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Possible η′d bound state and its s-channel formation in the γ d → ηd reaction
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We theoretically investigate a possibility of an η′d bound state and its formation in the γ d → ηd reaction. First,
in the fixed center approximation to the Faddeev equations, we obtain an η′d bound state with a binding energy
of 25 MeV and width of 19 MeV, where we take the η′N interaction with a coupling to the ηN channel from the
linear σ model. Then, in order to investigate the feasibility from an experimental point of view, we calculate the
cross section of the γ d → ηd reaction at the photon energy in the laboratory frame around 1.2 GeV. As a result,
we find a clear peak structure with the strength ∼0.2 nb/sr, corresponding to a signal of the η′d bound state in
case of backward η emission. This structure will be prominent because a background contribution coming from
single-step η emission off a bound nucleon is highly suppressed. In addition, the signal can be seen even in case
of forward η emission as a bump or dip, depending on the relative phase between the bound-state formation and
the single-step background.

DOI: 10.1103/PhysRevC.97.045202

I. INTRODUCTION

The properties of hadrons are of great interest for under-
standing the nonperturbative behavior of the fundamental the-
ory of strong interactions, quantum chromodynamics (QCD).
Dynamical quark-mass generation is a subject to be studied,
where chiral symmetry plays a key role. An order parameter
of the spontaneous breakdown of chiral symmetry in the QCD
vacuum is the chiral condensate. The masses of the light vector
mesons (ρ, ω, and φ) are considered to be mostly induced
by this order parameter. In this regard, mass modifications of
the vector mesons at finite density and/or finite temperature
have been studied both theoretically and experimentally [1].
No clear evidence for them has been observed so far. Another
candidate to study the relationship between the mass and
chiral condensate is the η′(958) meson. It has an exceptionally
large mass, although it would be a Nambu-Goldstone boson
originating from the UL(3) × UR(3) chiral symmetry breaking
[2]. Its mass generation is considered to be a result of the
quantum anomaly in QCD which breaks UA(1) symmetry
[3–5]. In addition, it was also pointed out that the chiral
condensate plays an essential role for the anomaly to affect
the η′ mass [6,7].

In this line, various studies on the in-medium properties
of the η′ meson are performed to understand QCD in the
nuclear medium theoretically [8–20] and experimentally [21–
24]. In particular, from the theoretical side, assuming the
mass difference betweenη′ and low-lying pseudoscalar mesons
comes from the chiral condensate in connection with the UA(1)
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anomaly, we expect that the η′ mass will be reduced by an
order of 100 MeV at normal nuclear density, because partial
restoration of chiral symmetry in a nuclear medium, which was
suggested by pionic atoms as a reduction of the chiral order
parameter [25], induces suppression of the UA(1) anomaly
effect to the η′ mass [8]. A chiral effective model calculation by
the linear σ model implies a η′ mass reduction of ∼80 MeV at
normal nuclear density [20]. A more sophisticated calculation
based on the Nambu–Jona-Lasinio model, in which the UA(1)
effect is introduced by the Kobayashi–Maskawa–’t Hooft
term, predicts a large reduction of approximately 150 MeV
at normal nuclear density [14]. Such a large reduction of the
η′ mass allows formation of η′-nucleus bound states (η′-mesic
nuclei). From the experimental side, the results obtained by the
CBELSA/TAPS Collaboration imply an attractive and weakly
absorptive potential [1,21–23]: The real part of the η′-nucleus
potential at normal nuclear density was found to be −37 ±
10(stat) ± 10(syst) MeV in the η′ photoproduction from 12C
[22] and −41 ± 10(stat) ± 15(syst) MeV from 93Nb [23],
while its imaginary part was found to be −(10 ± 2.5) MeV
[21]. At GSI, Darmstadt, Germany, the excitation spectrum
for the 12C(p,d) reaction was measured to search for η′-mesic
nuclei [24]. The result of the GSI experiment seems to exclude
strongly attractive η′-nucleus potential with a mass reduction
of �150 MeV at normal nuclear density, but is still consistent
with the η′ mass reduction of �80 MeV. To pin down the
properties of the η′ meson in nuclei more rigorously, we need
various experimental information onη′-nucleon andη′-nucleus
systems, such as the η′N scattering length in free space [26].

We here emphasize that the η′ mass reduction in a nuclear
medium is induced by an attractive η′N interaction. In this
sense, the η′N interaction plays a key role to investigate
properties of the η′ meson. Because experimental information
on the η′N interaction is not sufficient, we employ symmetry
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properties of hadrons to deduce the η′N interaction. The η′N
interaction was studied in, e.g., the chiral effective model
[20,27–30]. In terms of the linear σ model, the scalar meson
exchange provides an attractive interaction between η′ and
nucleon which is strong enough to bind the η′N system
[20]. Experimentally, the existence of an η′N bound state is
implied by near-threshold behavior of the total cross section
of the π−p → η′n reaction [31]. It has been also pointed out
that η′n bound state, if exists, can be observed in incoherent
photoproduction off a deuteron target γ d → ηnp [32].

In this study, we extend the consideration on the η′N system
to the η′d system. We take the η′N interaction from the linear σ
model [20] and solve the Faddeev equation for the η′d system
in a certain approximation. We will see that the η′d system
is bound thanks to a strongly attractive η′N interaction in
our model. We further discuss whether this η′d bound state
can be observed in experiments or not. For this purpose, we
choose the γ d → ηd reaction, in which the η′d bound state
can be formed in the s-channel process and decays into ηd.
The biggest advantage of this reaction is that we can easily
perform the center-of-mass energy scan to search for the η′d
bound state by varying the photon energy. Because the η′d
threshold is 2.833 GeV, the photon energy appropriate for the
bound-state search is around 1.20 GeV in the laboratory frame.
In addition, it is worth mentioning that the final-state ηd can
specify an isospin 0 state in its s channel. In the following, we
will formulate the γ d → ηd reaction mechanism and calculate
its cross section to estimate the production cross section of the
η′d bound state.

This paper is organized as follows. In Sec. II, we show
that the η′N interaction from the linear σ model leads to
an η′d bound state. Next, in Sec. III, we evaluate the cross
section of the γ d → ηd reaction, in which an η′d bound state
may be generated by using phenomenological γN → η(′)N
amplitudes and the η′N interaction constructed in the linear
σ model. Section IV is devoted to the summary of this paper.
Throughout this study, we assume isospin symmetry for hadron
masses as well as strong interactions.

II. POSSIBLE η′d BOUND STATE

A. η′ N system

First of all, we consider the η′N interaction. We focus on
the s-wave η′N system and take into account a coupling to
the ηN channel because it is the closest open channel coupled
in the s wave. We employ the η′N interaction in the linear σ
model with the unitarization according to Ref. [20]. Dynamics
in the η′p and η′n systems is the same, because we assume
isospin symmetry. We assign a channel index of 1 (2) to the η′N
(ηN ) channel. In the linear σ model, the η′N interaction can be
described by the exchange of the singlet and octet σ mesons. In
momentum space, the interaction Vjk with the channel indices
j and k can be written as [20]

V11 = − 6gB√
3m2

σ0

, V12 = V21 = + 6gB√
6m2

σ8

, V22 = 0, (1)

where the constants g, B, mσ0 , and mσ8 determine the strength
of the interaction; g is the σNN coupling constant, B is the

= +

FIG. 1. Diagrammatic equation for the η(′)N → η(′)N scattering
amplitude. The solid and dashed lines represent the nucleon and
η(′), respectively. The shaded squares and dots are the full scattering
amplitude and tree-level interaction, respectively.

contribution from the UA(1) anomaly, and mσ0 and mσ8 are the
masses of the singlet and octet σ mesons.

It should be noted that the interaction in Eq. (1) is the
leading-order term of the momentum expansion in the flavor
SU(3) symmetric limit. When we switch on the flavor sym-
metry breaking by the strange quark that is heavier than the
up and down quarks, the η-η′ mixing angle is −6.2 deg in the
linear σ model [20]. Even in this case of the linear σ model,
the modification of the η′N interaction by the η-η′ mixing is
small [20], owing to the dominance of the singlet η in the
physical η′ state. Furthermore, the strength of the η′N → η′N
part, which is crucial in the following discussions, shifts only
several percent for the η-η′ mixing angle between 0 and −20
deg, which is adopted in Ref. [19].

Then the η′N scattering amplitude Tjk(w), as a function of
the energy of the η′N system w, is a solution of the Lippmann-
Schwinger equation diagrammatically expressed in Fig. 1. This
equation can be written in the present formulation as

Tjk(w) = Vjk +
2∑

l=1

VjlGl(w)Tlk(w) (2)

with the η(′)N loop function Gj . Because the interaction Vjk

is independent of the external momentum as in Eq. (1), the
scattering equation (2) becomes algebraic. For the η(′)N loop
function, we employ a covariant expression as

Gj (w) ≡ i

∫
d4q

(2π )4

2mN[
(p − q)2 − m2

N + i0
](

q2 − m2
j + i0

)
(3)

with pμ = (w, 0), the nucleon mass mN , and m1 = mη′ and
m2 = mη being the η′ and η masses, respectively. The loop
function is calculated with the dimensional regularization as

Gj (w)

= 2mN

16π2

[
aj (μreg) + ln

(
m2

N

μ2
reg

)

+ w2 + m2
j − m2

N

2w2
ln

(
m2

j

m2
N

)

− λ1/2
(
w2,m2

N,m2
j

)
w2

arctanh

(
λ1/2

(
w2,m2

N,m2
j

)
m2

N + m2
j − w2

)]

(4)

with the regularization scale μreg, the subtraction constant
aj , and λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx. In this
study, the subtraction constant is fixed by the natural renor-
malization scheme developed in Ref. [33] so as to exclude
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the Castillejo-Dalitz-Dyson pole contribution from the loop
function. This can be achieved by requiring Gj (w = mN ) = 0
for every channel j , which results in a1(μreg = mN ) = −1.84
and a2(μreg = mN ) = −1.24 in the present construction.

Now we fix the model parameters as in Ref. [20], i.e., g =
7.67, B = 0.984 GeV, mσ0 = 0.7 GeV, and mσ8 = 1.23 GeV,
with which we obtain an η′N bound state. The pole position of
the η′N bound state is 1889 − 6i MeV, which corresponds to
the binding energy of 8 MeV measured from the η′N threshold
and decay width of 12 MeV. The existence of an η′N bound
state is implied by near-threshold behavior of the total cross
section of the π−p → η′n reaction [31], although no bump
corresponding to the η′n bound state has been observed in the
γ d → pX reaction by the LEPS Collaboration at the super
photon ring 8 GeV (SPring-8) facility in Japan [34]. In the
η′N scattering, the contribution from the ηN channel is found
to be small while the elastic η′N interaction is dominant. This
is because the transition of the η′N channel to the ηN channel
is suppressed by the larger mass of the octet scalar meson.

B. η′d system

Next, using the η′N interaction constructed in the previous
subsection, we formulate the η′d scattering amplitude. We
treat the η′pn three-body system, where we consider the pn
subsystem as a deuteron and solve the Faddeev equation in
the so-called fixed center approximation (FCA) [35,36]. We
incorporate two channels for the three-body system: (1) η′pn
and (2) pnη′. We distinguish either η′ appears in the left or
right, according to the formulation in Ref. [36]. For instance,
if the initial state is η′pn (pnη′), the multiple scattering starts
with the η′p (η′n) scattering in the system. Similarly, if the
final state is η′pn (pnη′), the multiple scattering ends with
the η′p (η′n) scattering in the system. Besides, we can fix the
ordering of the nucleons, pn, without loss of generality. In the
three-body problem, the η meson does not appear explicitly but
is intrinsically treated in the two-body η′N → η′N amplitude.

In order to grasp the construction, we first consider the
η′pn → η′pn, i.e., channel 1 → 1 scattering amplitude T FCA

11 .
This is schematically expressed in Fig. 2 as a diagrammatic
equation and can be written as

T FCA
11 (W ) = t1(W ) + t1(W )GFCA

η′ (W )T FCA
21 (W ) (5)

FIG. 2. Diagrammatic equation for the multiple η′ scattering
amplitude of the process η′pn → η′pn. The small shaded boxes
represent the η′N → η′N scattering amplitude, and the large open
boxes indicate its multiple scattering amplitude.

with the total three-body energy W and the three-body Green’s
function GFCA

η′ of the η′ propagation. The two-body η′N →
η′N scattering amplitude t1 is developed in the previous
subsection

t1(W ) = T11[wFCA(W )] (6)

with the η′N two-body center-of-mass energy wFCA. We
evaluate the two-body energy wFCA as a function of the three-
body energy W [35,36] by treating two nucleons as one particle
of mass 2mN :

wFCA(W ) =
√

W 2 + m2
η′ − 2m2

N

2
. (7)

The three-body Green’s function GFCA
η′ is defined as

GFCA
η′ (W ) =

∫
d3p

(2π )3

FNN (p)

p0
η′(W )2 − p2 − m2

η′ + i0
(8)

with the η′ energy p0
η′

p0
η′ (W ) = W 2 + m2

η′ − (2mN )2

2W
, (9)

and the deuteron form factor FNN (p)

FNN (p) =
∫

d3rei p·r |ϕ(r)|2. (10)

Here ϕ(r) is the deuteron wave function in coordinate space,
and the form factor can be rewritten as

FNN (p) =
∫

d3q

(2π )3
ϕ̃(q)ϕ̃(|q − p|) (11)

with the deuteron wave function in momentum space ϕ̃(q). For
the deuteron wave function, we neglect the d-wave component
and use a parametrization of the s-wave component given in
an analytic function [37] as

ϕ̃(q) =
11∑

j=1

Cj

q2 + m2
j

(12)

with Cj and mj determined with the charge-dependent Bonn
potential [38]. This wave function is normalized so as to satisfy
FNN (p = 0) = 1.

The scattering equation (5) can be straightforwardly ex-
tended to the two-channel case, and we obtain

T FCA
ab (W ) =V FCA

ab (W )

+
2∑

c=1

Ṽ FCA
ac (W )GFCA

c (W )T FCA
cb (W ). (13)

Here a, b, and c (=1, 2) are three-body channel indices and
V FCA

ab and Ṽ FCA
ab contain the η′N → η′N scattering amplitude

as follows:

V FCA
ab =

(
t1 0
0 t1

)
, Ṽ FCA

ab =
(

0 t1
t1 0

)
. (14)

The three-body loop function GFCA
a is

GFCA
1 = GFCA

2 = GFCA
η′ . (15)
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FIG. 3. Absolute value of the scattering amplitude T FCA
11 + T FCA

12

as a function of the total three-body energy W . The vertical dotted
line indicates the η′NN threshold.

With this formulation, we can calculate the η′d scattering
amplitude as a function of the total three-body energy W .

As we will see later, the multiple scattering amplitude prac-
tically appears as the sum of the η′pn and pnη′ contributions,
such as T FCA

11 + T FCA
12 , in full reaction amplitudes. The absolute

value of this scattering amplitude T FCA
11 + T FCA

12 is shown in
Fig. 3 as a function of the total three-body energy W . As one
can see, the amplitude has a peak structure corresponding to the
η′d bound state. In the amplitude, we find the pole of the η′d
bound state at 2809 − 10i MeV in the complex energy plane,
which corresponds to the binding energy 25 MeV measured
from the η′d threshold and width 19 MeV. The binding energy
increases more than twice compared to the η′N bound state
because the number of the potential terms increases more than
that of the kinetic energy, as in usual many-body systems.

III. s-CHANNEL FORMATION OF THE η′d BOUND
STATE IN THE γ d → ηd REACTION

Because the η′d system is bound with the η′N interaction
deduced from the linear σ model, it may be experimentally
generated in certain reactions. In this section, we consider the
γ d → ηd reaction and examine a possibility of observing its
signal. We first formulate the γ d → ηd scattering amplitude
in Sec. III A, and show the numerical results in Sec. III B.

A. Formulation

In order to calculate the scattering amplitude of the γ d →
ηd reaction, we introduce six diagrams relevant to the forma-
tion of the η′d bound state as shown in Fig. 4:

Tγd→ηd =Tp1 + Tp2 + Tp3 + Tn1 + Tn2 + Tn3. (16)

On the one hand, Tp1 and Tn1 are the single-step scatterings
for the reaction, which becomes a background in view of the
signal of the η′d bound-state formation. On the other hand,
the remaining four terms contain the multiple η′ scattering
on both p and n which generates the η′d bound state. We
here neglect diagrams in which the η meson is produced in

the intermediate state, because around the η′d threshold the
η meson in the intermediate state should go highly off-shell
and should be kinematically suppressed. This resembles the
case of photoproduction of the η′n bound state in the γ d →
ηnp reaction, as discussed in Ref. [32]. The reaction diagrams
in Fig. 4 contain the γN → ηN and γN → η′N scattering
amplitudes and the transition amplitude of the η′d bound state
to the final-state ηd system.

Below, we formulate the γN → ηN and γN → η′N scat-
tering amplitudes based on the experimental data. We then
construct the γ d → ηd scattering amplitude (16) from the
amplitudes of γN → η(′)N , multiple η′ scattering on pn, and
transition to ηd. In the present formulation of the γ d →
ηd amplitude, we will fix the photoinduced γN → η(′)N
amplitudes so as to reproduce the existing experimental data
of η(′) photoproduction. Therefore, when we modify the η′N
interaction, they affect only the amplitudes of the multiple η′
scattering on pn and of η′N → ηN entering in the η′d → ηd
transition in our model.

1. γ N → ηN and γ N → η′ N scattering amplitudes

Let us consider the γp → ηp and γ n → ηn scattering am-
plitudes. For these reactions, there exist various experimental
data of the differential cross sections as a function of the photon
energy in the laboratory frame Elab

γ and the η scattering angle
in the center-of-mass frame θη, around the photon energy of
interest, Elab

γ ≈ 1.2 GeV: for instance, the free proton target
case [39–44] and the deuteron target case [45–48]. Several
theoretical analyses of these data are available as well, e.g., in
Refs. [49–52].

For the γp → ηp reaction, we take the theoretical values
of the differential cross section summarized by the Bonn-
Gatchina partial wave analysis (BG2014-02) [53]. We simply
translate these values into the scattering amplitudes as func-
tions of Elab

γ and θη through the formula

Tγp→ηp

(
Elab

γ , cos θη

) =
√

16π2qc.m.w2

m2
Nq ′

c.m.

dσγp→ηp

d�
, (17)

for the γp → ηp reaction. Here w is the center-of-mass energy
and qc.m. and q ′

c.m. are the relative momenta of the initial- and
final-state particles in the center-of-mass frame, respectively.
For the later convenience, we show the explicit form of w,
qc.m., and q ′

c.m. as functions of Elab
γ :

w
(
Elab

γ

) =
√

m2
N + 2mNElab

γ , (18)

qc.m.

(
Elab

γ

) = w
(
Elab

γ

)2 − m2
N

2w
(
Elab

γ

) , (19)

and

q ′
c.m.

(
Elab

γ

) = λ1/2
[
w

(
Elab

γ

)2
,m2

η,m
2
N

]
2w

(
Elab

γ

) . (20)

As for the γ n → ηn amplitude Tγn→ηn, one could evaluate
it in a similar manner, but here we recall a general relation for
η photoproduction:

Tγp→ηp ∝ AIS + AIV, Tγn→ηn ∝ AIS − AIV, (21)
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FIG. 4. Diagrams for the γ d → ηd reaction. The shaded circles represent the γN → η(′)N amplitude. The small shaded boxes indicate the
η′N → ηN amplitude. The large open boxes represent the multiple scattering amplitude for the η′pn system.

where AIS denotes the isoscalar amplitude and AIV denotes the
isovector one. In coherent η photoproduction off the deuteron,
only the sum Tγp→ηp + Tγn→ηn ∝ 2AIS contributes to the full
amplitude. Therefore, we may write the sum of the amplitude
as

Tγp→ηp

(
Elab

γ , cos θη

) + Tγn→ηn

(
Elab

γ , cos θη

)
= 2|AIS|

|AIS + AIV|

√
16π2qc.m.w2

m2
Nq ′

c.m.

dσγp→ηp

d�
. (22)

Empirically, the coefficient |AIS|/|AIS + AIV| is estimated as
0.22–0.25 [54] with Elab

γ = 580–820 MeV from a comparison
with theoretical calculations [55–57]. In this study, we employ
|AIS|/|AIS + AIV| = 0.22.

We note that we neglect the phase for this amplitude so
that the amplitude is real. This phase is important when we
discuss the interference between the contributions from the
background and the signal. We will come back to this point
when we discuss the numerical results in Sec. III B. For the
moment, we only mention that this treatment is satisfactory to
estimate how much the η meson is created in the single-step
amplitudes, p1 and n1, as the background.

Next, for the scattering amplitudes of the γp → η′p and
γ n → η′n reactions, we focus only on their s-wave component
because we consider the physics near the η′N threshold. For
the γp → η′p reaction, we have several data of the cross
section [41–43] and theoretical calculations [49,58–60]. Here
we take the same approach taken in Ref. [32] to determine
the γp → η′p amplitude. Namely, we calculate the scattering
amplitude Tγp→η′p as a function of Elab

γ with the formula

Tγp→η′p
(
Elab

γ

) = Vγ 1 +
2∑

j=1

VγjGj (w)Tj η′p(w), (23)

with the channel index i [= 1 (2) for η′p (ηp)] and the center-
of-mass energy w fixed as a function of Elab

γ as in Eq. (18).
The constants Vγ 1 and Vγ 2 are model parameters and are fixed
as

Vγ 1 = 0.348 GeV−1, Vγ 2 = 0.354 GeV−1, (24)

according to Ref. [32]. These values reproduce the experimen-
tal cross sections with forward proton emission above the η′p

threshold [41,42]. As for the γ n → η′n cross section, on the
other hand, there are only few data [61]. Nevertheless, as seen
in Ref. [61], the value of the γ n → η′n cross section near the
threshold is similar to that of γp → η′p. Therefore, we assume
that the γ n → η′n amplitude is the same as the γp → η′p
one:

Tγn→η′n
(
Elab

γ

) = Tγp→η′p
(
Elab

γ

)
. (25)

2. γ d → ηd scattering amplitude

Now our task is to fix the scattering amplitude of the γ d →
ηd reaction, which can be constructed from the amplitudes for
η(′) photoproduction, multiple η′ scatterings, and transition to
ηd, according to the diagrams in Fig. 4.

The amplitudes of the single-step scattering, Tp1 and Tn1,
consist of the γN → ηN amplitude, deuteron wave functions
in the initial and final states, and the loop by the nucleon lines.
Therefore, by calculating the relative momenta for the nucleons
and integrating them, we can evaluate the amplitude Tp1

as

Tp1 = Tγp→ηp

(
Elab

γ , cos η

) ∫
d3q

(2π )3
ϕ̃(q)ϕ̃

(∣∣q − plab
d /2

∣∣)
= Tγp→ηp

(
Elab

γ , cos η

)
FNN

(
plab

d /2
)
, (26)

with the final-state deuteron momentum in the laboratory frame
plab

d . The integral part was replaced with the deuteron form
factor FNN in Eq. (11). We note that the γp → ηp scattering
amplitude can be placed out of the integral by fixing its
arguments with external momenta. Namely, we can use the
same Elab

γ as in the free proton target case. The η scattering
angle η can be evaluated from the Mandelstam variable
t = (pμ

γ − pμ
η )2, where pμ

γ and pμ
η are the four-momenta of

the initial photon and the final η, respectively, as

cos η =
(
pμ

γ − pμ
η

)2 − m2
η + 2qc.m.

√
(q ′

c.m.)
2 + m2

η

2qc.m.q ′
c.m.

. (27)

The momentaqc.m. andq ′
c.m. should be calculated with Eqs. (19)

and (20), respectively. In some conditions, the right-hand side
may become more than 1 or less than −1 because the bound
proton is not on its mass shell but is off-shell due to the Fermi
motion. In such a case, we take cos η = 1 or −1, respectively.
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In the same manner, we can evaluate the Tn1 amplitude, and
as a consequence we have

Tp1 + Tn1 = [
Tγp→ηp

(
Elab

γ , cos η

)
+ Tγn→ηn

(
Elab

γ , cos η

)]
FNN

(
plab

d /2
)
, (28)

where the sum of the amplitudes Tγp→ηp + Tγn→ηn can be
evaluated by Eq. (22).

Next, we fix the double scattering amplitude Tp2. As
in Fig. 4 (p2), we construct this with the deuteron wave
functions at appropriate places, γp → η′p amplitude for the
first collision, pnη′ → pnη′ amplitude, η′p → ηp amplitude,
and two Green’s functions of the η′ propagation: after the first
collision and before the last collision.

Among them, the two Green’s functions can be evaluated
by using the diagrams in Fig. 5. For the Green’s function after
the first collision [Fig. 5(a)], the photon momentum should be
shared by η′ and two nucleons. Assigning the momenta plab

γ /3
and 2plab

γ /3, where plab
γ = Elab

γ , for the η′ and deuteron in the
multiple η′ scattering in the laboratory frame, respectively, we
can evaluate this Green’s function for the η′ propagation as

Gfirst
η′ =

∫
d3q

(2π )3

∫
d3p

(2π )3

ϕ̃(q)ϕ̃
(∣∣q − p + 2 plab

γ /3
∣∣)

p0
η′ (W )2 − p2 − m2

η′ + i0

=
∫

d3p

(2π )3

FNN

(∣∣ p − 2 plab
γ /3

∣∣)
p0

η′(W )2 − p2 − m2
η′ + i0

. (29)

The energy of the mediated meson p0
η′ (W ) was defined in

Eq. (9). For the Green’s function before the last collision
[Fig. 5(b)], we need to bind two nucleons, one of which has
a high momentum ≈pc.m.

η coming from the mass difference
between η′ and η, to make the final-state deuteron. Therefore,
the Green’s function before the last collision is

Glast
η′ =

∫
d3q ′

(2π )3

∫
d3p′

(2π )3

ϕ̃(q ′)ϕ̃
(∣∣q ′ + p′ − pc.m.

η /2
∣∣)

p0
η′ (W )2 − p′ 2 − m2

η′ + i0

=
∫

d3p′

(2π )3

F
(∣∣ p′ − pc.m.

η /2
∣∣)

p0
η′(W )2 − p′ 2 − m2

η′ + i0
. (30)

FIG. 5. Feynman diagrams for the Green’s function of the η′

propagation (a) after the first collision and (b) before the last collision.
The solid, dashed, and wavy lines represent the nucleons, η(′) meson,
and photon, respectively. The open circles and boxes are not included
in the evaluation of the Green’s function. Three-momenta carried by
the particles are shown (a) in the laboratory frame and (b) in the total
center-of-mass frame.

We note that, owing to the integrals, both the Green’s functions
Gfirst

η′ and Glast
η′ do not depend on the directions of plab

γ and pc.m.
η ,

respectively, and they are functions only of the center-of-mass
energy W .

Now we can formulate the scattering amplitude Tp2 as

Tp2 =Tγp→η′p
(
Elab

γ

)
Gfirst

η′ T FCA
22 (W )Glast

η′ T21[wFCA(W )], (31)

where T21 is the η′N → ηN scattering amplitude in Sec. II A
with its argument wFCA in Eq. (7).

In a similar manner, we can evaluate the other amplitudes
for the γ d → ηd reaction:

Tp3 =Tγp→η′p
(
Elab

γ

)
Gfirst

η′ T FCA
21 (W )Glast

η′ T21[wFCA(W )], (32)

Tn2 =Tγn→η′n
(
Elab

γ

)
Gfirst

η′ T FCA
12 (W )Glast

η′ T21[wFCA(W )], (33)

and

Tn3 =Tγn→η′n
(
Elab

γ

)
Gfirst

η′ T FCA
11 (W )Glast

η′ T21[wFCA(W )]. (34)

Here we note that, because the scatterings of p2, p3, n2, and
n3 take place in s wave, the scattering amplitudes Tp2,p3,n2,n3

do not depend on the scattering angle but only on Elab
γ . In the

full amplitudes, the multiple scattering amplitude appears as
the sum of the η′pn and pnη′ contributions, i.e., Tp2 + Tp3 ∝
T FCA

21 + T FCA
22 and Tn2 + Tn3 ∝ T FCA

11 + T FCA
12 .

B. Numerical results

With the scattering amplitudes constructed in the previous
subsection, we can calculate the cross section of the γ d →
ηd reaction. In the present study, the spin components for
the photon and baryons are irrelevant, so we can write the
differential cross section omitting the average and summation
of the polarizations as

dσγd→ηd

d�
= m2

d p′
c.m.

16π2pc.m.W 2
|Tγ d→ηd |2, (35)

where pc.m. and p′
c.m. = pc.m.

η denote the momenta of the
photon and η in the center-of-mass frame, respectively, and
md is the deuteron mass.

Before showing the numerical results in the energy region
of the η′d bound-state signal, we demonstrate that the coeffi-
cient for the coherent process |AIS|/|AIS + AIV| = 0.22 [see
Eq. (22)] can reproduce the γ d → ηd cross section at slightly
above the η production threshold, e.g., Elab

γ = 680 MeV. For
this calculation, the γp → ηp amplitude is assumed to be
constant independent of both the photon energy and scattering
angle and is fitted to reproduce the cross section summarized by
Bonn-Gatchina in the close-to-threshold region of η production
off the free proton, Elab

γ ≈ 708 MeV. Other terms in the
calculation of the γ d → ηd amplitude are unchanged.

The numerical result is shown in Fig. 6 with the photon
energy Elab

γ = 680 MeV. As one can see from the comparison
with the experimental data at Elab

γ = 669–688 MeV, the cross
section and its angular dependence are quantitatively repro-
duced. This means that the present formulation is appropriate
with the coefficient |AIS|/|AIS + AIV| = 0.22 and we do not
need further normalization factors. In the following, we use the
same value even in the energy region of the η′d bound state.
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FIG. 6. Differential cross section dσ/d� for the γ d → ηd reac-
tion with the photon energy Elab

γ = 669–688 MeV as a function of η

emission angle in the center-of-mass frame. The theoretical result is
obtained at Elab

γ = 680 MeV. The experimental data are taken from
Ref. [54] (TAPS) and from Ref. [62] (PHOENICS).

Now we show the numerical results of the differential cross
section for the γ d → ηd reaction with the photon energies
which may generate an η′d bound state in Fig. 7. The scattering
angles are chosen to be cos θ c.m.

η = −1, −0.5, 0, +0.5, and
+1. We also plot contributions from the impulse η production
(Tp1 + Tn1) and the multiple η′ scattering (Tp2 + Tp3 + Tn2 +
Tn3).

Let us consider backward η production with cos θ c.m.
η =

−1. As one can see from the lowest panel of Fig. 7, the
differential cross section is dominated by the multiple η′
scattering contribution and the η′d bound-state signal is clear
as a bump structure with its strength ∼0.2 nb/sr. In backward
η production, single-step η emission off a bound nucleon
is highly suppressed because of a momentum mismatching
between two nucleons in forming a deuteron. In this sense,
backward η production is of interest in searching for the
signal of the η′d bound state. A similar tendency holds in
the scattering angle cos θ c.m.

η � 0, where the cross section is
dominated by the multiple η′ scattering shown in dashed lines.

Next, as the η is emitted at more forward angles, the single-
step background contribution becomes much more significant.
At cos θ c.m.

η = +0.5 the single-step contribution is comparable
to the bound-state signal, and at cos θ c.m.

η = +1 the single-step
contribution is dominant. However, even at cos θ c.m.

η = +0.5
and +1, we can observe a bump structure coming from the
η′d bound state. At cos θ c.m.

η = +0.5 the peak strength is
approximately 0.5 nb/sr, and at cos θ c.m.

η = +1 it is about
5 nb/sr.

Here we should discuss two ambiguities in our amplitude.
First, in the formulation of the γp → ηp and γ n → ηn
amplitudes, we suppressed the spin component as in Eq. (22).
However, we used these amplitudes only to estimate the back-
ground contribution and to compare it with the signal strength
of the η′d bound state. This background contribution was found
to be negligible in backward η production. Therefore, we will

FIG. 7. Differential cross section dσγd→ηd/d� for the γ d → ηd

reaction with scattering angles cos θ c.m.
η = −1, −0.5, 0, +0.5, and

+1. The solid lines denote the values for the full calculation, while
the dotted and dashed lines are contributions from the impulse η

production and the multiple η′ scattering, respectively.

obtain the bound-state peak in backward η production even if
we take into account the spin component rigorously.

Second, as mentioned below Eq. (22), we fixed the γp →
ηp amplitude as real quantities and did not introduce any
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FIG. 8. Differential cross section dσ/d� for the γ d → ηd re-
action with several values of the parameter g in the η′N → η′N
interaction (1). The scattering angle is fixed as cos θ c.m.

η = −1.

explicit relative phase between the single-step amplitude and
multiple η′ amplitude. An important point is that the relative
phase affects the structure for the bound state in forward η
production. The bump structure at cos θ c.m.

η = +0.5 and +1 in
Fig. 7 is determined by the constructive interference between
the bound-state formation and the single-step background
contribution. Such a pattern of the interference may change
owing to the phases of the underlying reactions. For instance,
if we introduce a relative phase eiπ = −1, a bump in forward
η production seen in Fig. 7 would become a dip structure due
to the destructive interference. Besides, the bound-state signal
in backward η production will be almost independent of the
relative phase between the single-step amplitude and multiple
η′ one, because the multiple η′ scattering dominates the cross
section and the interference is negligible. In this sense, we
may experimentally discuss the relative phase as well as the
strength of the bound-state signal by investigating the angular
dependence of the cross section.

Before closing this section, we briefly discuss how the
signal of the η′d bound state in the γ d → ηd reaction changes
in case of slightly smaller or larger binding energies of the

η′d system. For this purpose, we vary the strength of the
η′N interaction via the parameter g in Eq (1), which is the
coupling constant for the σNN vertex. We plot in Fig. 8 the
differential cross section at the scattering angle cos θ c.m.

η = −1
with parameters g = 6.0, 7.0, 8.0, and 9.0, which generate
the η′d bound state with its poles at 2832 − 2i, 2821 − 6i,
2801 − 11i, and 2775 − 17i MeV, respectively. As one can
see, when the coupling constant g is smaller, i.e., the η′N
interaction is weaker, the strength of the η′d bound-state signal
decreases as well. On the other hand, a larger coupling constant
g brings a similar strength of the bound-state signal ∼0.2 nb/sr
compared to that in the case of the original parameter.

IV. SUMMARY

We theoretically investigated a possibility of binding an
η′d system by an attractive strong interaction between η′ and
nucleons. Thanks to the attractive nature of the η′N interaction
from the linear σ model, which is an effective model respecting
chiral symmetry of QCD, the η′d system can be bound in this
model. With the fixed center approximation to the Faddeev
equation, its binding energy measured from the η′d threshold
and decay width are 25 and 19 MeV, respectively.

We then proposed the s-channel formation of the η′d
bound state in the γ d → ηd reaction at the center-of-mass
energy ≈2.8 GeV, corresponding to the photon energy Elab

γ ≈
1.2 GeV. A clear peak structure with the strength of ∼0.2 nb/sr
for the signal of the η′d bound state was observed in backward
η emission, thanks to large suppression of a background
coming from single-step η emission off a bound nucleon. In
addition, the bound-state signal may manifest itself even in
forward η emission as a bump or a dip, which depends on
the interference between the bound-state formation and the
single-step background.

This result motivates a new experimental program [63] us-
ing the tagged photon beam [64] and the FOREST detector [65]
at the Research Center for Electron Photon Science (ELPH),
Tohoku University, Japan.
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