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Nuclear pasta in hot dense matter and its implications for neutrino scattering
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The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly
reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the
electron fraction is fixed at Ye > 0.1, as often considered in the literature. Large nuclei and exotic nonspherical
nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T = 0, dissolve
at a relatively low temperature Tu as protons leak out of nuclei and pasta. For matter at β equilibrium with a
negligible neutrino chemical potential we find that T β

u � 4 ± 1 MeV for realistic equations of state. This is lower
than the maximum temperature T β

max � 9 ± 1 MeV at which nuclei can coexist with a gas of nucleons and can
be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An
important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution
to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large
nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present,
Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Implications
for neutrino signals from galactic supernovas are briefly discussed.
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I. INTRODUCTION

The properties of hot dense matter encountered in core-
collapse supernovas, newly born neutron stars called protoneu-
tron stars, and neutron star mergers are expected to play a
key role in shaping their observable photon, neutrino, and
gravitational wave emission. In supernovas, state-of-the-art
simulations indicate that neutrino transport at high densities
influences the supernova mechanism [1,2], the long-term
neutrino emission detectable in terrestrial neutrino detectors
[3–6], and heavy-element nucleosynthesis [7–11].

The presence of heterogeneous matter at high densities is
expected to modify the neutrino scattering rates because the
size of structures encountered in such matter can be comparable
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to the neutrino wavelength, and neutrinos would couple coher-
ently to the net weak charge contained within them. A familiar
example is neutrino-nucleus coherent scattering, known to play
an important role in trapping neutrinos during core collapse
[12]. Additionally, heterogeneous phases are favored near first-
order phase transitions in neutron stars at high densities [13],
and coherent neutrino scattering in such matter can greatly
increase the opacity [14]. Coherent neutrino scattering from
the nuclear pasta phase, where large spherical and nonspherical
nuclei coexist with a dense nucleon gas at densities between
1013 and 1014 g/cm3, has also been studied [15,16].

Recently, the enhanced neutrino opacity in the high-density
heterogeneous pasta phase was incorporated in simulations of
protoneutron star evolution and found to have a significant
impact on the temporal structure of the neutrino luminosity
[17]. Motivated by this interesting finding, we perform cal-
culations of matter at finite temperatures to address whether
heterogeneous nuclear pasta is present under the typical ther-
modynamic conditions encountered in protoneutron stars and
study its influence on the neutrino scattering rates. We find
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that the heterogeneous pasta phase dissolves at a relatively
low temperature for the small values of the electron fraction
characteristic of dense matter at β equilibrium. Consequently,
the enhancement of neutrino scattering rates due to coherent
scattering is relatively modest and significantly smaller than
those employed in [17]. In addition, we find that Coulomb
correlations between clusters suppresses scattering of neutri-
nos with wavelengths larger than the intercluster distance, in
agreement with earlier work [18,19]. Interestingly, we also
find that at lower temperatures where large nuclei can be
present there could be a net reduction of the neutrino opacity
as nucleons get locked up inside nuclei.

The material is organized as follows. In Sec. II we review the
basic nuclear physics of phase coexistence and show that the
simplified Gibbs construction for two-phase equilibrium pro-
vides a useful bound on the phase boundaries between homo-
geneous and heterogeneous matter. This allows us to provide
an upper limit on the critical temperature above which pasta
dissolves to form a uniform nucleon liquid, and its dependence
on the nuclear equation of state is discussed. Implications
for neutrino transport in protoneutron stars are discussed in
Sec. III, and our conclusions are presented in Sec. IV.

II. HOT MATTER AT SUBNUCLEAR DENSITY AND THE
DISSOLUTION OF PASTA

The structure of matter at subnuclear density and zero
temperature is fairly well understood [20]. With increasing
density, nuclei become neutron rich due to the rapid increase
in the electron Fermi energy. Neutrons drip out of nuclei when
the density exceeds ρdrip � 4 × 1011 g/cm3, and nonspherical
or pasta nuclei are likely when the density exceeds ρpasta �
1013 g/cm3 [21]. Several studies using different many-body
methods and underlying nuclear interactions have all yielded
similar qualitative behavior [21–23].

At finite temperatures, the situation is less clear. Some
calculations indicate that at the highest densities, nuclei and
pasta persist up to T � 10–15 MeV when the electron (or
proton) fraction Ye � 0.1 [24,25]. Others find that the large and
coherent structures, such as rod, tubes, and planes, disappear
at much lower temperatures [26,27].

In what follows we derive an upper bound on the tempera-
ture for the dissolution of nuclei and pasta for β-equilibrated
matter at densities in the range ρ � 1012–1014 g/cm3. We
show that the dissolution of clusters is related to a change in
the nature of the transition to the high-density uniform phase,
which turns from an ordinary gas-to-liquid transition, during
which the volume fraction of the high-density phase continues
to increase, into a less ordinary gas-to-liquid-to-gas transition,
also called retrograde condensation, where the volume fraction
of the high-density phase decreases [28]. To begin we consider
β-equilibrium matter with zero neutrino chemical potential
because the outer regions of a protoneutron star, which may
contain nuclear pasta, are able to deleptonize rapidly and reach
β equilibrium on a short timescale compared to the timescales
of relevance to protoneutron star evolution [3–6].

First, we identify the thermodynamic conditions favor-
able for the existence of nuclear pasta. Since surface and
Coulomb energies act to disfavor the heterogeneous state,

and shell effects are relatively small at the temperatures of
interest, the liquid-gas phase coexistence region predicted by
the Gibbs construction, where these effects are ignored, will
likely enclose the phase coexistence region predicted when
such finite-size effects are included. This simple observation
allows us to provide a useful upper bound on the dissolution
temperature by examining the two-phase Gibbs construction
for bulk matter. We note that neglecting finite-size effects has
been shown to provide results comparable to those with the
Thomas-Fermi approach at finite temperatures [29] (see the
Erratum to this reference), as well as those obtained from a
quantum molecular dynamics calculation [27].

In the following, we briefly recall the well-known Gibbs
construction applied to a nuclear system composed of neutrons
and protons [25,28,30]. For nuclei or pasta to coexist with a gas
of nucleons, the high-density liquid phase inside these struc-
tures has to be at equilibrium with the low-density gas outside.
Denoting the pressure and the neutron and proton chemical
potentials of the high-density liquid phase P h, μh

n, and μh
p,

respectively, Gibbs equilibrium requires P h = P l , μh
n = μl

n,
and μh

p = μl
p, where P l , μl

n, and μl
p, are the corresponding

pressure and chemical potentials in the low-density gas phase.
To find the coexistence region in the phase diagram an equation
of state (EOS) which specifies how the energy density of bulk
nucleonic matter εnuc(nn,np,T ) depends on the neutron and
proton densities and the temperature is needed. In practice we
work in the proton-canonical ensemble where μn is fixed and
np is the extensive variable [30]. We have, however, checked
that our results are independent of the statistical ensemble.

At a fixed temperature, phase coexistence is possible when
there exist two pairs of nucleon densities, denoted nh

n, n
h
p and

nl
n, n

l
p, that can satisfy the Gibbs equilibrium criteria. These

pairs can be depicted as two points in a two-dimensional plot
where the axes are the neutron and proton densities. In Fig. 1
these points are calculated for the model SLy4 and appear on
the solid black curve. For a pair of points at Gibbs equilibrium,
a Gibbs construction can be used to find the state of matter at
intermediate densities. Therefore, a pair of points that satisfy
Gibbs equilibrium defines a curve through the neutron-proton
density space given by [31]

nn = unh
n + (1 − u)nl

n,

np = unh
p + (1 − u)nl

p, (1)

where u is the fraction of the volume that is occupied by the
high-density liquid phase. The thin purple curves represent
these curves for pairs of select Gibbs equilibrium points.
For example, in Fig. 1(b), the pair of end points defined
by the intersection labeled “l” and “h” specifies the neutron
and proton densities of the low- and high-density phases,
nl

n, n
l
p and nh

n, n
h
p, respectively. Clearly, Ye varies along any

Gibbs construction curve, so a constant Ye curve crosses
the Gibbs constructions of many Gibbs equilibrium pairs in
the mixed-phase region. In Fig. 1, the dashed yellow lines
show curves of constant Ye and the Gibbs equilibrium at a
specific Ye is defined by its intersection with the purple curve.
The thick blue curve denotes the β-equilibrium path, along
which μn − μp = μe. Gibbs equilibrium is possible along
the β-equilibrium path when the thick blue curve lies within
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FIG. 1. β-equilibrium path (thick solid blue line) for SLy4 Skyrme interaction in the coexistence region (delimited by the thick solid black
line) in the (nn, np) plane and for T = 1–9 MeV. A sample of the Gibbs construction paths is shown (thin solid purple lines). The global density,
which intersects the β-equilibrium path line with the Gibbs construction one (see, for instance, the “+”symbol at T = 5 MeV), represents the
equilibrium state connecting the two phases at equilibrium which are located at the boundaries (see the points labeled “l” and “h,” which are the
low- and high-density phases associated with the global density identified by the + symbol at β equilibrium). The constant Ye = 0.2, 0.3, and
0.4 paths are represented by the thick dashed yellow lines. The spinodal instability region is also shown (thin solid green line) and the critical
points are shown by filled red circles with error bars.

the coexistence region. Once again, it can be seen that the
β-equilibrium curve moves across many Gibbs equilibrium
pairs as it traverses the coexistence region. The β-equilibrium
path for the homogeneous phase is also shown as the dashed
blue curve for reference. The spinodal region where matter is
unstable to small density perturbations is the region enclosed
by the thin green curve, and the critical points associated with
the first-order transition are denoted by the filled red circles.

Several insights about the role of finite temperature can
be gleaned from examining the progression of the phase
coexistence region with temperature shown in Figs. 1(a)–1(c).

(1) With increasing temperature the extent of the phase
coexistence region shrinks, and its intersection with
the path of β equilibrium decreases. Above the critical
temperature, T

β
max (� 9 MeV for the model chosen),

there is no intersection and phase coexistence at β
equilibrium is not possible.

(2) In contrast, out of β equilibrium for moderate values of
Ye > 0.2 there exists a range of ambient conditions that
extends to higher temperatures where Gibbs equilib-
rium is possible. Nonetheless, with increasing temper-
ature the area enclosed by the solid black coexistence
curve shrinks and its intersection with lines of constant
Ye is reduced. Eventually, above the critical temperature
denoted T Ye

max � 12–15 MeV there is no intersection and
phase coexistence is absent.

(3) Coexistence at β equilibrium ends near the critical
point. With increasing temperature, phase coexistence
ends by making a transition to the uniform low-density
gas phase. This feature, called retrograde condensation
[28], implies that the path along β equilibrium will
favor fewer nuclei with increasing density.

(4) For moderate values of Ye > 0.2 phase coexistence
ends by transiting to the high-density liquid phase and
large nuclei persist to higher temperatures.

(5) With increasing temperature, the density contrast be-
tween the high- and the low-density phases associated
with Gibbs equilibrium is reduced.

The impact of retrograde condensation on the volume
fraction of the high-density liquid phase is shown more clearly
in Fig. 2. At low temperatures, u begins close to 0 at low
densities and increases to 1 at high densities, implying that
it exits the coexistence region in the high-density phase. But
above a critical temperature, u reaches a maximum of less than
1 and turns over, implying that the β-equilibrium path exits the
coexistence region in the low-density gas phase. The fact that
the maximum volume fraction occupied by the high-density
phase, which corresponds to nuclei or pasta structures, is rather
small at temperatures high enough for retrograde condensation
can significantly impact the contribution of coherent scattering
to the neutrino opacity of β-equilibrium matter. Since non-
spherical shapes or pasta nuclei are favored for u � 1/8 (for a
pedagogic discussion of pasta nuclei see Ref. [21]) we include
the dashed horizontal line at u = 1/8 to help extract the critical
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FIG. 2. Volume fraction of the high-density phase in heteroge-
neous matter for SLy4 Skyrme interaction. (a) For the β-equilibrium
path; (b) for the constant Ye = 0.2 path.
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FIG. 3. This schematic shows the occupied proton energy levels
in the low- and high-density phases that coexist in the heterogeneous
phase. The T = 0 situation is shown at the left, and the finite
temperature at which a significant thermal population exists in the
low-density phase is shown at the right. See text for additional details.

temperature T
β

u above which pasta nuclei no longer appear
(note that T

β
u < T

β
max). In Fig. 2(a) we see that T

β
u is between

5 and 6 MeV (for SLy4 EOS). In contrast for matter at fixed
Ye = 0.2, shown in Fig. 2(b), pasta nuclei persist to higher
temperatures until phase coexistence ends at T Ye

max
We can understand the physical mechanism for retrograde

condensation at higher temperatures by examining the evo-
lution of the proton fraction in the gas phase. Global charge
neutrality (ne = np) and Eq. (1) require the volume fraction of
the high-density phase to be

u = ne − nl
p

nh
p − nl

p

, (2)

where the electron density ne is assumed to be uniform
because the Debye screening length is large compared to the
typical size of electrically neutral Wigner-Seitz cells. In the
β-equilibrium mixed phase the lowest energy level for protons
in the low-density gas phase El

p > μp, and at T = 0 the proton
density there is denoted nl

p = 0. At T = 0 the volume fraction
u = ne/nh

p increases rapidly with increasing density because
ne increases and nh

p decreases. At finite temperature nl
p > 0

because proton states in the gas can be thermally populated.
This is illustrated in Fig. 3, where the occupied energy levels
of protons in both the low- and the high-density phases are
shown at zero and finite temperature.

The thermal population of protons in the gas [31]

nl
p � 2

(
mpT

2π

)3/2

e−�Ep/T , (3)

where �Ep = El
P − μp, becomes significant when T � �Ep

and increases exponentially with temperature. In contrast,
the density of protons in the high-density phase remains
significantly higher and does not change appreciably with
temperature because of their high degeneracy.

The typical evolution of �Ep/T is shown in Fig. 4(a) for the
SLy4 EOS. Except close to the transition density, �Ep/T � 1
leads to significant suppression of the proton density in the
gas phase. In the vicinity of the transition density �Ep/T
decreases rapidly and from Eq. (3) the proton fraction in the gas
increases exponentially. The number densities of the charged
particles as a function of the average baryon density are shown
in Fig. 4(b). Since electric charge neutrality in the uniform
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FIG. 4. (a) Energy differences �Ep/T and (b) charge particle
densities (ne, nl

p , nh
p) as a function of the density at different

temperatures T = 1–6 MeV. The SLy4 EOS is considered here.

phase requires ne = np = n
gas
p , the point at which ne and nl

p

first intersect defines the low-density boundary of the coexis-
tence region. In the vicinity of this point, nonuniform matter is
predominantly composed of the gas phase. The high-density
boundary is defined by the intersection of the ne and nh

p at low
temperatures or by the second intersection of the ne and nl

p

at high temperatures as expected for retrograde condensation.
These features are also readily discernible in Fig. 2, where the
evolution of the volume fraction of the high-density phase with
the density is shown for various temperatures.

As expected from the preceding discussion and Eq. (2),
for matter at β equilibrium where Ye is small, the volume
fraction u will decrease with the density for T � �Ep. When
this criterion is met, the density of protons in the low-density
gas phase will become comparable to the electron density,
and eventually as �Ep decreases with density the volume
fraction u → 0.

We now turn to study of the model dependence of the critical
temperatures denoted T

β
m , T β

max, and T Ye
max, discussed earlier. We

first select a subset of model Skyrme and relativistic mean-field
EOSs that predict the energy per particle of neutron matter
at nb = 0.06 and 0.10 fm−3, which are compatible with the
quantum Monte Carlo [32] or many body perturbation theory
(MBPT) [33], which are based on two- and three-body chiral
effective field theory (EFT) potentials. The pasta dissolution
temperatures T

β
u for these models are shown in Fig. 5(a). The

names of the EOSs are shown vertically above the predictions
and the EOSs are ordered according to the slope of the
symmetry energy at nuclear saturation density, denoted Lsym.
The average prediction is T

β
u = 5.0 ± 2 MeV and decreases

with Lsym (the anticorrelation coefficient is −0.81) and the
dispersion reflects the additional dependence on the EOS
parameters. In Fig. 5(b) we show the highest average density of
the coexistence region associated with T

β
u and T Ye=0.4

max for the
EOSs in Fig. 5(a) and find that they are clearly anticorrelated
with Lsym.

The striking feature here is that the pasta dissolution
temperature at β equilibrium is much lower than the maximal
temperature of the phase coexistence and that the maximal
temperature T Ye

max even at a modest value of Ye = 0.2 is about a
factor of 2 higher than T

β
u . For typical values of Lsym, around
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FIG. 5. (a) Dissolution temperature Tu and maximal temperatures
Tmax at β equilibrium, compared to Tmax at fixed xe = 0.2 and 0.4 for
the set of EOSs compatible with the chiral EFT EOS in neutron matter.
(b) Highest density reached by the pasta phase for β equilibrium or
at fixed Ye. These predictions are shown versus Lsym.

50–60 MeV, the dissolution temperature is estimated to be
T

β
u � 4 ± 1 MeV. Since our analysis neglects finite-size effects

such as surface, Coulomb, and shell effects we believe that this
is an upper limit on the dissolution temperature.

It is interesting to compare our predictions with those of
other works. The maximal temperature at fixed electron frac-
tion Ye = 0.3(0.5) was estimated from a quantum molecular
dynamics simulation to be about 5(6) MeV [26]. In a similar
approach and fixing Ye = 0.3, the maximal temperature was
found to be 6 and 9 MeV for two nuclear EOSs with Lsym = 93
and 80 MeV [27]. In addition, another temperature scale was
introduced: the temperature at which the nuclear surface is
blurred due to proton drip-out. This characteristic temperature
is qualitatively similar to the dissolution temperature Tu in our
approach. It was estimated to be around 3 MeV in Ref. [26] and
around 3 or 4 MeV, depending on the nuclear EOS, in Ref. [27].
These two temperature scales are lower than ours, confirming
that our temperature scales shown in Fig. 5 represent upper
bounds. Note also that the values of Lsym of these nuclear
EOSs are significantly larger than the ones we considered, and
our results imply that the larger the value of Lsym, the lower
the temperature (see Fig. 5). This also contributes in part to
explaining the differences between our results and those of the
quantum Monte Carlo approach. Due to its computationally
heavy framework, an extended model dependence of quantum
molecular dynamics in the nuclear EOS has not yet been done.
A more systematic study was done based on a Thomas-Fermi
approach, and the pasta phase in β-equilibrium matter was
shown to melt above 5–6 MeV [34]. This again is lower
than our estimate for the maximal temperature, as expected.
Finally, a recent quantum calculation (Hartree-Fock) has been
performed, confirming that our estimate of T

β
u is an upper limit

for the melting of the crust [35].

III. NEUTRINO SCATTERING

Coherent neutrino scattering from nuclei and pasta can be
estimated using the two-phase Gibbs construction discussed

in the preceding section if their typical size is known. The
nuclear size is set by the competition between the surface
and the Coulomb energies, mass number, and charge of the
energetically favored nuclei can be calculated by specifying
the surface tension [21]. Shell effects can also play a role
but we can expect their impact to be less important at the
temperatures of interest, and we neglect them in the following
analysis. Further, although we should expect a distribution of
nuclei at finite temperature, to obtain a simple first estimate we
assume that the distribution is dominated by a single nucleus.
In this case, the radius of the favored nucleus is [21]

r3
A = 3σ

4πe2
(
nh

p

)2
f3(u)

with f3(u) = 2 − 3u1/3 + u

5
,

(4)

where σ is the surface tension between the low- and the high-
density phases, and f3(u) is the geometrical factor associated
with the Coulomb energy of the Wigner-Seitz cell in d = 3 di-
mensions [36]. The surface tension is a function of the density,
Ye, and T . We use the ansatz from Ref. [37] (see also Ref. [38])
and parameters obtained for the SLy4 interaction. Note that
this simple ansatz neglects the influence of the protons in the
low-density gas phase on the surface tension [39].

For the purpose of calculating coherent neutrino scattering,
we, for simplicity, assume that nuclei are spherical for all values
of u. This is reasonable because angle-averaged coherent
scattering rates from rodlike and slablike structures have been
calculated earlier and found to be comparable to or smaller
than those from spherical nuclei of similar size [40]. Further,
as noted earlier, close to β equilibrium the pasta region is
relatively small even for T < T

β
u and absent for T > T

β
u .

The differential coherent elastic scattering rate from the
nuclei in the heterogeneous phase is given by [14,41]

d�coh

d cos θ
= G2

F E2
ν

8π
nA(1 + cos θ )S(q)N2

wF 2
A(q), (5)

where the total weak charge of a nucleus is defined as [14]

Nw = 4π

3
r3
A

(
nh

n − nl
n

)
, (6)

and nA = 3u/(4πr3
A) is the density of nuclei. We have ne-

glected the proton contribution in the vector response because
of their weak charge, �1 − 4 sin2 θW ≈ 0, and subtracted
the density of neutrons from the low-density phase because
neutrinos only scatter off the density contrast. The static
structure factor S(q) accounts for correlations between nuclei
due to long-range Coulomb interactions (weakly screened
by electrons), which tend to suppress scattering at small
momentum transfer q = Eν

√
2(1 − cos θ ) � 1/a, where a =

(3/4πnA)1/3 = rA/u1/3 is the average distance between nu-
clei. Scattering with high momentum transfer at q � 1/rA is
suppressed by the form factor of the nucleus FA(q), which we
take to be that of a sphere of constant density and radius rA.
More realistic choices, such as the Helm form factor [42], have
a negligible impact on our results.

In a one-component plasma, S(q) depends on a and the
Coulomb coupling parameter � = Z2e2/akBT , where Z is the
ion charge, e2 = 1/137, and kBT is the thermal energy. In our
simple model for the heterogeneous state where we assume

045804-5



ROGGERO, MARGUERON, ROBERTS, AND REDDY PHYSICAL REVIEW C 97, 045804 (2018)

that a single spherical nucleus captures the essential physics
and 56Fe is the ground state at zero density,

Z ≈ 26

(
σ

σ0

)(
n0

2nh
p

)(
f3(0)

f3(u)

)
, (7)

where we have used Eq. (4) and the following parameters: σ0 �
1.2 MeV/fm2 is the surface tension of symmetric nuclei in
vacuum, and n0 � 0.16 fm−3 is the nuclear saturation density.
Typically we find Z � 50 at the density for which we expect
an appreciable fraction of large nuclei or pasta, and � � 1. For
large � the static structure factor S(q) � 1 unless qa � 1, and
for � > 10 the interference of amplitudes for neutrino scatter-
ing off different clusters is strong and destructive at small qa <
2–3. At intermediate qa � 4–5, constructive interference can
enhance scattering, and for qa � 5, where interference is
negligible, S(q) � 1. In this work we employ S(q) obtained
from recent fits to accurate molecular dynamics simulations of
one-component plasmas [43] to properly account for screening
for � in the range 1–150. We note that for T > 2 MeV, � < 150
even at the highest density, crystallization is not favored, and
it is reasonable to work with S(q) obtained for the liquid state.

The neutrino scattering rate from nonrelativistic nucleons
in the gas phase is given by [45]

d�ν

d cos θ
= G2

F E2
ν

8π

∑
ij

[
(1 + cos θ )Ci

vC
j
v Sij

v (q)

+ (3 − cos θ )Ci
aC

j
aSij

a (q)
]
, (8)

where the labels i and j can be either neutrons or protons,
and Ci

v and Ci
a are their corresponding vector and axial vector

charges. In the long-wavelength limit, which is adequate to
describe low-energy neutrino scattering, the static structure

factors (unnormalized) can be related to thermodynamic func-
tions [31],

Sij
v = T

(
∂2P

∂μj∂μi

)
T

, (9)

where P is the pressure of the gas phase and μi is the chemical
potential of either neutrons or protons, and the axial or spin
response,

Sij
a = T

(
∂2P

∂δj∂δi

)
T

, (10)

where δi is the chemical potential associated with the spin
density of species i. When interactions between nucleons can
be neglected, the structure functions greatly simplify and are
given by

Sij
v = Sij

a = δijSgas(μi,T ), (11)

where [44]

Sgas(μi,T ) =
∫

d3p

(2π )3

eβ(p2/2m−μi )

(1 + eβ(p2/2m−μi ))2
, (12)

where β = 1/T and only correlations due to Fermi statistics
are included. Strong nuclear interactions induce additional cor-
relations between nucleons in the gas and can alter the structure
factors. At the subnuclear densities of interest, calculations
suggest a modest enhancement of the vector response and
a suppression by up to 50% of the axial response [45–49].
Since our primary interest here is to assess the role of coherent
scattering, in what follows we neglect corrections due to strong
interactions and use Eq. (11) to calculate the scattering rates
in the gas phase.

To assess the importance of coherent scattering from heavy
nuclei in the heterogeneous phase we define the ratio

R = σ tran
het (Eν)

σ tran
hom(Eν)

= σ tran
coh (Eν) + σ tran

gas (Eν)

σ tran
hom(Eν)

= nAN2
w〈Scl(Eν)〉 + (

1 + 5
(
Cn

A

)2)
Sgas

(
μhet

n ,T
) + 5

(
C

p
A

)2
Sgas

(
μhet

p ,T
)

(
1 + 5

(
Cn

A

)2)
Sgas

(
μhom

n ,T
) + 5

(
C

p
A

)2
Sgas

(
μhom

p ,T
) ,

(13)

where σ tran = ∫
d cos θ (1 − cos θ )d�/d cos θ is the elastic

transport cross section per unit volume for neutrinos. R is
analogous to the parameter ξ introduced in [17] and quantifies
the change in neutrino scattering rates in the heterogeneous
phase, where both coherent scattering from nuclei (σ tran

coh ) and
scattering from free nucleons in the gas phase contribute. The
term 〈Scl(Eν)〉 in the cross section from clusters indicates angle
averaging of the corrections due to correlations and nuclear
form factors [17],

〈Scl(Eν)〉 = 3

4

∫ 1

−1
d cos θ (1 − cos θ )(1 + cos θ )S(q)F 2

A(q),

(14)

and is a function of Eν though q = Eν

√
2(1 − cos θ ). We

note that neglecting the correlations in both the gas and the
protons has a small impact, �10%, on the ratio. However, a

strong suppression of the nucleon axial response due to spin
correlations would reduce the opacity of the homogeneous
phase and favor larger R.

The results for the ratio of cross section R are displayed
in Fig. 6. Figure 6(a) shows results at fixed proton fraction
Ye = 0.4, and Fig. 6(b) results for matter at β equilibrium.
In both cases, with the exception of the dashed black line,
neutrinos are assumed to be thermal and their energy Eν =
3T . The energy dependence of the cross sections is shown
in Fig. 7. The strong suppression of coherent scattering at
low energy is clearly visible, and the circle on each curve
corresponding to Eν = 3T shows that Coulomb correlation
suppresses scattering for neutrino energies of interest. The
Coulomb parameter � for the plots in Fig. 7 range from
�min = 4(6) for nB = 0.01 fm−3 and T = 10(6) MeV to
�max = 150(74) for u = 1/8 and T = 1 MeV at fixed proton
fraction (β equilibrium). The value of � at select points is
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FIG. 6. Ratio R from Eq. (13) under two conditions: (a) fixed
proton fraction Ye = 0.4 and (b) β equilibrium. The gray central
band indicates the density region where nonspherical pasta may be
present, and the curves terminate in a circle at the density at which
u = 1/8. Dotted curves indicate the contribution of the external gas
only. Neutrinos are considered to be at thermal equilibrium, except
for the dashed black curves, where Eν = 30 MeV.

reported in Table I. At the lowest temperature,T = 1 MeV,
and the large proton fraction Ye = 0.4, our simple ansatz in
Eq. (7) predicts a large Z > 60 and � > 200. At these very
low temperatures, it would be appropriate to use S(q) from
simulations of the solid phase. However, here we adopt the
approximate treatment suggested in earlier studies [19,50]
where they circumvent the problem by limiting the value
of the Coulomb coupling to �max = 150, which is indicated
by an asterisk in Table II. These low-temperature conditions
are encountered only at late times in the protoneutron star
phase when the neutrino luminosity is greatly reduced and
undetectable even for nearby supernovas in detectors such
as SuperKamiokande, where the energy threshold is about
5 MeV. Additionally, shell effects can be important in the
determination of Z at low temperatures, and smaller values
of Z ≈ 40–50 are obtained at T = 0 [22,51]. Nonetheless,

1 10 100
Eν [MeV]
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1

2

3

4

R
 =

 σ
he

t/σ
ho

m

T=1 - 0.01
T=1 - u=1/8
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T=6 - 0.01
T=6 - u=1/8
T=10 - 0.01
T=10 - u=1/8

10 100
Eν [MeV]

(a) Y
e
 = 0.4 (b) β-equilibrium

FIG. 7. Energy dependence of the total ratio of cross section R
at various temperatures and for two densities: nB = 0.01 fm−3 (solid
lines) and the threshold density at which u = 1/8 (dashed lines). As
for Fig. 6, (a) shows results for a fixed proton fraction Ye = 0.4, and (b)
for β-equilibrium conditions. In both cases the filled circles indicate
the energies for thermal neutrinos (Eν = 3T ).

TABLE I. Values of neutrino mean-free-path and diffusion coef-
ficients at T = 4 MeV and nB = 0.01 fm−3.

Ye = 0.4 β

Hom Het Hom Het

λ (Eν = 3T ) (m) 14.91 98.03 14.19 14.87
D2 (m) 67.01 575.01 63.77 74.47
D4 (m) 220.79 1326.91 210.12 208.71

we included these low-temperature results, which, despite
the approximations mentioned, provide useful insights about
trends and allow for comparison with earlier work.

A related quantity of interest for neutrino transport are the
diffusion coefficients

Dn =
∫ ∞

0
dxxnλ(Eν)f (Eν)[1 − f (Eν)], (15)

with x = Eν/T and f the Fermi-Dirac distribution [4]. Results
for D2 and D4 at T = 4 MeV and nB = 0.01 fm−3 for both
β equilibrium and fixed Ye = 0.4 are presented in Table II,
assuming that the neutrino chemical potential μν is negligible.
In the first row of data we also list the result for the mean
free path λ(Eν) = 1/σ (Eν) at Eν = 3T . These results are
compatible with the general trend observed in the results above
that predict small effects of pasta at β equilibrium and reduced
scattering at a fixed proton fraction.

From Figs. 6 and 7 we can draw the following conclusions.

(1) At low temperatures, when large nuclei are present
and persist up to high densities, the opacity to high-
energy neutrinos with Eν � 4/a, where a, the distance
between nuclei, is enhanced, but coherent scattering is
greatly reduced for low-energy thermal neutrinos due
to Coulomb correlations between nuclei. We find a net
reduction in the scattering rates in the heterogeneous
phase because a large fraction of free nucleons is tied up
inside nuclei. In the homogeneous phase these nucleons
make a significant contribution to neutrino scattering
because they couple to the axial current.

(2) At β equilibrium coherent scattering makes a relatively
small contribution to the total neutrino opacity for all
temperatures of interest. At low temperatures, when
nuclei and pasta are present, Coulomb correlations
reduce coherent scattering, and at high temperatures,
pasta and large nuclei melt. We find that scattering
off nucleons in the gas phase dominates unless nuclear

TABLE II. Values of Coulomb coupling � for Fig. 7.

T (MeV) Ye = 0.4 β

nB = 0.01 u = 1/8 nB = 0.01 u = 1/8

1 150∗ 150∗ 72.7 74.0
4 69.8 138.8 14.2 4.0
6 35.1 75.4 6.3 –
10 4.0 17.4 – –
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correlations can greatly suppress the spin response of
dilute nuclear matter.

(3) The large opacity due to coherent scattering reported in
Ref. [17] arose because the neutrino energy was chosen
to be high to ensure that the suppression due to Coulomb
correlations was mild, and it was assumed that pasta
nuclei would survive up to T � 10 MeV in matter close
to β equilibrium.

(4) Figure 7 illustrates that the heterogeneous phases can
act as a low-pass filter for neutrinos. In the diffusive
regime the strong energy dependence of the neutrino
cross sections would imply nonlinear thermal evolution
where cooling would accelerate rapidly with decreasing
temperature.

These results have significant implications for the impact
of coherent pasta scattering on protoneutron star cooling.
In Ref. [17], it was shown that if coherent scattering from
nuclear pasta increases the neutrino opacity relative to that of
a homogeneous gas, pasta formation in the outer layers of the
protoneutron star can trap neutrino energy for the first few
seconds after a successful core-collapse supernova explosion.
This heat trapping causes the temperature of the outer layers
of the protoneutron to increase until they reach the pasta
melting temperature. This heats up the entire region over which
neutrinos decouple from matter, increasing the average energy
of neutrinos escaping from the protoneutron star. Additionally,
the energy that is trapped initially gets out at later times. Both
of these effects contributed to a more detectable late-time
neutrino signal. A pasta melting temperature of 10 MeV was
used in their parameterized simulations, but it was suggested
that reducing the melting temperature of the pasta could reduce
the impact of the pasta on the neutrino signal.

Here, we have found that the pasta dissolution temperature
for β-equilibrated matter is T

β
u ≈ 4 ± 1 MeV and that the

presence of a high-density phase can reduce the neutrino
opacity. First, this implies that even if coherent scattering from
nuclear pasta increased the neutrino opacity, the impact of
pasta on the protoneutron star neutrino signal would be smaller
than the impact predicted by Ref. [17], since nuclear pasta
would be present for a shorter portion of the protoneutron
star cooling. The reduced melting temperature would also
cause a smaller perturbation in the temperature gradient near
the neutrino sphere, which would reduce the enhancement of
the neutrino luminosity even when the pasta is present. Second,
we predict that correlations among high-density structures act
to reduce the neutrino opacity for neutrinos with energies
� 4/a, which is an energy scale that is often significantly
above the thermal energy. Therefore, the presence of pasta
may allow the majority of thermal neutrinos to escape more
easily and potentially speed up neutrino cooling, thereby
reducing the late-time neutrino detection rate from a nearby
supernova.

IV. CONCLUSIONS

In this paper, we have analyzed the properties of the hot
nuclear pasta phase and we have shown the large qualitative
differences between matter at β equilibrium and matter at a

modest electron fraction, Ye > 0.2. At β equilibrium, we find
that pasta melts or dissolves at relatively low temperatures,
reducing drastically the volume fraction occupied by the large
nuclei. With increasing temperature protons leak out of nuclei,
enter the gas phase, and alter the nature of the transition to
bulk matter. Here, nuclei dissolve with increasing density in a
phenomenon referred to as retrograde condensation. We have
introduced a new temperature, the pasta dissolution temper-
ature Tu, above which the volume fraction of nuclei cannot
exceed 1/8. Atβ equilibrium the dissolution temperatureT

β
u �

4 ± 1 MeV for EOSs with Lsym = 50–60 MeV and is compat-
ible with EFT predictions in neutron matter. The dissolution
temperature T

β
u was found to decrease with increasing Lsym.

For matter with Ye > 0.2 large nuclei and pasta persist to higher
temperatures, Tu � 15 MeV, and retrograde condensation is
absent. Our work confirms results obtained in Refs. [26,27] and
expands on them by delineating the mechanism and defining
a dissolution temperature Tu to provide an upper limit for any
equation of state independent of finite-size corrections.

In the second part of our paper, we have analyzed the
impact of coherent scattering off nuclear clusters on neutrino
opacities, for thermodynamical conditions corresponding to
core-collapse supernovas or neutron star mergers. We found
that both the retrograde condensation and the Coulomb corre-
lations in the static structure factor contribute to reducing the
impact of coherent scattering on neutrino opacities. For matter
far out of β equilibrium, where heavy nuclei and pasta persist
to high temperatures, Coulomb correlations between clusters
greatly reduce the coherent scattering rates at high densities.
Here, rather than an increase, we found a net reduction in the
opacity for thermal neutrinos when clusters are present. This
may be important at very early times postbounce during the
supernova when matter with a large Ye is encountered briefly
during the period when the lepton number is trapped. On longer
timescales characteristic of protoneutron star evolution, β

equilibrium favors much smaller values of Ye, and for T < T
β

u

only a moderate increase, by less than 20%, is found for thermal
neutrinos, at variance with the factor 5 reported in Ref. [17].
We find such an increase only for high-energy nonthermal
neutrinos, for which correlations between nuclei enhance the
scattering rates.

While we believe that the physical effects mentioned above
are robust, additional work is warranted to obtain more quan-
titative predictions. Hartree-Fock calculations, such as those
reported in Refs. [24,52], which self-consistently include the
surface tension, Coulomb, and shell effects, would provide
improved estimates for T

β
u to better constrain the temperature

range in which pasta is present. It will also be desirable to
go beyond the single-nucleus approximation in calculating
the ion structure factor and include, in addition, nonspher-
ical shapes. Ultimately, these modifications to the neutrino
opacities need to be incorporated self-consistently with the
underlying equation of state in protoneutron star and supernova
simulations to assess whether the presence of nuclear clusters
at subnuclear densities can influence supernova observables.
Nonetheless, it seems likely that retrograde condensation and
ion correlations will together disfavor the large changes to the
temporal structure of the neutrino signal predicted in Ref. [17].
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