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Examination of N∗(1535) as a probe to observe the partial restoration of chiral
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I investigate modifications of mass and decay width of N∗(1535) in nuclear matter in a chiral symmetric way.
The nucleon and N∗(1535) are introduced by a parity doublet model, and nuclear matter is constructed by one-loop
diagrams of the nucleon and N∗(1535). The decay width of N∗(1535) is studied with respect to chiral symmetry.
My calculations show that the partial width of �N∗→Nπ is slightly broadened by a collisional broadening and
that of �N∗→Nη is drastically suppressed at density. As a result, the total decay width �tot gets small at density.
These modifications, especially the drastic narrowing of partial width of �N∗→Nη, together with the drop in mass
of N∗(1535), provide experiments for observing the partial restoration of chiral symmetry in nuclear matter by
means of N∗(1535) resonance with useful information.
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I. INTRODUCTION

Investigating chiral symmetry is one of the most important
subjects in quantum chromodynamics (QCD), since hadron
masses can be explained by a spontaneous breakdown of chiral
symmetry. Although chiral symmetry is broken in the vacuum,
it is expected to be restored at temperature and/or density, so
the search for chiral symmetry at such extreme environments
has been receiving attention recently.

One powerful tool to investigate relations between hadron
properties and chiral symmetry is a hadron effective model.
One example is the linear σ model, which was introduced by
Gell-Mann and Levy [1,2]. In this model, a linear representa-
tion of SU(2)L × SU(2)R group was employed for the nucleon,
and mass generation of the nucleon was demonstrated. The
linear representation was extended to the parity doublet model
[3]. In this model, a positive-parity nucleon and an excited
negative-parity nucleon, such as the nucleon and N∗(1535),
can be studied collectively by employing a mirror assignment.
Under this assignment, the negative-parity nucleon is regarded
as a chiral partner to the positive-parity nucleon, so that these
nucleons get degenerated when the chiral symmetry restoration
occurs. This idea was further extended to other excited states
and � isobars [4–7].

Some theoretical studies based on hadron effective models
show a tendency of chiral restoration in nuclear matter [8,9].
Other chiral effective models such as the Nambu-Jona-Lasinio
(NJL) model read the same tendency (see Ref. [10] for a review
and references therein). Besides, modifications of hadrons in
nuclear matter as probes to understand the partial restoration of
chiral symmetry were studied [11,12]. Experiments to observe
the partial restoration of chiral symmetry by means of light
mesons also exist (see Ref. [13] for a review and references
therein). Investigating the chiral symmetry in nuclear matter
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by focusing on modifications of charmed mesons has been
done as well [14–16].

In order to see an indication of chiral restoration in nuclear
matter, it is worth focusing on modifications of properties of
N∗(1535) in nuclear matter. As is well known, the observed
branching ratio of N∗ → Nη mode is �N∗→Nη/�tot ∼ 50%
in the vacuum while threshold of N + η is closed to the mass
of N∗(1535), which implies N∗(1535) is strongly coupled to
the η meson and the nucleon. Hence, the partial restoration
of chiral symmetry in nuclear matter can have a significant
influence on the decay properties of N∗ → Nη, since mass
difference between N∗(1535) and the nucleon gets small as
chiral symmetry is restored, by regarding N∗(1535) as a
chiral partner to the nucleon within the parity doublet model.
Studies on N∗(1535) that pay attention to chiral symmetry
in medium exist [17–19], and ones on N∗(1535) in the η
photoproduction on nuclei have also been done [20–22]. In
Ref. [23], a lattice calculation for investigating masses of parity
partner of nucleons at temperature is performed, and a tendency
of degeneracy is observed.

Studies on N∗(1535) are important in the context of η
mesic nuclei, which were first reported by Haider and Liu
[24], since N∗(1535) is strongly coupled to the ηN system
as I have stated above, and it is expected that N∗(1535)
resonance plays a significant role in forming a η-nucleus bound
state. The quest for such exotic nucleus has been animatedly
performed theoretically [25–29] and experimentally [30–32].
Such studies can also lead to understanding of the partial
restoration of chiral symmetry in nuclear matter in laboratories.

In Ref. [33], a parity doublet model in which ω-meson
and ρ-meson contributions as well as σ mesons and pions are
included was considered, and the properties of nuclear matter,
i.e., the nuclear saturation density, the binding energy, the
incompressibility, and the symmetry energy, can be reproduced
within this model at mean field level. In this paper, I extend the
parity doublet model in Ref. [33] by taking fluctuations and
calculate modifications of mass and decay width of N∗(1535)
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in nuclear matter to provide useful information for observing
the partial restoration of chiral symmetry in nuclear matter.

This paper is organized as following. In Sec. II, I construct
the parity doublet model which was proposed in Ref. [33] and
determine model parameters. Derivative couplings and NN∗η
couplings are also included to explain the decay properties
of N∗(1535) in the vacuum. Besides, I solve a gap equation
with respect to mean field of the σ meson in nuclear matter
and study mass modifications of the nucleon and N∗(1535) at
density. In Sec. III, I formulate a way to incorporate fluctuations
of the light mesons respecting chiral symmetry in my model.
In Sec. IV, I demonstrate a way to calculate the decay width
of N∗(1535) in nuclear matter and show results. In Sec. V, I
summarize the present study and give some discussions.

II. MODEL CONSTRUCTION

A. Lagrangians

In the present study, I shall investigate modifications of mass
and decay properties of N∗(1535) in nuclear matter. In order
to treat N∗(1535) and the nucleon collectively, I construct an
effective model for N∗(1535) and the nucleon within the parity
doublet model [3] in this section. In this model, a nucleon
which carries positive parity is regarded as a chiral partner
of a nucleon which carries negative parity, so that the masses

of them get degenerated when chiral symmetry is restored.
Here, I regard the nucleon as the positive-parity nucleon while
N∗(1535) as the negative-parity nucleon.

The nucleon and N∗(1535) are introduced via two Fermion
fields ψ1 and ψ2 which transform under the SU(2)L × SU(2)R
chiral transformation as

ψ1l → gLψ1l , ψ1r → gRψ1r ,

ψ2l → gRψ2l , ψ2r → gLψ2r . (1)

ψ1l , ψ1r , ψ2l , and ψ2r are defined by

ψ1l(2l) = 1 − γ5

2
ψ1(2),

ψ1r(2r) = 1 + γ5

2
ψ1(2), (2)

and gL and gR are elements of SU(2)L and SU(2)R , respec-
tively. To start with, I need to construct a Lagrangian which
is invariant in terms of SU(2)L × SU(2)R chiral symmetry,
parity, and charge conjugation. By introducing a chiral field
M including the σ meson and pion which transforms under
the SU(2)L × SU(2)R chiral transformation as

M → gLMg
†
R, (3)

the Lagrangian up to O(∂M2) is given by

LN = ψ̄1r (i /∂ + γ0μB − gω /ω)ψ1r + ψ̄1l(i /∂ + γ0μB − gω /ω)ψ1l + ψ̄2r (i /∂ + γ0μB − gω /ω)ψ2r + ψ̄2l(i /∂ + γ0μB − gω /ω)ψ2l

−m0[ψ̄1lψ2r − ψ̄1rψ2l − ψ̄2lψ1r + ψ̄2rψ1l] − g1[ψ̄1rM
†ψ1l + ψ̄1lMψ1r ] − g2[ψ̄2rMψ2l + ψ̄2lM

†ψ2r ]

− ih1[ψ̄1l(M /∂M† − /∂MM†)ψ1l + ψ̄1r (M†/∂M − /∂M†M)ψ1r ]

− ih2[ψ̄2r (M /∂M† − /∂MM†)ψ2r + ψ̄2l(M
†/∂M − /∂M†M)ψ2l]. (4)

gω, m0, g1,g2, h1, and h2 in Eq. (4) are real parameters which will be determined later, and μB is a baryon number chemical potential
added to access to finite density. Note that the ω meson is introduced as a chiral singlet in the context of the SU(2)L × SU(2)R
chiral group.

The Lagrangian for the σ meson and pion can be given by

LM = 1

4
Tr[∂μM∂μM†] + μ̄2

4
Tr[MM†] − λ

16
(Tr[MM†])2

+ λ6

48
(Tr[MM†])3 + ε

4
(Tr[M†M] + Tr[M†M]) − 1

4
ωμνω

μν + 1

2
m2

ωωμωμ, (5)

where μ̄, λ, λ6, and ε are real parameters. ωμν is the field strength for the ω meson defined by ωμν = ∂μων − ∂νωμ and
mω = 783 MeV is the mass of the ω meson. The second term in the second line in Eq. (5) which explicitly breaks chiral symmetry
is added to reproduce the finite mass of pion. M represents a current quark mass matrix which takes the form of

M =
(

m̄ 0
0 m̄

)
, (6)

when the isospin symmetry is assumed.
In the present analysis, I follow Ref. [33] to determine model parameters. In this reference, the polar decomposition for the

chiral field was utilized: M = σU with U = exp(iπaτ a/fπ ) (τ a is the Pauli matrix and a runs over a = 1,2,3, and fπ is the
pion decay constant), since I expect that the normal nuclear matter density is separated by the chiral restoration point. Then, by
employing this procedure and separating the meson fields into their mean fields and fluctuations, I can rewrite Lagrangians (4)
and (5) as

LN = ψ̄1r (i /∂ + γ0(μB − gωω0))ψ1r + ψ̄1l(i /∂ + γ0(μB − gωω0))ψ1l

+ ψ̄2r (i /∂ + γ0(μB − gωω0))ψ2r + ψ̄2l(i /∂ + γ0(μB − gωω0))ψ2l

−m0[ψ̄1lψ2r − ψ̄1rψ2l − ψ̄2lψ1r + ψ̄2rψ1l] − g1σ0[ψ̄1rψ1l + ψ̄1lψ1r ] − g2σ0[ψ̄2rψ2l + ψ̄2lψ2r ]
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− g1

[
ψ̄1r

(
σ − i

σ0

fπ

π

)
ψ1l + ψ̄1l

(
σ + i

σ0

fπ

π

)
ψ1r

]
− g2

[
ψ̄2r

(
σ + i

σ0

fπ

π

)
ψ2l + ψ̄2l

(
σ − i

σ0

fπ

π

)
ψ2r

]

+ g1

2σ0

σ 2
0

f 2
π

[ψ̄1rπ
2ψ1l + ψ̄1lπ

2ψ1r ] + g2

2σ0

σ 2
0

f 2
π

[ψ̄2rπ
2ψ2l + ψ̄2lπ

2ψ2r ]

+h1

[
−2σ 2

0

fπ

ψ̄1l /∂πψ1l + 2σ 2
0

fπ

ψ̄1r /∂πψ1r − i
σ 2

0

f 2
π

ψ̄1l[π,/∂π ]ψ1l − i
σ 2

0

f 2
π

ψ̄1r [π,/∂π ]ψ1r

]

+h2

[
−2σ 2

0

fπ

ψ̄2r /∂πψ2r + 2σ 2
0

fπ

ψ̄2l /∂πψ2l − i
σ 2

0

f 2
π

ψ̄2r [π,/∂π ]ψ2r − i
σ 2

0

f 2
π

ψ̄2l[π,/∂π ]ψ2l

]
+ · · · (7)

and

LM = 1

2
∂μσ∂μσ + σ 2

0

2f 2
π

∂μπa∂μπa + μ̄2

2
(σ0 + σ )2 − λ

4
(σ0 + σ )4 + λ6

6
(σ0 + σ )6 + m̄ε(σ0 + σ )

− εm̄

2

σ0

f 2
π

πaπa + 1

2
m2

ωω2
0 + · · · , (8)

respectively. In obtaining Eqs. (7) and (8), I have assumed a spatially homogeneous and parity-nonbreaking spontaneous
breakdown of chiral symmetry, so that M is replaced as M = σU → (σ0 + σ )U in which the mean field σ0 does not depend
on the space-time coordinate. ω0 is the mean field of the time component of the ω meson, and I do not include fluctuation of
the ω meson in the present study. In the vacuum, σ0 → fπ while ω0 → 0. The ellipses in Eqs. (7) and (8) include higher order
of interactions. In order to define the mass eigenstate of positive-parity nucleon N+ and negative-parity nucleon N−, I need to
diagonalize the mass matrix in Lagrangian (7) by introducing a mixing angle θ :(

N+
N−

)
=

(
cos θ γ5sin θ

−γ5sin θ cos θ

)(
ψ1

ψ2

)
. (9)

As already mentioned, N+ is regarded as the nucleon while N− is regarded as N∗(1535). Hence, using Eqs. (2) and (9), Lagrangians
(7) and (8) yield

LN = N̄+(i /∂ + γ0μ
∗
B)N+ + N̄−(i /∂ + γ0μ

∗
B)N− − m+N̄+N+ − m−N̄−N−

− gNNσ N̄+σN+ − gNNπN̄+iγ5πrN+ + gNN∗σ N̄+γ5σN− + gNN∗π N̄+iπrN−
− gNN∗σ N̄−γ5σN+ − gNN∗π N̄−iπrN+ − gN∗N∗σ N̄−σN− − gN∗N∗π N̄−iγ5πrN−

+ gNNσ

2σ0
N̄+π2

r N+ − gNN∗σ

2σ0
N̄+γ5π

2
r N− + gNN∗σ

2σ0
N̄−γ5π

2
r N+ + gN∗N∗σ

2σ0
N̄−π2

r N−

+ 2σ0hNNπN̄+/∂πrγ5N+ + 2σ0hNN∗π N̄+/∂πrN− + 2σ0hNN∗π N̄−/∂πrN+ + 2σ0N̄−/∂πrγ5N−
− ifπhNNππN̄+[πr,/∂πr ]N+ − ifπhNN∗ππ N̄+[πr,/∂πr ]γ5N−
− ifπhNN∗ππ N̄−[πr,/∂πr ]γ5N+ − ifπhN∗N∗ππ N̄−[πr,/∂πr ]N− + · · · (10)

and

LM = 1
2∂μσ∂μσ − 1

2m2
σ + 1

2∂μπa
r ∂μπa

r − 1
2m2

ππa
r πa

r

+ 1
2 μ̄2σ 2

0 − 1
4λσ 4

0 + 1
6λ6σ

6
0 + m̄εσ0 + 1

2m2
ωω2

0 + (μ̄2σ0 − λσ 3
0 + λ6σ

5
0 + m̄ε)σ + · · · . (11)

In Eq. (10), I have defined an effective chemical potential μ∗
B

by μ∗
B = μB − gωω0. The coupling constants in Eq. (10) are

expressed by the mixing angle θ and original ones: g1, g2, h1,
and h2 as

gNNσ = g1cos2θ − g2sin2θ,

gNNπ = g1cos2θ + g2sin2θ,

gNN∗σ = g1sin θ cos θ + g2sin θ cos θ,

gNN∗π = g1sin θ cos θ − g2sin θ cos θ,

gN∗N∗σ = −g1sin2θ + g2cos2θ,

gN∗N∗π = −g1sin2θ − g2cos2θ,

hNNπ = h1cos2θ − h2sin2θ,

hNN∗π = −(h1sin θcos θ + h2sin θcos θ ),

hN∗N∗π = h1sin2θ − h2cos2θ,

hNNππ = h1cos2θ + h2sin2θ,

hNN∗ππ = −(h1sin θcos θ − h2sin θcos θ ),

hN∗N∗ππ = h1sin2θ + h2cos2θ, (12)

and θ satisfies a relation

tan2θ = 2m0

(g1 + g2)σ0
. (13)
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TABLE I. Input parameters by properties in the vacuum. In this table, mvac
+ , mvac

− , mπ , mω, mη, fπ , �N∗→Nπ , �N∗→Nη, and gA represent the
nucleon mass, N∗(1535) mass, pion mass, ω-meson mass, η-meson mass, decay width of N∗ → Nπ , decay width of N∗ → Nη, and nucleon
axial charge, respectively.

mvac
+ (MeV) mvac

− (MeV) mπ (MeV) mω(MeV) mη(MeV) fπ (MeV) �N∗→Nπ (MeV) �N∗→Nη(MeV) gA

939 1535 140 783 547 93 75 75 1.27

m+ and m− in Eq. (10) indicate the masses of N+ (the nucleon)
and N− [N∗(1535)], respectively, and they are given by

m± = 1
2

[√
(g1 + g2)2σ 2

0 + 4m2
0 ∓ (g2 − g1)σ0

]
. (14)

The “bare” σ meson mass (m2
σ ) and pion mass (m2

π ) in Eq. (11)
are defined by

m2
π = m̄ε

σ0
, m2

σ = −μ̄2 + 3λσ 2
0 − 5λ6σ

4
0 . (15)

In obtaining Eqs. (10) and (11), I have introduced the renormal-
ized pion field πa

r by πa = Z1/2πa
r with Z = f 2

π /σ 2
0 in such a

way that kinetic term of pion field is normalized properly. Note
that the one-point function (tadpole diagram) of the σ meson
appears in Lagrangian (11), since I have not yet solved a gap
equation with respect to σ0 to determine an appropriate ground
state. This process will be done in Sec. II B.

As is well known, N∗(1535) is strongly coupled with the η
meson, and the partial decay width of N∗(1535) is observed as

�N∗→Nπ ∼ 75 MeV, (16)

�N∗→Nη ∼ 75 MeV, (17)

with the total width of N∗(1535) being �tot ∼ 150 MeV
[35]. Although the decay width of N∗(1535) includes a large
uncertainty, I take the same values of �N∗→Nπ and �N∗→Nη as
in Ref. [25]. In order to take into account the large width in
Eq. (17), I include the η meson as a chiral singlet meson into
the model; namely, I include the η mesonic term and an ηNN∗
coupling term as [25]

Lη = 1
2∂μη∂μη − m2

η

2
η2 + gNN∗ηN̄−ηN+ + g∗

NN∗ηN̄+ηN−,

(18)

with mη and gNN∗η being the mass of the η meson and a complex
parameter, respectively.

B. Parameter determination

In this subsection, I determine the parameters. I fix them by
properties in nuclear matter as well as those in the vacuum as
performed in Refs. [33,34]. I use the nucleon mass, N∗(1535)
mass, pion mass, ω-meson mass, η-meson mass, pion decay
constant, �N∗→Nπ , �N∗→Nη, and the nucleon axial charge gA as
inputs in the vacuum. In addition, saturation density, binding
energy, and incompressibility are used as inputs in nuclear
matter. I summarize them in Tables I and II. I should note that
I have an additional condition of ∂

∂ρB
(E/A − mvac

+ )|ρ∗
B

= 0 to
reproduce the saturation behavior.

The decay width of �N∗→NX (X = π,η) is calculated as

�N∗→NX = |gN∗NX|2
8π

|�qX|
m2−

[F (|�qX|,�)]2

× [
(m+ + m−)2 − m2

π

]
, (19)

where |�qX| is the momentum of an emitted particle

|�qX| =
√

[m2− − (m+ + mX)2][m2− − (m+ − mX)2]

2m−
. (20)

In Eq. (19), I have defined gN∗Nπ =
[gNN∗π − 2σ0hNN∗π (m+ − m−)]2. F (|�qπ |,�) is the form
factor which takes the form of

F (|�q|,�) = �2

|�q|2 + �2
, (21)

and this is inserted in order to take a hadron size. At first
glance, the insertion of form factor in Eq. (21) can lead to
confusions since this form factor is not Lorentz invariant. In the
present analysis, however, I shall study properties of nucleons
in nuclear matter at which a rest frame can be defined, and
I use the decay width in Eq. (19) to determine parameters
for studies in nuclear matter. In this respect, the expressions
of form factor in Eq. (21) and decay width in Eq. (19) are
understood as an adiabatic limit from finite density regime to
vacuum. Therefore, as will be explained later, the value of
cutoff parameter � is chosen to be � = 300 MeV [16], which
is slightly higher than the Fermi momentum of normal nuclear
matter density in this paper. The axial charge of the nucleon is
taken by introducing an axial gauge field Aμ with the gauge
principle in Eq. (10) and by picking up a coefficient of N̄+ /AN+

TABLE II. Input parameters by properties in nuclear matter. In
this table,ρ∗

B ,E,A, andK represent the normal nuclear matter density,
total energy of the system, mass number, and incompressibility,
respectively. I should note that I have an additional condition of

∂
∂ρB

(E/A − mvac
+ )|ρ∗

B
= 0 to reproduce the saturation nature.

ρ∗
B (fm−3) E/A − mvac

+ (MeV) K(MeV)

0.16 −16 240
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coupling.1 The resulting coefficient reads

gA = gNNπfπ + 4f 2
π m+hNNπ

m+
. (23)

From the above equations, I can determine some parame-
ters. The remaining parameters can be fixed by properties in

nuclear matter listed in Table II. Nuclear matter is described
by one-loop diagrams of the nucleon and N∗(1535) with a
mean field approximation for σ and ω mesons. From Eqs. (10)
and (11), I can calculate the effective action �0[σ0,ω0] in
terms of the mean fields σ0 and ω0 by performing path
integrals as

�0[σ0,ω0] = −2i
∑

i=+,−
Trln(i /∂ − mi + μ∗

Bγ0) +
∫

d4x

(
1

2
m2

ωω2
0 + 1

2
μ̄2σ 2

0 − 1

4
λσ 4

0 + 1

6
λ6σ

6
0 + m̄εσ0

)
. (24)

In Eq. (24), the symbol “Tr” stands for the trace for Dirac spinor, space-time coordinate. The effective potential V0[σ0,ω0] is
defined by �0[σ0,ω0] = −V0[σ0,ω0]

∫
d4x and the mean fields σ0 and ω0 should satisfy the following stationary conditions:

∂V0[σ0,ω0]

∂σ0
= 0,

∂V0[σ0,ω0]

∂ω0
= 0. (25)

These equations determine the ground state of the present analysis and one-point functions (tadpole diagrams) of σ and ω mesons
are eliminated in the perturbation series around this ground state. The total energy of the system (E) can be calculated as

E =
∑

i=+,−

∫
d3x lim

y→x
〈N †

i (y0,�y)Ki(�x)Ni(x0,�x)〉 +
∫

d3x

(
−1

2
m2

ωω2
0 − 1

2
μ̄2σ 2

0 + 1

4
λσ 4

0 − 1

6
λ6σ

6
0 − m̄εσ0

)
− Evac

= V

4π2

∑
i=+,−

⎧⎨
⎩kFi

√
k2
Fi + m2

i

(
2k2

Fi + m2
i

) − m4
i ln

⎛
⎝kFi +

√
k2
Fi + m2

i

mi

⎞
⎠

⎫⎬
⎭

+1

2
m2

ωω2
0 − 1

2
μ̄2σ 2

0 + 1

4
λσ 4

0 − 1

6
λ6σ

6
0 − m̄εσ0 +

{
1

2
μ̄2f 2

π − 1

4
λf 4

π + 1

6
λ6f

6
π + m̄εfπ

}
, (26)

where I have defined the energy operator for one-particle
state Ki as Ki = γ0(−i �γ · �∂ + mi + gωω0γ0) (i = +,−). In
obtaining the second line in Eq. (26), I have utilized the
in-medium propagator in the coordinate space

T〈Ni(x0,�x)N̄i(y0,�y)〉 =
∫

d4k

(2π )4
S̃Ni

(k0,�k)e−ik·(x−y), (27)

(T is the time-ordered product operator), where S̃Ni
(k0,�k) is of

the form [36]

S̃Ni
(k0,�k) = (/k + mi)

[
i

k2 − m2
i + iε

− 2πθ (k0)θ (kFi − |�k|)δ(k2 − m2
i

)]
. (28)

In Eq. (26), I have subtracted the vacuum energy Evac to
measure the energy properly. V is a volume of the system
and I study the infinite matter such that any quantities in
this paper do not depend on V . Also, the mass number A

1Alternatively, gA can be taken by using the Goldberger-Treiman
relation:

GπNN

m+
= gA

fπ

, (22)

where πNN coupling GπNN is obtained as GπNN = gNNπ +
4fπm+hNNπ on the on shell of the nucleon.

is simply related as A = ρ∗
BV . kF+ and kF− are the Fermi

momentum for the nucleon and N∗(1535), which are defined
by μ∗

B =
√

k2
F+ + m2

+ and μ∗
B =

√
k2
F− + m2

− , respectively.
The baryon number density ρB is defined by

ρB = 2

3π2
k3
F+ + 2

3π2
k3
F−. (29)

The incompressibility is calculated by the well-known formula

K = 9ρ∗2
B

∂2

∂ρ2
B

(
E

A

)∣∣∣∣
ρ∗

B

= 9ρ∗
B

∂μB

∂ρB

∣∣∣∣
ρ∗

B

. (30)

TABLE III. Model parameters for a given value of m0. The
dimensionless parameters ˆ̄μ2, λ̂6, ĥ1, and ĥ2 are defined by ˆ̄μ =
μ̄2/f 2

π , λ̂6 = λ6f
2
π , ĥ1 = h1f

2
π , and ĥ2 = h2f

2
π . Here, m̄ε = 1.56 ×

106 MeV3, mω = 783 MeV, mη = 547 MeV, fπ = 92.3 MeV, and
|gNN∗η| = 2.80.

m0 (MeV) 500 700 900

g1 9.03 7.82 5.97
g2 15.5 14.3 12.4
ˆ̄μ2 73.5 30.8 1.74
λ 139 58.8 5.00
λ̂6 62.9 25.7 0.952
ĥ1 0.108 0.127 0.145
ĥ2 0.336 0.0473 −0.126
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FIG. 1. Density dependence of the mean field σ0 with m0 =
500 MeV. As can be seen, the mean field σ0 decreases as the density
increases, which shows the tendency of partial restoration of chiral
symmetry.

From Eqs. (26) and (30) together with the saturation con-
dition ∂

∂ρB
(E/A − mvac

+ )|ρ∗
B

= 0, I can fix the remaining para-
meters. The resultant parameters are summarized in Table III.
I should note that only m0 remains as a free parameter, and
I choose it as m0 = 500,700,900 MeV as examples [33].2 It
is notable that kF− is zero for any choice of m0 at the normal
nuclear matter density; namely, N∗(1535) does not appear at
normal nuclear matter because of its large mass. This it true
throughout the present analysis.

C. Partial restoration of chiral symmetry at density

Here, I show a density dependence of σ0 and those of
the masses of the nucleon and N∗(1535). The density de-
pendence of σ0 is obtained by solving the gap equation
∂V0[σ0,ω0]/∂σ0 = 0 in Eq. (25). I show it with m0 = 500
MeV in Fig. 1 as an example. As can be seen, the mean field σ0

decreases as the density increases, which shows the tendency of

2Equation (19) is such a quadratic equation with respect to hNN∗π

that I can obtain another solution. This solution leads to, however,
a relatively larger value of NN∗ππ coupling, hNN∗ππ , which is
inconsistent with my assumption of Eqs. (16) and (17). Thus, I have
discarded this choice.

FIG. 3. Self-energy for pion [�̃π (q0,�q)].

partial restoration of chiral symmetry. Density dependences of
masses of the nucleon and N∗(1535), and the mass difference
between them, for m0 = 500 MeV are plotted in Fig. 2. Red
and blue curves in Fig. 2(a) represent masses of the nucleon
and N∗(1535), respectively. This figure shows that mass of the
nucleon decreases gradually while that of N∗(1535) decreases
more rapidly, and as a result, the mass difference between
N∗(1535) and the nucleon gets smaller as the density increases
as shown in Fig. 2(b).

III. FLUCTUATIONS OF PION AND η MESON AT DENSITY

A. Fluctuations of pion and η meson

In Sec. II, I only take the mean fields of σ and ω mesons to
describe nuclear matter. Here, I extend the model to incorporate
fluctuations of mesons in nuclear matter with respect to chiral
symmetry.

From the Lagrangians in Eqs. (10), (11), and (18), the
effective action around the appropriate ground state determined
by the stationary conditions in Eq. (25) is given by

�[σ,πr,η; σ0,ω0] =
∫

DN̄+DN+DN̄−DN−

× exp

{
i

∫
d4x(LN + LM + Lη)

}

= �0[σ0,ω0] + �̂[σ,πr,η; σ0,ω0]. (31)

�[σ0,ω0] is identical to the effective action at mean field
level derived in Eq. (24), and �̂[σ,πr,η; σ0,ω0] includes the
fluctuations of σ , πr , and η around the ground state.

FIG. 2. Density dependences of (a) masses of the nucleon (m+) (red curve) and N∗(1535) (m−) (blue curve), and (b) mass difference
between N∗(1535) and the nucleon for m0 = 500 MeV. Mass of the nucleon decreases gradually while that of N∗(1535) decreases more rapidly,
so that mass difference between N∗(1535) and the nucleon gets smaller as the density increases.
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FIG. 4. Self-energy for η meson [�̃η(q0,�q)].

Propagators of the pion and η meson are derived by inverses
of second functional derivative of the effective action in
Eq. (31) with respect to πa or η:

G̃ab
π (q0,�q) = i

[∫
d4x eiq·x δ

δπa
r (x)

δ

δπb
r (0)

�̂

]−1

≡ iδab

q2 − m2
π − i�̃π (q0,�q)

, (32)

G̃η(q0,�q) = i

[∫
d4x eiq·x δ

δη(x)

δ

δη(0)
�̂

]−1

≡ i

q2 − m2
η − i�̃η(q0,�q)

, (33)

respectively. The “bare” mass mπ in Eq. (32) is given by
Eq. (15), and mη in Eq. (33) is fixed as mη = 547 MeV.
The self-energies �̃π (q0,�q) and �̃η(q0,�q) are diagrammatically
shown in Figs. 3 and 4, respectively, which are directly obtained
by the formulas in Eqs. (32) and (33). The matter effects to the
η meson and pion are induced by these self-energies since
they include the nucleon and/or N∗(1535) loops. I give the
detailed expression of �̃π (q0,�q) and �̃η(q0,�q) in the appendix.
In a similar way, I can get a propagator of the σ meson
on the appropriate ground state of my model. In the present
analysis, however, I assume that the decay width of N∗(1535)
is dominated by �N∗→Nπ and �N∗→Nη as in Eqs. (16) and (17).
Hence, three-body decay processes as �N∗→Nππ are neglected
and �N∗→Nσ is also ignored in this sense.

I should note that the propagators of the η meson (pion)
derived in Eqs. (32) and (33) claim that they should include
infinite sums of the self-energies �̃η (�̃π ) as depicted in Fig. 5.
In this procedure, I can fully respect chiral symmetry since
the propagators are directly derived by the effective action at
density in Eq. (31).3

3The propagator of the pion in Eq. (32) (diagrammatically shown
in Fig. 5) contains a massless spectrum in the chiral limit ε → 0
which is regarded as the Nambu-Goldstone (NG) boson as derived
in the appendix. Therefore, I can see that the present analysis fully
preserves chiral symmetry.

∗ ∗

− − +

η
∗

ρ [ − ]

[
]

FIG. 6. Two solutions of Eq. (34) with �q = �0. The red curve is
regarded as the mass of the η-meson mode since this curve reaches
q0 = 547 MeV at ρB = 0 fm−3. The blue one is identified as the mass
of the N∗-h mode. The dashed curve is the mass difference between
N∗(1535) and the nucleon, which is plotted as a reference.

B. Excitation of η-meson mode and N∗-hole mode
in nuclear matter

Here, I shall show appearance of another one-particle state
in the propagator of the η meson obtained by Eq. (33), which is
called an N∗-hole mode (N∗-h mode) in this paper in addition
to the η-meson mode. The N∗-h mode plays an important role
in calculating the modification of decay width of N∗(1535) as
will be explained in Sec. IV.

The one-particle state of the propagator of the η meson is
defined by a solution q0 of the following equation:

Re
[
iG̃−1

η (q0,�q)
] = q2 − m2

η − Re[i�̃η(q0,�q)] = 0. (34)

This equation possesses two solutions which are identified as
the η-meson mode and N∗-h mode, respectively. I plot the
density dependence of these solutions with �q = �0 which can
be referred to as masses of these modes in Fig. 6. The red
curve is regarded as the η-meson mode since this curve reaches
q0 = 547 MeV atρB = 0 fm−3. The blue one is identified as the
N∗-h mode. The dashed curve is the mass difference between
N∗(1535) and the nucleon: �m ≡ m− − m+ which is plotted
as a reference. I should note that the mass of the η-meson mode
decreases as the density increases, and this curve always lies
below �m. On the other hand, the mass of the N∗-h mode is
stable against the density, and this mode is always above �m.

In order to study the relative strengths of the η-meson and
N∗-h modes, it is worth calculating Z factors of them. They
are defined by

Z−1
α ≡ 1

2mη

∂

∂q0

{
q2

0 − m2
η − Re[i�̃η(q0,�0)]

}∣∣
q0=m∗

α
. (35)

FIG. 5. Propagators of the η meson and pion at density. The �̃η and �̃π indicate the self-energies of the η meson and pion shown in Figs. 3
and 4, respectively. The propagators of the η meson (pion) should include infinite sums of �̃η (�̃π ).

045203-7



DAIKI SUENAGA PHYSICAL REVIEW C 97, 045203 (2018)

∗

η

ρ [ − ]

FIG. 7. Density dependences of Zη and ZN∗h defined by Eq. (35).
The red curve is Zη (η-meson mode), and the blue one is ZN∗h

(N∗-h mode).

The subscript α runs over α = η,N∗h, and m∗
η stands for the

mass of the η-meson mode while m∗
N∗h stands for the mass of

the N∗-h mode. 1
2mη

in front of the derivative in Eq. (35) is
added as a normalization. I plot density dependence of Zη and
ZN∗h in Fig. 7. This figure shows that Zη starts from Zη = 1
at ρB = 0 fm−3, and decreases as the density increases. On
the other hand, ZN∗h starts from ZN∗h = 0 at ρB = 0 fm−3,
and increases. As a result, ZN∗h gets larger than Zη around
ρB ∼ 0.055 fm−3, which means the strength of the N∗-h mode
is stronger than that of the η-meson mode at higher density.
A similar tendency was reported in Ref. [27]. This inversion
will play a significant role in calculating the decay width of
N∗(1535) in Sec. IV.

IV. CALCULATIONS AND RESULTS

In this section, I calculate the modification of decay width
of N∗(1535) in nuclear matter. In Sec. IV A, I show a way
to calculate the decay width by computing �N∗→Nη in detail.
In Sec. IV B, I show density dependence of total decay width
of N∗(1535) (�tot) and partial decay widths of �N∗→Nπ and
�N∗→Nη. In Sec. IV C, I discuss the “bare” η-meson mass (mη)
dependence of these results.

A. Calculation method

The partial decay widths of N∗(1535) (�N∗→Nη and
�N∗→Nπ ) are given by “imaginary parts” of self-energies for
N∗(1535) by the Cutkosky rule as

�N∗→Nη = 1

2m−
tr
[
(/q + m+)Im�̃R

N∗(a)(q0,�q)
]
,

�N∗→Nπ = 1

2m−
tr
[
(/q + m+)Im�̃R

N∗(b)(q0,�q)
]
, (36)

with q0 and �q satisfying /q = m−. The subscript “R” refers to
the retarded self-energy, and the (retarded) self-energies �̃R

N∗(a)

and �̃R
N∗(b) are shown in Fig. 8. The blobs in this figure indicate

the infinite sums of self-energies for the η meson (�̃η) or pion
(�̃π ) as shown in Fig. 5. In these equations, the “imaginary

FIG. 8. Self-energies for N∗(1535) from (a) Nη loop (�̃N∗(a))
and (b) Nπ loop (�̃N∗(b)). The blobs indicate the infinite sums of
self-energies for the η meson (�̃η) or pion (�̃π ) as shown in Fig. 5.

part” is defined by

ImX ≡ X − γ0X
†γ0

2i
, (37)

and “tr” stands for the trace for spin and isospin indices. Then,
from Eq. (36), all I need to do is to get Im�̃R

N∗(a)(q0,�q) and

Im�̃R
N∗(b)(q0,�q). It is possible to calculate the decay width

of N∗(1535) in nuclear matter by utilizing the propagators
obtained in Eqs. (32) and (33). In the present study, however,
I employ a more useful method, the so-called spectral repre-
sentation method [36]. Here, I shall show how to utilize this
method by calculating Im�̃R

N∗(a)(q0,�q) as an example.
When I define a greater self-energy �>

N∗(a)(x0,�x) and a lesser
self-energy �<

N∗(a)(x0,�x) through the self-energy �N∗(a)(x0,�x)
in Fig. 8(a) as

�N∗(a)(x0,�x) = θ (x0)�>
N∗(a)(x0,�x) + θ (−x0)�<

N∗(a)(x0,�x)

(38)

and define a retarded self-energy �R
N∗(a)(x0,�x) by

�R
N∗(a)(x0,�x) = iθ (x0)[�>

N∗(a)(x0,�x) − �<
N∗(a)(x0,�x)], (39)

it is well known that the following relation holds [36]:

Im�̃R
N∗(a)(q0,�q) = 1

2 [�̃>
N∗(a)(q0,�q) − �̃<

N∗(a)(q0,�q)]. (40)

In Eq. (40), �̃R
N∗(a)(q0,�q), �̃>

N∗(a)(q0,�q), and �̃<
N∗(a)(q0,�q) are

the Fourier transformations of �R
N∗(a)(x0,�x), �>

N∗(a)(x0,�x), and
�<

N∗(a)(x0,�x), respectively.
According to Eq. (40), I need to find explicit forms of

�̃>
N∗(a)(q0,�q) and �̃<

N∗(a)(q0,�q) to evaluate Im�̃R
N∗(a)(q0,�q), so I

shall give them next. When I define a greater Green’s function
G>

η (x0,�x) [S>
N (x0,�x)] and a lesser Green’s function G<

η (x0,�x)
[S<

N (x0,�x)] for the η meson (the nucleon) by

Gη(x0,�x) = θ (x0)G>
η (x0,�x) + θ (−x0)G<

η (x0,�x),

SN (x0,�x) = θ (x0)S>
N (x0,�x) + θ (−x0)S<

N (x0,�x), (41)

the self-energy for N∗(1535) in Fig. 8(a) is expressed as

�N∗(a)(x0,�x)

= (igNN∗η)SN (x0,�x)(ig∗
NN∗η)Gη(x0,�x)

= (igNN∗η)[θ (x0)S>
N (x0,�x) + θ (−x0)S<

N (x0,�x)]

× (ig∗
NN∗η)[θ (x0)G>

η (x0,�x) + θ (−x0)G<
η (x0,�x)]

= θ (x0)(igNN∗η)S>
N (x0,�x)(ig∗

NN∗η)G>
η (x0,�x)

+ θ (−x0)(igNN∗η)S<
N (x0,�x)(ig∗

NN∗η)G<
η (x0,�x). (42)

Equation (42) together with Eq. (38) reads

�>
N∗(a)(x0,�x) = (igNN∗η)S>

N (x0,�x)(ig∗
NN∗η)G>

η (x0,�x), (43)

�<
N∗(a)(x0,�x) = (igNN∗η)S<

N (x0,�x)(ig∗
NN∗η)G<

η (x0,�x), (44)
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so that Im�̃R
N∗(a)(q0,�q) in Eq. (40) is calculated as

Im�̃R
N∗(a)(q0,�q)

= 1

2

∫
d4k

(2π )4
[F (�k; �)]2

×{(igNN∗η)S̃>
N (k0,�k)(ig∗

NN∗η)G̃>
η (q0 − k0,�q − �k)

− (igNN∗η)S̃<
N (k0,�k)(ig∗

NN∗η)G̃<
η (q0 − k0,�q − �k)}. (45)

In obtaining Eq. (45), I have inserted the form factor F (�k; �)
defined by Eq. (21) to take into account the hadron size. The
value of cutoff parameter � is chosen to be � = 300 MeV in
the present analysis, which is slightly higher than that of Fermi
momentum at normal nuclear matter density [16].

Furthermore, the Fourier transformations of the greater
Green’s function G̃>

η (q0,�q) and the lesser Green’s function
G̃<

η (q0,�q) are related to the spectral function for the η meson
ρη(q0,�q) in an equilibrium system by the following relations
[36]:

G̃>
η (q0,�q) = [1 + f (q0)]ρη(q0,�q) (46)

G̃<
η (q0,�q) = f (q0)ρη(q0,�q), (47)

where f (q0) is the Bose-Einstein distribution function. In a
similar way, S̃>

N (q0,�q) and S̃<
N (q0,�q) are related to spectral

function for the nucleon ρN (q0,�q) as

S̃>
N (q0,�q) = [1 − f̃ (q0 − μ∗

B)]ρN (q0,�q) (48)

S̃<
N (q0,�q) = −f̃ (q0 − μ∗

B)ρN (q0,�q), (49)

where f̃ (q0 − μ∗
B) is the Fermi-Dirac distribution function.

Note that minus signs in Eqs. (48) and (49) reflect the Pauli
blocking of Fermions, and I have not given the baryon chemical
potential to distribution function for the η meson in Eqs. (46)
and (47) since the η meson does not have a baryon number. In

the present study, ρη(q0,�q) is obtained by

ρη(q0,�q)

= −2ε(q0)Im[i�̃η(q0,�q)]{
q2 − m2

π(η) − Re[i�̃η(q0,�q)]
}2 + {Im[i�̃η(q0,�q)]}2

,

(50)

and ρN (q0,�q) is of the form

ρN (q0,�q) = 2π (/q + m+)ε(q0)δ(q2 − m2
+). (51)

ε(q0) in Eq. (50) is defined by satisfying ε(q0) = +1(−1)
for q0 > 0 (q0 < 0). The Bose-Einstein distribution function
f (q0) and Fermi-Dirac distribution function f̃ (q0 − μ∗

B) at
zero temperature take the form of

f (q0) = 1

eq0/T − 1
T →0= −θ (−q0), (52)

f̃ (q0 − μ∗
B) = 1

e(q0−μ∗
B )/T + 1

T →0= θ (μ∗
B − q0). (53)

Utilizing Eqs. (46)–(53), Im�̃R
N∗(a)(q0,�q) in Eq. (45) is

finally evaluated as

Im�̃R
N∗(a)(q0,�q)

= 1

2

∫
d4k

(2π )3
[F (�k; �)]2[θ (q0 − k0) − θ (μ∗

B − k0)]

×(igNN∗η)(/k + m+)ε(k0)δ(k2 − m2
+)(ig∗

NN∗η)ρη

× (q0 − k0,�q − �k). (54)

Then, the calculation of partial decay width of �N∗→Nη in
Eq. (36) is completed. In a similar way, the partial decay width
of �N∗→Nπ in Eq. (36) and total width �tot are also obtained.

B. Results

The resultant density dependences of the total decay width
of N∗(1535) (�tot) in nuclear matter for m0 = 500, m0 = 700,
and m0 = 900 MeV are plotted in Fig. 9. The red circles are
the results, and the dashed red line is the total width in the
vacuum �vac

tot = 150 MeV, which is added as a reference. For
any choice of the value of m0, total decay width of N∗(1535)
gets smaller at density and drops to about 100 MeV at normal
nuclear matter density ρ0 = 0.16 fm−3. This tendency shows

FIG. 9. Density dependences of total width of N∗(1535) (�tot), for (a) m0 = 500 MeV, (b) m0 = 700 MeV, and (c) m0 = 900 MeV. Red
circles are the results, and the dashed red line is the total width in the vacuum �vac

tot = 150 MeV, which is added as a reference.
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FIG. 10. Density dependences of partial width of N∗(1535) for
m0 = 500 MeV. Red circles represent the partial width of �N∗→Nπ

and blue circles are �N∗→Nη. The purple dashed line is the vacuum
value of them, �vac

N∗→Nπ = �vac
N∗→Nη = 75 MeV, which is shown as a

reference.

that decay width of N∗(1535) gets closed in nuclear matter
although a naive expectation leads to a broadening of decay
width due to collisions with nucleons surrounding N∗(1535).

The origin of this narrowing can be understood well if I
investigate the density dependence of partial widths of�N∗→Nπ

and �N∗→Nη. These partial widths for m0 = 500 MeV are
indicated in Fig. 10. Red circles represent the partial width
of �N∗→Nπ and blue circles are �N∗→Nη. The purple dashed
line is the vacuum values of them: �vac

N∗→Nπ = �vac
N∗→Nη = 75

MeV, which is added as a reference. As I can see, the partial
width of �N∗→Nπ is broadened as I expected, while that of
�N∗→Nη is drastically closed as the density increases. This
unexpected behavior of �N∗→Nη is explained as following.
Although a decay process of N∗ → N + (η-meson mode) in
nuclear matter is allowed since the phase space is not closed,
as can be seen in Fig. 6 (m∗

η is always below �m = m− − m+),
the Z factor for the η-meson mode (Zη) is converted into that
of the N∗-h mode (ZN∗h) as shown in Fig. 7. The mass of
the N∗-h mode is always above the mass difference �m =
m− − m+, so that the imaginary part from the decay process
of N∗ → N + (N∗-h mode) is not generated. Therefore, the
main part of imaginary part in Fig. 8(a) is lost and the resulting
partial width is suppressed, as shown in Fig. 10.

These modifications of decay properties, especially the
drastic narrowing of the partial width of �N∗→Nη together
with the drop of mass of N∗(1535), provide experiments for
observing the chiral restoration in nuclear matter by means of
N∗(1535) resonance with useful information.

C. η-meson mass dependence

In the present analysis, I employ a two-flavor parity doublet
model and include the η meson as a chiral singlet meson, as
was done in Ref. [25], so that I assume the “bare” mass of the η
meson does not change from the vacuum value mη = 547 MeV.
When I extend my analysis to the three-flavor case, I expect the
value of mη can be changed from mη = 547 MeV. Then, in this
subsection, I discuss on the “bare” η-meson mass dependence
of my results at normal nuclear matter density ρ0 = 0.16 fm−3

with m0 = 500 MeV.

TABLE IV. η-meson mass dependence of �N∗→Nη and �tot at
ρ0 = 0.16 fm−3 with m0 = 500 MeV.

mη (MeV) 450 500 547 600 650

�N∗→Nη (MeV) 27.6 22.6 16.4 0 0
�tot (MeV) 112 107 101 84.3 84.3

I show the resultant �N∗→Nη and �tot with mη = 450, 500,
547, 600, and 650 MeV in Table IV. When I take mη = 600
and mη = 650 MeV, the decay width of �N∗→Nη is completely
closed. On the other hand, when I takemη = 450 andmη = 500
MeV, �N∗→Nη is slightly larger than the result with mη = 547
MeV. From this table, I can expect the result does not differ
from the present analysis so much as when I study the width
of N∗(1535) in a three-flavor model.

In the three-flavor model, couplings of ηNN and ηN∗N∗
can appear and they can broaden the partial decay width of
�N∗→Nη. Even when these effects are included, the structure
of the η-meson mode and N∗-h mode at density is qualitatively
universal and I expect these corrections provide minor changes
for my results.

V. CONCLUSIONS

In the present study, I investigate the mass and decay
width of N∗(1535) in nuclear matter to give some clues for
understanding the partial restoration of chiral symmetry in
medium. The nucleon and N∗(1535) are introduced within
the parity doublet model, so that the nucleon and N∗(1535)
is regarded as the chiral partner to each other. Then, the mass
difference between N∗(1535) and the nucleon is expected to
get smaller as the density increases in which chiral restoration
is realized.

In this study, I determine model parameters to reproduce the
properties of normal nuclear matter in addition to the vacuum
ones as listed in Tables I and II, as done in Ref. [33]. I also
include the η meson as a chiral singlet meson, and add NN∗η
coupling to explain a large decay width of �N∗→Nη in the
vacuum, as in Ref. [25].

In Fig. 1, I plot density dependence of mean field of the σ
meson with chiral invariant mass m0 being 500 MeV. As the
density increases, the value of the mean field decreases, which
shows a tendency of partial restoration of chiral symmetry in
nuclear matter. Accordingly, mass of the nucleon decreases
gradually while that of N∗(1535) decreases more rapidly so
that the mass difference between N∗(1535) and the nucleon
drops as the density increases, as can be seen in Fig. 2.

The decay width of N∗(1535) in nuclear matter is studied
by calculating the “imaginary part” of the self-energy for
N∗(1535) in Fig. 8 by the Cutkosky rule. In this figure, propa-
gators of the pion and η meson should be ones which include
infinite sums of self-energies in Figs. 3 and 4 to maintain the
chiral symmetry in my calculations. The calculations show that
the width of N∗(1535) is suppressed at density as shown in
Fig. 9, in contrast to the naive expectation in which collisional
broadening provides an enlargement of the width of N∗(1535).
This behavior is caused by a drastic suppression of partial
decay width of �N∗→Nη, as can be seen in Fig. 10. Although
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the decay process of N∗ → N + (η-meson mode) is allowed
since phase space is not closed, the Z factor for the η meson
is converted into that of the N∗-h mode as I access finite
density as shown in Figs. 6 and 7. The decay process of
N∗ → N + (N∗-h mode) is always forbidden since its phase
space is not opened at any densities. Therefore, the main part
of the imaginary part in Fig. 8(a) is lost and the resulting partial
width is drastically suppressed. These modifications of decay
properties of N∗(1535), especially the drastic narrowing of
the partial width of �N∗→Nη, together with the drop of mass
of N∗(1535), provide experiments for observing the chiral
restoration in nuclear matter by means of N∗(1535) resonance
with useful information.

In the following, I mention some discussions which cannot
be covered in this paper. In the present study, I calculate the
decay width of N∗(1535) in nuclear matter. In the experiment,
N∗(1535) is produced as a resonance state so that information
of off-shell state is significant as well. From this point of view,
it is interesting to study the spectral function of N∗(1535) in
nuclear matter, and I leave this for a future publication.

In this study, I utilize a one-loop approximation for describ-
ing nuclear matter and investigate the density dependence of
mass and decay width of N∗(1535). I estimate higher order
loop corrections to my results by the same method employed
in Ref. [16] so as to confirm the validity of my results. In terms
of the mean field of the σ meson, I can see that the higher
order loop corrections are at most several MeV while the value
of σ0 is 73 MeV with m0 = 500 MeV and ρB = 0.16 fm−3.
I also study higher order loop corrections to the mass of
N∗(1535), and the result also shows the corrections are small in
comparison with the one-loop level. These estimations enable
me to expect that the higher order loop corrections do not
provide significant changes to my results.

In this study, I employ the two-flavor parity doublet model and
η is regarded as a chiral singlet meson since chiral symmetry
is explicitly broken for the strange sector due to a large mass of
strange quarks. Then, I assume the “bare” mass of the η meson
is not changed from mη = 547 MeV at density. When I extend
my model into a three-flavor model, this value can be changed.
In order to estimate this change, I study mη dependence of
�N∗→Nη and �tot in Sec. IV C. As a result, I confirm that
the result does not change so much. Even when the ηNN
and ηN∗N∗ couplings are included explicitly, the structure of
the η-meson mode and N∗-h mode at density is qualitatively
universal and I expect these corrections also provide minor
changes for my results.

In the present study, I do not include effects of � while �
couples to the pion and the nucleon. I expect, however, that �
does not play a major role in the decay width of N∗(1535) since
a direct N∗(1535)�π coupling is negligible [35]. Therefore,
� has a small influence upon the decay width of N∗(1535)
and I expect my conclusion is not changed since my results
are mainly provided by the structure of the η-meson mode and
N∗-h mode.

Furthermore, I assume that the three-body decay of
N∗(1535) vanishes and I ignore σ -meson decay processes. I
have confirmed that such σ -meson decay provides the decay
width of N∗(1535) with corrections of only a few MeV
at most.
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APPENDIX: SELF-ENERGIES FOR σ MESON AND PION

Here, I give explicit calculations of self-energies for the pion and η meson in Figs. 3 and 4. In calculating these diagrams, I
employ the in-medium propagators for the nucleon and N∗(1535):

S̃N+ (k0,�k) = (/k + m+)

[
i

k2 − m2+ + iε
− 2πθ (k0)θ (kF+ − |�k|)δ(k2 − m2

+)

]
, (A1)

S̃N− (k0,�k) = (/k + m−)

[
i

k2 − m2− + iε
− 2πθ (k0)θ (kF− − |�k|)δ(k2 − m2

−)

]
. (A2)

The resulting retarded self-energy for pion in Fig. 3 is obtained as

Re�̃R
π (q0,�q) = g2

NNπ

2π2

∫ kF+

0
d|�k| |

�k|2
E+

k

{
4 − q2

0 − |�q|2
2|�k||�q| ln|A+|

}
− m2

+
(2σ0hNNπ )2

π2

∫ kF+

0
d|�k| |

�k|2
E+

k

q2
0 − |�q|2
|�k||�q| ln|A+|

+ 4σ0m+gNNπhNNπ

π2

(
q2

0 − |�q|2) ∫ kF+

0
d|�k| |

�k|2
E+

k

1

2|�k||�q| ln|A+|

+ g2
NN∗π

π2

∫ kF+

0
d|�k| |

�k|2
E+

k

{
2 − q2

0 − |�q|2 − (m+ + m−)2

4|�k||�q| ln|A+−|
}

+ g2
NN∗π

π2

∫ kF−

0
d|�k| |

�k|2
E−

k

{
2 − q2

0 − |�q|2 − (m+ + m−)2

4|�k||�q| ln|A−+|
}
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+ 2(2σ0hNN∗π )2

π2

∫ kF+

0
d|�k| |�k|2

2E+
k

{
2(m2

− − m2
+) − (m− − m+)2

(
q2

0 − |�q|2 − (m+ + m−)2
)

4|�k||�q| ln|A+−|
}

+ 2(2σ0hNN∗π )2

π2

∫ kF−

0
d|�k| |�k|2

2E−
k

{
2(m2

− − m2
+) − (m− − m+)2

(
q2

0 − |�q|2 − (m+ + m−)2
)

4|�k||�q| ln|A−+|
}

+ 8σ0gNN∗πhNN∗π

π2

∫ kF+

0
d|�k| |�k|2

2E+
k

{
2(m+ + m−) − (m− − m+)

(
q2

0 − |�q|2 − (m+ + m−)2
)

4|�k||�q|

}
ln|A+−|

− 8σ0gNN∗πhNN∗π

π2

∫ kF−

0
d|�k| |�k|2

2E−
k

{
2(m+ + m−) + (m− − m+)

(
q2

0 − |�q|2 − (m+ + m−)2
)

4|�k||�q|

}
ln|A−+|

+ g2
N∗N∗π

2π2

∫ kF−

0
d|�k| |

�k|2
E−

k

{
4 − q2

0 − |�q|2
2|�k||�q| ln|A−|

}
− m2

−
(2σ0hN∗N∗π )2

π2

∫ kF−

0
d|�k| |

�k|2
E−

k

q2
0 − |�q|2
|�k||�q| ln|A−|

+ 4σ0m−gN∗N∗πhN∗N∗π

π2

(
q2

0 − |�q|2) ∫ kF−

0
d|�k| |

�k|2
E−

k

1

2|�k||�q| ln|A−|

− 2gNNσm+
π2σ0

∫ kF+

0
d|�k| |

�k|2
E+

k

− 2gN∗N∗σm−
π2σ0

∫ kF−

0
d|�k| |

�k|2
E−

k

, (A3)

and

Im�̃R
π (q0,�q) = πG2

1
q2

0 − |�q|2
2

∫
d3k

(2π )3

1

E+
k E+

k−q

θ (kF+ − |�k|)δ(q0 − E+
k − E+

k−q)

−πG2
1
q2

0 − |�q|2
2

∫
d3k

(2π )3

1

E+
k E+

k−q

θ (kF+ − |�k|)δ(q0 + E+
k + E+

k−q)

−πG2
1
q2

0 − |�q|2
2

∫
d3k

(2π )3

1

E+
k E+

k−q

θ (kF+ − |�k|)δ(q0 − E+
k + E+

k−q)

+πG2
1
q2

0 − |�q|2
2

∫
d3k

(2π )3

1

E+
k E+

k−q

θ (kF+ − |�k|)δ(q0 + E+
k − E+

k−q)

+πG2
2
q2

0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E+
k E−

k−q

θ (kF+ − |�k|)δ(q0 − E+
k − E−

k−q)

+πG2
2g

2 q2
0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E−
k E+

k−q

θ (kF− − |�k|)δ(q0 − E−
k − E+

k−q)

−πG2
2
q2

0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E+
k−qE

−
k

θ (kF− − |�k|)δ(q0 + E+
k−q + E−

k )

−πG2
2
q2

0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E−
k−qE

+
k

θ (kF+ − |�k|)δ(q0 + E−
k−q + E+

k )

−πG2
2
q2

0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E+
k E−

k−q

θ (kF+ − |�k|)δ(q0 − E+
k + E−

k−q)

−πG2
2
q2

0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E−
k E+

k−q

θ (kF− − |�k|)δ(q0 − E−
k + E+

k−q)

+πG2
2
q2

0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E+
k−qE

−
k

θ (kF− − |�k|)δ(q0 − E+
k−q + E−

k )

+πG2
2
q2

0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E−
k−qE

+
k

θ (kF+ − |�k|)δ(q0 − E−
k−q + E+

k )

+πG2
3
q2

0 − |�q|2
2

∫
d3k

(2π )3

1

E−
k E−

k−q

θ (kF− − |�k|)δ(q0 − E−
k − E−

k−q)
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−πG2
3
q2

0 − |�q|2
2

∫
d3k

(2π )3

1

E−
k E−

k−q

θ (kF− − |�k|)δ(q0 + E−
k + E−

k−q)

−πG2
3
q2

0 − |�q|2
2

∫
d3k

(2π )3

1

E−
k E−

k−q

θ (kF− − |�k|)δ(q0 − E−
k + E−

k−q)

+πG2
3
q2

0 − |�q|2
2

∫
d3k

(2π )3

1

E−
k E−

k−q

θ (kF− − |�k|)δ(q0 + E−
k − E−

k−q), (A4)

where I have defined

E+
k ≡

√
|�k|2 + m2+,

E−
k ≡

√
|�k|2 + m2− , (A5)

and

A+ ≡ q2
0 − |�q|2 + 2|�k||�q| + 2q0E

+
k

q2
0 − |�q|2 − 2|�k||�q| + 2q0E

+
k

q2
0 − |�q|2 + 2|�k||�q| − 2q0E

+
k

q2
0 − |�q|2 − 2|�k||�q| − 2q0E

+
k

, (A6)

A+− ≡ q2
0 − |�q|2 + 2|�k||�q| + m2

+ − m2
− + 2q0E

+
k

q2
0 − |�q|2 − 2|�k||�q| + m2+ − m2− + 2q0E

+
k

q2
0 − |�q|2 + 2|�k||�q| + m2

+ − m2
− − 2q0E

+
k

q2
0 − |�q|2 − 2|�k||�q| + m2+ − m2− − 2q0E

+
k

, (A7)

A−+ ≡ q2
0 − |�q|2 − 2q0E

−
k + 2|�k||�q| + m2

− − m2
+

q2
0 − |�q|2 − 2q0E

−
k − 2|�k||�q| + m2− − m2+

q2
0 − |�q|2 + 2q0E

−
k + 2|�k||�q| + m2

− − m2
+

q2
0 − |�q|2 + 2q0E

−
k − 2|�k||�q| + m2− − m2+

, (A8)

A− ≡ q2
0 − |�q|2 + 2|�k||�q| + 2q0E

−
k

q2
0 − |�q|2 − 2|�k||�q| + 2q0E

−
k

q2
0 − |�q|2 + 2|�k||�q| − 2q0E

−
k

q2
0 − |�q|2 − 2|�k||�q| − 2q0E

−
k

. (A9)

The couplings G1, G2 and G3 are defined by

G1 ≡ gNNπ + 4σ0m+hNNπ , (A10)

G2 ≡ gNN∗π + 2σ0(m− − m+)hNN∗π , (A11)

G3 ≡ gN∗N∗π + 4σ0m−hN∗N∗π . (A12)

In a similar way, the retarded self-energy for the η meson in Fig. 4 is

Re�̃R
η (q0,�q) = g2

NN∗η

π2

∫ kF+

0
d|�k| |

�k|2
E+

k

{
2 − q2

0 − |�q|2 − (m+ + m−)2

4|�k||�q| ln|A+−|
}

+ g2
NN∗η

π2

∫ kF−

0
d|�k| |

�k|2
E−

k

{
2 − q2

0 − |�q|2 − (m+ + m−)2

4|�k||�q| ln|A−+|
}
, (A13)

and

Im�̃R
η (q0,�q) = πg2

NN∗η
q2

0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E+
k E−

k−q

θ (kF+ − |�k|)δ(q0 − E+
k − E−

k−q)

+πg2
NN∗η

q2
0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E−
k E+

k−q

θ (kF− − |�k|)δ(q0 − E−
k − E+

k−q)

−πg2
NN∗η

q2
0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E+
k−qE

−
k

θ (kF− − |�k|)δ(q0 + E+
k−q + E−

k )

−πg2
NN∗η

q2
0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E−
k−qE

+
k

θ (kF+ − |�k|)δ(q0 + E−
k−q + E+

k )

−πg2
NN∗η

q2
0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E+
k E−

k−q

θ (kF+ − |�k|)δ(q0 − E+
k + E−

k−q)

−πg2
NN∗η

q2
0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E−
k E+

k−q

θ (kF− − |�k|)δ(q0 − E−
k + E+

k−q)
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+πg2
NN∗η

q2
0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E+
k−qE

−
k

θ (kF− − |�k|)δ(q0 − E+
k−q + E−

k )

+πg2
NN∗η

q2
0 − |�q|2 − (m+ + m−)2

2

∫
d3k

(2π )3

1

E−
k−qE

+
k

θ (kF+ − |�k|)δ(q0 − E−
k−q + E+

k ). (A14)

Thanks to a charge-conjugation invariance with respect to the pion (η meson), I have the following relations:

Re�̃R
π(η)(q0,�q) = Re[i�̃π(η)(q0,�q)], (A15)

Im�̃R
π(η)(q0,�q) = ε(q0)Im[i�̃π(η)(q0,�q)]. (A16)

By using these relations, I can get �̃π(η)(q0,�q).
Note that in a limit of q → 0, Re�̃R

π (q0,�q) in Eq. (A3) vanishes together with the gap equation in Eq. (25) in the chiral limit
mπ → 0. Namely, when I take infinite sums of self-energies in Fig. 3, the pion becomes a massless particle, which is consistent
with the behavior of a Nambu-Goldstone (NG) boson.
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