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Evidence of an enhanced nuclear radius of the α-halo state via α + 12C inelastic scattering
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Evidence of the enhanced nuclear radius in the Hoyle rotational state, 2+
2 , is derived from the differential cross

sections in α + 12C inelastic scattering. The prominent shrinkage is observed in the differential cross section of
the 2+

2 state in comparison to the yrast 2+
1 state, and this shrinkage is the first evidence of the enhanced nuclear

radius which originates from the 3α structure in the 2+
2 state. A diffraction formula, that is, Blair’s phase rule, is

applied to the differential cross sections, and the present analysis predicts an enhancement of 0.6 to 1.0 fm in the
nuclear radius of the 2+

2 state in comparison to the radius of the yrast 2+
1 , which is considered to have a normal

nuclear radius. Constraint on the recent ab initio calculation for 3α states in 12C is also discussed.
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I. INTRODUCTION

Nuclei in nature are composed of almost the same number
of neutrons (N ) and protons (Z). In the ground state of a
nucleus, neutrons and protons are tightly bound and perform
independent particle motion in a self-consistent mean field.
The nuclear radius is proportional to A1/3, where A is the mass
number of the nucleus, due to the saturation property of the
nuclear density [1]. Thus, the nuclear radius smoothly varies
as a function of A. Recently, so-called neutron-excess nuclei
(N > Z) have been artificially synthesized, and enhancements
of the nuclear radius from the empirical formula ∝ A1/3 con-
firmed [2]. This enhanced radius is called the neutron halo (or
skin) phenomenon, in which extra neutrons largely penetrate
the classical turning point due to the quantum tunneling effect.
A typical example of a neutron halo can be seen in 11Li,
which has the three-body structure of a 9Li core plus two
neutrons. The nuclear radius of 11Li is enhanced by about 1
fm in comparison to the usual ∝ A1/3 rule [2].

On the contrary, cluster structures, in which a nucleus is
decomposed into several subunits, are realized in the low
excited states of light-mass nuclei [3]. In the cluster structure,
the subunits are weakly coupled to each other, and their nuclear
radius is prominently extended in comparison to the radius of
the ground state, which obeys the law of ∝A1/3. In particular,
this enhancement of the nuclear radius is extensive in the 3α
structure of the 12C nucleus [4,5]. The ground state of 12C has
a radius of 2.40 fm [4] with a spin parity of 0+ (0+

1 ), while
the excited 0+

2 state at Ex = 7.65 MeV, which is called the
Hoyle state, is considered to have a radius of 3.47 fm with a
well-developed 3α cluster structure [4]. The extension of the
radius in 0+

2 is predicted to be about 1 fm, which is comparable
to the extension of neutron halos. In this article, I propose a new
method to obtain a signature of the enhanced nuclear radius of
the 3α cluster state.

Unfortunately, direct measurement of the radius of Hoyle
0+

2 states with a developed 3α cluster structure is impos-
sible due to its short lifetime, but there have been several

attempts to obtain evidence of an enhanced nuclear radius
of 3α Hoyle states from inelastic scattering of 12C, which
excites the Hoyle 0+

2 state as a final state. In the inelastic
scattering of light ions by 12C, an oscillating pattern in the
differential cross section of the scattered ion is discussed in
connection to the enhanced radius of the final 0+

2 state with a 3α
structure [6–8].

In the proton scattering at Ep = 1040 MeV, the diffraction
radius was derived from the differential cross section for
the inelastic scattering of 12Cg.s. → 12C(0+

2 ) according to the
extended formula of Blair’s phase rule [7]. The application
of this formula to the cross section gives the enhanced
diffraction radius for this final channel in comparison to the
elastic 12C(0+

1 ) channel and the inelastic channel going to
12C(2+

1 ). On the other hand, in the α scattering at Eα = 240
MeV, the evolution of the Airy minimum was pointed out
in the final channel of 12C(0+

2 ) [8]. The number of Airy
minima in the 12C(0+

2 ) channel seems to be increased in
comparison to that in the other noncluster channels, such as
the 12C(0+

1 , 2+
1 , 3−

1 ) channels. These anomalous behaviors
identified in the differential cross sections are discussed in
connection to the enhanced nuclear radius of the Hoyle 0+

2
state [7,8].

However, subsequent analyses demonstrated that the oscil-
lation pattern in the cross section, such as a peak or valley
position in the angular distribution, is not very sensitive to
the nuclear radius of the final 0+

2 state [9,10]. In Ref. [9], the
sensitivity of the inelastic differential cross sections going to
the 0+

2 channel is checked by varying the nuclear radius of the
final 0+

2 state, and the peak and minimum positions are not
very sensitive to the variation of the final radius. According
to the analysis, the author concluded that the differential cross
section is mainly determined by the spatial size of the coupling
potential, which induces the transition 12C(0+

1 ) → 12C(0+
2 ).

Therefore, the relation of the extended radius in the 12C(0+
2 )

state, which is generated as the final channel in inelastic
scattering, and the oscillation pattern in the cross section for
the final 12C(0+

1 ) channel remains unclear.
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As demonstrated in Ref. [9], the sensitivity of the cross
section to the variation of the nuclear radius of the final 0+

2
state is not very strong but the inelastic scattering, which is
induced by the coupling potential, is expected to contain the
size information on the final 0+

2 state because the coupling
potential contains considerable size information on the final-
state wave function. However, I consider that extraction of
evidence of an enhanced size of the Hoyle 0+

2 state from
inelastic scattering is difficult. This is because there is no
appropriate “reference (inelastic) 0+ channel” to be compared
with the Hoyle 0+

2 channel. One might consider that the
enhancement factor of the 0+

2 state can be obtained from
comparison with the elastic 0+

1 channel but this comparison is
completely meaningless because the 0+

1 channel corresponds
to elastic scattering, which is a completely different process
from inelastic scattering, going to the 0+

2 channel. Furthermore,
comparison of the 0+

2 channels with the other noncluster
channels, such as the 2+

1 and 3−
1 channels, is inappropriate

because the latter noncluster channels have a finite spin,
which strongly affects the oscillation pattern in the differential
cross section.

In previous studies of inelastic scattering and the nuclear
radius of the 0+

2 state, the most crucial problem is difficulty
setting the reference channel, which should be appropriately
compared with 0+

2 . In a comparison of the 0+
2 channel with the

other noncluster channels, 0+
1 , 2+

1 , and 3−
1 , which is discussed

in the pioneering works [7,8], it is difficult to find the en-
hancement factor for a 0+

2 state with a large radius. Therefore,
one must introduce a new viewpoint into the discussion of
inelastic scattering as a tool to derive an enhanced nuclear
radius in 3α cluster states. In this article, I focus on the
2+

2 state, which corresponds to the 3α rotational state of the
Hoyle 0+

2 state [4,5] with a life of 10−21 s (width of � ≈ 1
MeV), and demonstrate that direct evidence of an enhanced
nuclear radius in the 2+

2 state clearly appears in α + 12C
inelastic scattering. In a modern theory, the Hoyle rotational
2+

2 state, which was recently identified in experiments [11],
is interpreted in terms of an α-halo state with a dilute 3α
structure [5].

In the present analysis, the differential cross section α +
12C(0+

1 ) → α + 12C(2+
2 ) is compared with the reference re-

action α + 12C(0+
1 ) → α + 12C(2+

1 ), in which the 2+
1 state

is a rotational state of the ground 0+
1 state with a spatially

compact structure. In the inelastic scattering to the 2+
1,2 states,

the kinematic conditions are almost the same but only the radii
are prominently different, say 2.4 fm for 2+

1 and 4.0 fm for 2+
2

[4]. Thus, the enhanced radius in the 2+
2 state can be clearly

discussed on the basis of the “reference channel,” that is, the
2+

1 channel. The comparison of these two inelastic scatterings
is expected to provide direct evidence of an extended nuclear
radius of the 2+

2 state, which involves the 3α cluster structure.
The organization of this article is as follows: In Sec. II,

the theoretical framework of microscopic coupled channels
(MCC) is explained. Application of the MCC calculation to
the α + 12C inelastic scattering at Eα = 386 MeV, which
has recently been observed, is shown in Sec. III. From the
theoretical calculation, direct evidence of the enhanced nuclear
radius in the 2+

2 state is demonstrated. The final section (IV) is
devoted to a summary and discussion.

II. FRAMEWORK

I calculate the differential cross sections of an α parti-
cle scattered by 12C in the formulation of the microscopic
coupled-channels calculation [8,12]. In the MCC calculation,
the nuclear potential of α and 12C is calculated from the double-
folding model, which is symbolically written as a function of
the α-12C relative coordinate of R,

Vf,i(R) =
∫∫

ρ
(12C)
f,i (r1)ρ(α)(r2)vNN(s)dr1dr2, (1)

with s = r2 − r1 − R. Here r1 (r2) denotes a coordinate
measured from the center of mass (c.m.) in the 12C (α) nucleus.
ρf,i(r) represents the diagonal (f = i) or transition (f �= i)
density of 12C, which is calculated by the microscopic 3α
cluster model, resonating group method [4], while ρ(α)(r)
denotes the density of the α particle, which reproduces the
charge form factor of the electron scattering. In Eq. (1), vNN

represents the effective nucleon-nucleon (NN) interaction,
which acts between a pair of nucleons contained in the 12C
nucleus and the α particle. In the present calculation, I adopt
the DDM3Y (density-dependent Michigan 3-range Yukawa)
interaction [13].

In addition to the folding potential, I introduce the absorp-
tive potential (−iW ) with the Saxon-Woods form factor in the
diagonal (f = i) transition in order to simulate other reaction
processes [8], and the parameter set of Saxon-Woods is tuned
so as to reproduce all of the observed differential cross sections
as much as possible. The three parameters in the absorptive
Saxon-Woods potential for the individual channels, that is, the
diffuseness a, the radius R, and the strength W , are listed in
the Appendix. The final expression of the coupling potential,
Uf,i , for the transition of i → f becomes

Uf,i(R) = NR · Vf,i(R) + VC(R) · δf,i − iW (R) · δf,i ,

(2)

where VC denotes the Coulomb potential, which is calculated
by assuming a uniformly charged sphere. In the present MCC
calculation, I neglect the Coulomb excitation because of the
lighter-mass system. In Eq. (2), the normalization factor NR is
introduced into the double-folding potential because the fold-
ing potential contains a theoretical ambiguity in its strength.
Here this factor is set to NR = 1.30, which is consistent with
the MCC calculation in Ref. [8].

As for the internal excitation of 12C, I include the discrete
states around the breakup threshold of 12C → 3α at Eth = 7.27
MeV in addition to the ground 0+

1 state: the rotational 2+
1

(Ex = 4.44 MeV), the vibrational 3−
1 (9.64 MeV), and the 3α

cluster states, that is, 0+
2 (7.65 MeV), 0+

3 (14.04 MeV), and
2+

2 (10.30 MeV).

III. RESULTS

I have solved the coupled-channels equation for the α + 12C
scattering at Eα = 386 MeV [11] with the nuclear interaction
in Eqs. (1) and (2). In Fig. 1, the calculated cross sections
(solid curves) are compared with the experimental data (filled
circles). The MCC calculation nicely reproduces the differen-
tial cross sections of the scattering to discrete bound or resonant
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FIG. 1. Comparison of the MCC calculation with the observed
differential cross section in α + 12C scattering at Eα = 386 MeV
[11]. Filled curves represent theoretical calculations; filled circles,
experimental data. From top to bottom, results represent the elastic,
2+

1 , 3−
1 , and 0+

2 channels, respectively.

states in 12C, that is, from top to bottom, the elastic 0+
1 , 2+

1 , 3−
1 ,

and 0+
2 channels. In particular, the 2+

1 channel, which is the
reference channel in discussing the enhanced nuclear radius of
the 2+

2 state, is nicely reproduced over the whole angular range.
In Fig. 2, the MCC calculation is compared with the

differential cross section of the final excited state at Ex ≈ 10
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FIG. 2. Comparison of the theoretical calculation with the ob-
served cross section of the excited state at Ex ≈ 10 MeV. Open circles
show experimental data, while the thick solid curve represents the total
cross section in theory, which is given by the incoherent summation
of the 0+

3 (dotted curve) and 2+
2 (thin solid curve) channels.
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FIG. 3. Theoretical differential cross sections of the final 2+
1

(dotted curve) and 2+
2 (solid curve) channels in α + 12C inelastic

scattering. The former and latter cross sections are same as the cross
sections shown in Figs. 1 and 2, respectively. The magnitudes of
both cross sections are normalized by the maximum value around
θc.m. ≈ 5◦.

MeV, which is considered to be an incoherent mixture of the
0+

3 and 2+
2 channels, which have well-developed 3α cluster

structures. The theoretical calculation (thick solid curve),
which is constructed by incoherent summation of the 0+

3
(dotted curve) and 2+

2 (thin solid curve) channels, nicely
reproduces the cross section of the excited state at Ex ≈ 10
MeV in experiment (open circles). In this calculation, I have
checked several parameter sets for the absorptive potential and
artificially varied the mixing weight of these two channels.
However, an incoherent mixture of these two contributions
with almost the same weight is essential to reproduce the
observed distribution, especially the structure of the smeared
valleys in the angular distribution around θc.m. ≈ 5◦ and 10◦.

A comparison of the 2+
1 cross section in Fig. 1 with the

2+
2 in Fig. 2 is presented in Fig. 3. The peak position of the

2+
2 cross section (solid curve) shifts to the forward angular

region, and its angular distribution shows shrinkage and a
rapid fall-down structure in comparison to the 2+

1 cross section
(dotted curve). The shift and shrinkage features are completely
consistent with the result of multipole decomposition analysis
of the experimental cross section, which is performed in the
range θc.m. < 15◦ [11].

The shrinkage in the 2+
2 cross section (solid curve in Fig. 3)

is the first evidence of an extended size of the final 2+
2 states,

which can be confirmed by a direct observable, the differential
cross section. Inelastic scattering to the 2+

1 and 2+
2 channels

is the same regarding the reaction kinematics except for the
excitation energy, and the size of the final state is different: a
spatially compact structure in 2+

1 with almost the same radius
as the ground 0+

1 state and a developed 3α structure in 2+
2

having an extended radius. Thus, I conclude that the shrinkage
in the 2+

2 cross section originates from the spatially extended
structure of the Hoyle rotational 2+

2 state if the difference in
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FIG. 4. Theoretical differential cross sections of the final channels
of 2+

2 with excitation energy Ex = 10.3 MeV (solid curve) and Ex =
4.44 MeV (dashed curve). The former cross section is the same as
the cross sections shown in Fig. 2 (thin solid curve) and Fig. 3 (solid
curve). The magnitudes of both cross sections are normalized by the
maximum value around θc.m. ≈ 5◦.

the excitation energies, that is, Ex = 4.44 MeV for 2+
1 and

Ex = 10.3 MeV for 2+
2 , can be safely neglected.

Not only the nuclear radius of the final state but also its
excitation energy generally affects the oscillation pattern in the
differential cross section. The relation of the excitation energy
and the differential cross section has been investigated in our
previous work on monopole excitation in p + 12C scattering
[14]. If the excitation energy is low, the angular range of the
differential cross section tends to shrink because a scattered
particle can carry a high kinetic energy, which enhances the
intensity of the forward scattering [14]. In order to examine
the effect of the excitation energy more deeply, I artificially
change the excitation energy of 2+

2 (10.3 MeV) to that of 2+
1

(4.44 MeV) by keeping the potential parameters unchanged,
and the MCC calculation is reperformed.

In Fig. 4, the differential cross section of the “virtual 2+
2

channel (Ex = 4.44 MeV)” is compared to that of the “realistic
2+

2 channel (Ex = 10.3 MeV).” In this calculation, the angular
distribution of the 2+

1 channel, which is shown in Figs. 1 and 3,
is almost unchanged. In Fig. 4, the angular distribution of the
virtual 2+

2 channel (dashed curve) is shrunk little in comparison
to the distribution of the realistic 2+

2 channel (solid curve). This
shrinkage in the virtual state with the lower excitation energy
is consistent with the result of monopole excitation [14]. The
result in Fig. 4 means that the 2+

2 cross section shrinks more if
the excitation energy of 2+

2 is exactly the same as that of 2+
1 .

Since the excitation energy of the 2+
2 state is higher than the

energy of the 2+
1 state in the realistic situation, the shrinkage

of the 2+
2 distribution shown in Fig. 3 is clear evidence of an

enhanced radius of the 2+
2 state, which overcomes the effect of

the high excitation energy of this state.

I try to convert the differential cross sections in Fig. 3
into the spatial size for final-state production. If a nucleus
is regarded as a “black sphere,” which corresponds to a
completely absorptive object, the radius of the black sphere
can be determined by applying the theory of Fraunhofer
diffraction to the differential cross section of the inelastic
scattering. According to Blair’s formula in Refs. [8] and [16],
the oscillation pattern of the differential cross section for
0+ → 2+ inelastic scattering can be parametrized by a Bessel
function of rank m, Jm(x),

dσ

d�
(0+ → 2+) ∝ J0(x)2 + 3J2(x)2, (3)

with the definition of x = 2ka sin (θc.m./2). Here, k is the
incident momentum, and a is the radius of the black sphere
for diffraction scattering [7,15,16]. The black-sphere radius
a can be fixed by fitting the diffraction pattern in Eq. (3)
to the observed cross section. In the elastic scattering, a is
derived by fitting to the first peak of the experimental cross
section at θc.m. > 0◦ [16], while a for the inelastic scattering
is determined from the fit to the second peak [7].

I fit the first diffraction peak of Eq. (3) at θc.m. > 0◦ to the
first peak at θc.m. ≈ 5◦, at which both of the differential cross
sections show a prominent peak in Fig. 3, although the fit to the
second peak is appropriate for determining the magnitude of
the inelastic black-sphere radius [7]. This is because I mainly
focus on a relative enhancement of 2+

2 with respect to 2+
1 . The

fit to the peak at θc.m. ≈ 5◦ gives a(2+
1 ) = 4.95 fm and a(2+

2 ) =
5.50 fm, and hence, the enhancement of 	a = a(2+

2 ) − a(2+
1 )

is 	a ≈ 0.6 fm.
In order to analyze the relation of the differential cross sec-

tions (Fig. 3) and the enhanced diffraction radius more deeply,
I have performed a partial wave analysis, in which the angle-
integrated cross sections in Fig. 3 are decomposed into the in-
dividual components of the incident orbital spin L. The results
of the decomposition are shown in Fig. 5. The dotted curve
with open circles shows the partial wave distribution (L distri-
bution) of the angle-integrated 2+

1 cross section, while the L
distribution of 2+

2 is plotted by the solid curve with filled circles.
In the comparison of 2+

1 with 2+
2 , one can clearly see the

extended L distribution of 2+
2 to the higher-L region. This

extension of 2+
2 in the L space (Fig. 5) is just opposite the

shrinkage in the θ space, the differential cross section (Fig. 3).
This is nothing but the uncertainty relation L · θ ≈ 1, which
can hold for the diffraction scattering. According to the
classical relation L = kb, where k and b denote the incident
momentum and the impact parameter, respectively, the ex-
tension of the L distribution in Fig. 5 clearly means that the
production area of the 2+

2 state is more extended than the area of
2+

1 production. Since the difference between these two kinds
of 2+ final channels is merely the nuclear radius, the rapid
decrease in θ space and extension of L space in the 2+

2 must
originate from the enhanced nuclear radius in the 2+

2 state.
Therefore, the enhancement by 	a ≈ 0.6 fm can be attributed
to an extended nuclear radius in the final 2+

2 state.
I have extended the MCC calculation to the lower α

incident energy Eα = 240 MeV, where the diffraction pattern
is not necessarily clear in the observed differential cross
sections. In the lower energy region, unfortunately, there are no
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FIG. 5. Partial wave decomposition of angle-integrated cross
sections calculated as a function of the incident orbital spin L (L
distribution). The dotted curve with open circles shows the partial
cross section of the 2+

1 final channel; the solid curve with filled
circles, that of the 2+

2 final channel. The magnitudes of all the partial
cross sections are normalized by the total cross section, which is the
summation of the partial cross sections.

experimental data on the excited state at Ex ≈ 10 MeV, which
contains the 2+

2 component. Therefore, the parameters of the
absorptive potential of the 3α cluster states (0+

2 , 0+
3 , 2+

2 ) are
set to a common value, and the parameters are tuned so as to
reproduce the cross section of 0+

2 and 0+
3 as much as possible. In

this calculation, a differential cross section of 2+
2 is predicted,

and hence the difference of dσ/d�(2+
2 ) and dσ/d�(2+

1 ) can
be evaluated.

In Fig. 6, a comparison of 2+
1 (dotted curve) with 2+

2 (solid
curve) is shown. One can clearly observe the shrunken structure
in the 2+

2 channel over a wide angular range at Eα = 240 MeV.
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FIG. 6. Same as Fig. 3 except that the incident energy is Eα = 240
MeV. The magnitudes of the cross sections are normalized to the first
peak at θc.m. = 0◦.

TABLE I. Difference in spatial size of the 2+
1,2 states. 	Rm

represents the difference in the nuclear radius 	Rm = Rm(2+
2 ) −

Rm(2+
1 ) with root mean squared radius Rm, while 	Rtrd represents

the difference in the peak position of the transition density, that
is, 	Rtrd = Rtrd(2+

2 ) − Rtrd(2+
1 ). 	a shows the difference in the

diffraction radius, which is derived from the differential cross section
at Eα = 386 MeV. See text for details.

	Rm 	Rtrd 	a

1.6 fm 1.0 fm 0.6 fm

The diffraction radii, which are derived according to Blair’s
formula in Eq. (3), are a(2+

1 ) ≈ 4.9 fm and a(2+
2 ) ≈ 5.9 fm.

In this analysis, the second peaks around θc.m. ≈ 8◦ are fitted
to the peaks of the Bessel functions, although fitting is a little
difficult in comparison to the high-energy scattering at Eα =
386 MeV. Thus, in the lower-energy region, the difference
in the diffraction radius, which reaches 	a = 1 fm, is more
enhanced than the 	a = 0.6 fm obtained at Eα = 386 MeV.

In Table I, the differences in the spatial size of the 2+
1,2

states are summarized. According to the structure calculation
using the 3α resonating group method [4], the difference
in the nuclear radius of the 2+

1,2 states is 	Rm = Rm(2+
2 ) −

Rm(2+
1 ) = 1.6 fm (leftmost column), in which Rm is the root

mean squared radius. The differential cross section for inelastic
scattering is sensitive not to the final-state nuclear radius Rm

but to the size of the transition density. In the size difference of
the transition density (	Rtrd), the large difference appearing
in 	Rm is reduced to be about 1 fm (middle column). Here
the size difference in the transition density is defined by
the difference in the peak position of the transition density
with the multiplication of the squared radius, that is, 	Rtrd =
Rtrd(2+

2 ) − Rtrd(2+
1 ), in which r = Rtrd gives the peak value

for r2ρ0+
1 →2+

1,2
(r). In the real inelastic scattering, the difference

in the transition density is further reduced, and the difference
in the diffraction radius, which represents the spatial size for
the final-state production, is about 0.6 fm (rightmost column).
This further reduction is due to the reaction dynamics, such as
the incident energy, absorption effect, and channel coupling.

The enhancement of the diffraction radius of 	a = 0.6 fm
is smaller than the original difference in the nuclear radius of
Rm = 1.6 fm but one can still note a prominent enhancement of
the diffraction radius, 	a = 0.6 fm, from the differential cross
section. Furthermore, this diffraction radius is more enhanced
in the lower-energy region. Thus, a more in-depth analysis of
the reaction dynamics is needed to discuss the relation of the
enhanced nuclear radius and inelastic scattering.

IV. SUMMARY

In summary, I have tried to obtain evidence of the enhanced
nuclear radius of the Hoyle rotational state, 2+

2 , from the
differential cross section of the α + 12C inelastic scatter-
ing. First, I have performed a microscopic coupled-channels
(MCC) calculation and succeeded in reproducing the observed
differential cross sections at Eα = 386 MeV. In particular,
the differential cross section of the excited state at Ex ≈ 10
MeV has been nicely reproduced by taking the incoherent
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summation of the 2+
2 and 0+

3 channels. Second, the differential
cross section of 2+

2 with the 3α structure, which is derived from
the incoherent fitting to the cross section of the Ex ≈ 10 MeV
state, is compared with the noncluster state, 2+

1 , which has a
spatially compact structure.

In the comparison of the 2+
1,2 channels, one can clearly

confirm that the inelastic differential cross section of the 2+
2

channel is more shrunken than that of the 2+
1 channel. This

shrinkage is the first evidence of the extended nuclear radius
of the final 2+

2 state, which can be derived from the inelastic
scattering of α + 12C(0+

1 ) → α + 12C(2+
2 ). The difference in

the excitation energies of the 2+
1,2 states is checked but the

effect of the excitation energy does not disturb the shrinkage
structure in the 2+

2 differential cross section. According to the
prescription of the diffraction formula, the shrunken structure
of the differential cross section can be converted into the spatial
size. I have obtained an enhancement of about 0.6 fm in the
size of the production area of the final 2+

2 state. Furthermore,
the enhancement of the diffraction radius is increased to about
1 fm at the lower incident energy Eα = 240 MeV.

In order to examine the origin of the shrunken structure
in the differential cross section, which is equivalent to the
enhanced diffraction radius, in more depth, I have done a partial
wave analysis of the cross section. The partial wave decom-
position shows the extended distribution in the 2+

2 channel,
and this extended distribution means that the spatial size for
2+

2 production is more extended than that for 2+
1 production.

Since the major difference in the inelastic scattering going to
2+

1 and 2+
2 is merely the spatial size of the final states, the

shrunken structure in the angular distribution and the extended
structure in the partial wave distribution can be attributed to
the enhanced nuclear radius of the latter state, the 2+

2 state. One
can speculate that the enhanced nuclear radius of 2+

2 is about
0.6 to 1 fm in comparison to the radius of 2+

1 .
I have shown that the enhanced radius of the 2+

2 state can be
probed via the differential cross section by comparison with the
reference cross section of the 2+

1 state. Comparison of the yrast
2+

1 state and the Hoyle rotational 2+
2 state is a new insight in

the discussion of inelastic scattering of 12C, which was absent
from previous studies of the relation of the nuclear radius and
the inelastic scattering to the Hoyle 0+

2 state [6–10]. In the case
of 0+

2 production, there is no “inelastic 0+ channel” that should
be compared to the Hoyle 0+

2 state. Therefore, the enhancement
factor, which may be observed in the 0+

2 channel, is difficult to
catch in inelastic scattering.

The present analysis has demonstrated that the enhanced
nuclear radius reaches 0.6–1.0 fm for the Hoyle rotational
state in comparison to the radius of the 2+

1 state. However,
this enhancement in the 2+

2 state can be regarded as the size
enhancement from the ground 0+

1 state because the nuclear
radius of the 2+

1 state is expected to be almost the same as the
radius of the ground 0+

1 state. About 1-fm enhancement in the
nuclear radius of the 2+

2 state is comparable to the extended
radius in 11Li [2], which largely deviates from the systematics
of ∝ A1/3. 11Li corresponds to the excited state from 11B, in
which the isospin degrees of freedom is excited. The excitation
energy of 11Li [BE(11Li) − BE(11B)] is about 34 MeV, while
the excitation energy of 12C(2+

2 ) is 10 MeV. Thus, the 1-fm
enhancement in the nuclear radius in 12C(2+

2 ) is an exotic

phenomenon, which occurs at a much lower excitation energy
than in the neutron-excess nucleus.

Furthermore, the identification of about 1-fm enhancement
in the nuclear radius imposes a strong constraint on the recent
ab initio calculation which seems to reproduce the excitation
energy of the Hoyle 0+

2 and 2+
2 states [17]. In this structure

calculation, the radius of the Hoyle rotational 2+
2 state is almost

the same as the radius of the ground state (2.4 fm) [17], which
is much smaller than the prediction by the 3α cluster model
(≈4.0 fm) [4,5]. The result of the ab initio calculation seems
to be inconsistent with the enhanced radius that is obtained in
the present analysis of scattering phenomena.

In previous studies, there was no information on the nuclear
radius of the excited states that should be compared with the
theoretical calculation. Therefore, speculation on the lower
bound of the nuclear radius of the Hoyle rotational 2+

2 state
from the experimental observables will be quite important
in future studies. Since the experimental information on the
differential cross section of the 2+

2 channel is still insufficient,
measurement of the differential cross section of the excited
state at Ex ≈ 10 MeV and careful multipole decomposition
analysis to separate the 2+

2 component should be extended over
a wide angle and incident energy region.
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APPENDIX

The parameters of the imaginary potentials are listed in
Table II. With the introduction of the energy-dependent imag-
inary potential, the theoretical calculation nicely reproduces
the observed angular distribution at the collision energies of
Eα = 386 MeV and 240 MeV.

TABLE II. Parameters of the absorptive Saxon-Woods potential
at Eα = 386 MeV. WI , RI , and aI represent the depth, the radius, and
the diffuseness, respectively.

Channel WI (MeV) RI (fm) aI (fm)

0+
1 20.0 3.40 0.60

0+
2 30.0 5.00 0.80

0+
3 60.0 4.50 0.70

2+
1 28.0 4.00 0.60

2+
2 20.0 6.50 0.70

3−
1 30.0 3.50 0.80
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