion, the RMF approach considered here seems
to be an appropriate description of the composition of nuclear
matter also at high densities.

In Fig. 6, the same analysis is done at T = 10 MeV
including the δBj contribution. As in Fig. 5, our results are
compared to the fractions obtained with the binding energy
shift of Ref. [2] fitted on QS results, and the fully microscopic
QS EoS of Ref. [13]. We can see that the different models
agree very well at low density. The only sizable difference is a
reduced deuteron fraction for the QS calculation, which is the
only one to reproduce the VEoS for deuterons, as expected. At
high density, the phenomenological models correctly obtain
the cluster dissolution but the dissolution density is model
dependent. This model dependence cannot be reduced using
the QS microscopic results as a constraint, because these latter
lack high order correlations at high density, where the different
phenomenological prescriptions more strongly differ.

Concerning the temperature dependence of the cluster
dissolution mechanism, we consider the fraction of each light
cluster to be Xj = 10−4 to get the dissolution density ρdiss(T ).
Results for the different clusters are shown in Table III. We can

quantify the temperature dependence of the cluster dissolution
density by introducing a variable, also shown in Table III,

�ρdiss = ρdiss(T = 10)/ρdiss(T = 5), (26)

defined by the ratio, for each particle species j , of its dis-
solution density at the higher temperature to the dissolution
density at the lower temperature. We can see that the effect
of temperature strongly depends on the chosen coupling, the
biggest effect being obtained with the smallest value for the
coupling xs . The binding energy shift of Eq. (13) leads to
�ρdiss (j ) of the order of 1.4 (1.6) for the α (deuteron) for xs =
0.85; see Table III. Identical values are obtained choosing xs =
0.8, while a slightly smaller temperature effect is seen with
xs = 0.9, �ρdiss (j ) ≈ 1.4–1.5. Similar results are determined
from the QS calculations with P = 0 of Ref. [13]. We also
compare with the dissolution density ρdiss of Typel et al. [2],
which shows a significantly larger temperature dependence of
the clusters’ dissolution density expressed by �ρdiss .

Again, if the qualitative effect of a dissolution density in-
creasing with increasing temperature is physically reasonable
and well understood [2,13], a quantitative determination is less
obvious, and within the present constraints it is not easy to
discriminate between the different predictions.

From the model dependence point of view, we have seen that
choosing different coupling fractions for the different nuclear
species, within the constraint of the VEoS at low density,
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FIG. 6. Fraction of α, Xα (a), helion, Xh (b), deuteron, Xd (c), and triton, Xt (d), as a function of the density for FSU, T = 10 MeV, and
yp = 0.41, with δBj , for 0.8 < xsj < 0.9, keeping gvj = Ajgv , compared with the QS EoS from [13] with full P dependence of the residual
virial coefficient (red line with full dots) and neglecting the dependence (P = 0) (red line with empty dots), and with the EoS given by Typel
et al. in [2] (cyan full lines).

still produces abundances which are within the uncertainty
determined in Figs. 5 and 6 considering a universal coupling.

This is true concerning both the temperature and the
density dependence. In the absence of more constraining
observations/calculations, we can propose xs = 0.85 ± 0.05
as a reasonable universal value for the cluster couplings.

Note that we are only considering light clusters in the
present study. Indeed, in-medium effects on heavy clusters
can be reasonably well described within the excluded-volume
or Thomas-Fermi approximation [9,11] and do not require a
modification of the meson couplings. However, the presence
of heavy clusters will have an indirect effect on the light cluster
abundances. In Refs. [16,17], the authors have considered light
clusters coexisting with a heavy cluster and a proton-neutron
background gas and showed that the presence of heavy clusters
shifts the light cluster Mott densities to larger values. Moreover,
it was also shown that above a density ∼10−3 fm−3 for
T = 5 MeV and ∼10−2fm−3 for T = 10 MeV the presence
of heavy clusters reduces the light cluster mass fractions.
Introducing heavy clusters will, therefore, have an important
effect precisely in the region where changing the coupling gsi

has the largest effect, indicating that a more complete study
which includes heavy clusters must be carried out.

Notice, however, that we do not have experimental results
on the Mott densities that could put constraints on the model.
On the other hand, we do have experimental results for the
chemical equilibrium constants (EC) obtained by measuring

cluster formation in heavy-ion collisions. In the next section
we will compare these quantities extracted from experimental
data with the predictions of our models. In the experimental
sample, particles are emitted in the mid-rapidity region of a
collision between relatively light ions under a strong radial
flow, implying that no heavy clusters are present. There-
fore, it makes sense that we calculate these quantities only
considering the light clusters, as previously done also in
Ref. [28].

C. Equilibrium constants

A very interesting constraint at high density and temperature
was recently proposed from heavy-ion collision experiments
in Ref. [18].

This constraint should be taken with some caution, be-
cause the systematics of such measurement are very hard to
estimate. First, the freeze-out concept was used to describe
the expanding fireball, which is a strongly nonequilibrium
process. In addition, the heavy-ion reaction used involves
small nuclei, and might be sensitive to important finite-size
and finite-particle-number effects. Moreover the detection was
performed in a very limited angular range, and it is far from
clear that the transient system formed during the collision and
subject to a strong radial field is compatible with the laws of
thermodynamical equilibrium. Finally, proton fraction (yp),
density, and temperature are not directly observable, and a
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TABLE III. Dissolution density, ρdiss, for each cluster, consid-
ering xs = 0.8,0.85, and 0.9, for T = 5 and 10 with yp = 0.41.
We considered Xj = 10−4 to get ρdiss. The last part of the table
shows �ρdiss = ρdiss(T = 10)/ρdiss(T = 5). We also compare with the
dissolution density of Typel et al. [2], and with the QS EoS from [13],
neglecting the P dependence (P = 0).

T = 5 MeV
ρdiss xs = 0.8 xs = 0.85 xs = 0.9 [2] QS

deuteron 0.04164 0.04954 0.05903 0.02389 0.04793
triton 0.03615 0.04374 0.05295 0.01772 0.04244
helion 0.03577 0.04394 0.05404 0.01880 0.04004
α 0.03629 0.04429 0.05406 0.02113 0.04244

T = 10 MeV
ρdiss xs = 0.8 xs = 0.85 xs = 0.9 [2] QS

deuteron 0.06984 0.07983 0.09106 0.06490 0.08221
triton 0.05743 0.06706 0.07801 0.04259 0.06909
helion 0.05794 0.06860 0.08084 0.04856 0.06515
α 0.05298 0.06328 0.07511 0.04404 0.06623

�ρdiss xs = 0.8 xs = 0.85 xs = 0.9 [2] QS

deuteron 1.6772 1.6114 1.5426 2.7166 1.7153
triton 1.5887 1.5331 1.4733 2.4035 1.6279
helion 1.6198 1.5612 1.4904 2.5830 1.6268
α 1.4599 1.4288 1.3894 2.0842 1.5604

strong model dependence is associated with the determination
of these variables.

Still, these data are currently the unique existing constraint
on in-medium modifications of light particle yields at high
temperature, and in the following we will, therefore, examine
how well our parametrizations can reproduce the equilibrium
constants (EC) reported in Ref. [18].

With the same set of couplings determined in the last
section, we calculate the chemical equilibrium constants

Kc[j ] = ρj

ρ
Nj

n ρ
Zj

p

(27)

where ρj is the number density of cluster j , with neutron
number Nj and proton number Zj , and ρp and ρn are,
respectively, the number densities of free protons and neutrons.
We will calculate the EC for a proton fraction equal to 0.41,
as was assumed in [18,28]. It has, however, been shown that
dependence of the EC on the proton fraction is very small; see
Ref. [17] and Ref. [28] for a discussion of this point.

In Fig. 7, we show the chemical equilibrium constants
for all the light clusters considered, taking the range of the
couplings to be gsj = (0.85 ± 0.05)Ajgs . In this figure, we
also show results for the parametrization obtained in Ref. [17]
for η = 0.70 (black squares). This model describes quite
well the experimental results for the α cluster, because the
parametrization was fitted to the α-equilibrium constants.
However, it completely fails to reproduce the EC of the
deuteron and the triton.

Taking the coupling fractions xsj = 0.85 ± 0.05 essentially
describes the experimental equilibrium constants. We have
checked that xs = 0.95 would be too large.

In Ref. [28], the authors have compared the EC calculated
within different models with the experimental data of Qin

et al. [18], and, in particular, tested the cluster formation
and the in-medium modification of the cluster properties.
They have shown that the QS formalism gives an excellent
description of the experimental EC. Also, the generalized
relativistic-density functional (gRDF) discussed in [2,20] gives
a very good description of the EC. The gRDF model is a
meson-exchange based effective relativistic mean-field model
which includes as degrees of freedom nucleons, light nuclei,
and heavy nuclei, and considers medium dependent binding
energy shifts of nuclei. In the gRDF model, the in-medium
binding energy shifts were fitted to the QS results for the light
nuclei and a Thomas-Fermi calculation for the heavy ones,
and include a temperature dependence. Another model giving a
good description of the EC is the Hempel and Schaffner-Bielich
(HS) EoS [7] with the DD2 interaction of Typel et al. [2]. This
model consists of a mixture of nuclei and unbound nucleons
in nuclear statistical equilibrium, with the nucleons being
described within a relativistic mean-field, in this case the DD2
interaction.

Our present approach gives results similar to the last two
approaches and even to the QS prediction, except for the
deuteron. Therefore, we consider that our proposal for the
effective description of the in-medium effects on the light
clusters, given by the temperature independent binding energy
shifts defined in Eq. (13), is justified, and presents the extra
advantage to be applicable also to heavier hydrogen and
helium isotopes, which are predicted to be abundant in high
temperature neutron rich matter [9].

Instead of the DD2 version used in other approaches, we
used the FSU version of the RMF model. We suppose that the
different RMF models will not show a large effect on the results
in the low-density region (n < 0.03 fm−3) considered here.
Larger deviations between the different versions of the RMF
model are expected for nucleon densities above the saturation
density.

This experimental data seem to set extra constraints that,
together with VEoS, suggest that a good universal coupling
for all clusters is gsj = (0.85 ± 0.05)Ajgs . For the deuteron,
the experimental data seem to be described by the upper limit
xs = 0.9. Possibly a more detailed approach would allow
for a different coupling gsj for each cluster. According to
the experimental data, the deuteron seems to be more ade-
quately described by taking gsd = (0.9 ± 0.03)2gs . It should
be stressed that the deuteron is only a weakly bound state
consisting of two nucleons.

IV. CONCLUSIONS

In this paper we have proposed a simple parametrization of
in-medium effects acting on light clusters, in the framework
of the relativistic mean field approximation. The interactions
of the clusters with the surrounding medium are described
with a phenomenological modification of the coupling constant
to the σ meson. A coupling proportional to the cluster size
is proposed, with a correction factor which is obtained by
imposing that the cluster fractions exhibit the correct virial
behavior in the low-density limit. The phenomenon of cluster
dissolution at high density is described by introducing a simple
binding energy shift which can be analytically derived in the
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FIG. 7. Chemical equilibrium constants of α (a), helion (b), deuteron (c), and triton (d) for FSU, and yp = 0.41, and for the η = 0.70 (black
squares) fitting (check Ref. [17] for the complete parameter sets) and the universal gsj fitting with gsj = (0.85 ± 0.05)Ajgs , (red dotted lines).
The experimental results of Qin et al. [18] (light blue region) are also shown.

Thomas-Fermi approximation as the energetic counterpart of
the classical exclusion volume mechanism. With a univer-
sal cluster coupling fraction xs = 0.85 ± 0.05, we reproduce
reasonably well both the virial limit and the equilibrium
constants extracted from heavy-ion data. A correct description
of the deuteron is probably out of scope within the mean-field
approximation. Our results are qualitatively similar to the ones
obtained with more microscopic approaches in Refs. [2,13],
and have the advantage of being applicable also to other
light clusters, which might have a non-negligible contribu-
tion in warm asymmetric stellar matter, as it is produced in
proto-neutron stars, supernova environments, and neutron star
mergers.

The uncertainty in the coupling has a negligible influence
for densities below ≈10−2 fm−3. At higher densities the
dispersion becomes larger and the predictions of the different
models show a considerable deviation. The dissolution density
can thus vary of a factor 2–3 depending on the model, as well
as on the choice of the coupling constants. The evolution of the
dissolution density with temperature also varies approximately
by a factor of 2 within the error bar of the couplings. Besides,

as discussed above, heavier clusters and the formation of pasta
structures also become of relevance and should be explicitly
included.

More sophisticated prescriptions allowing for different
couplings for each cluster, a nonlinear mass dependence, or an
explicit temperature dependence could be envisaged. However,
to improve the present phenomenological description and fix
these additional parameters, extra constraints from experimen-
tal data and/or microscopic calculations around the dissolution
density will be needed.
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