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Further studies of the multiplicity derivative in models of heavy ion collision at intermediate
energies as a probe for phase transitions
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In conjunction with models, the experimental observable of total multiplicity can be used to check if the data
contain the signature of phase transition and if it is first order. Two of the models reach similar conclusions. The
third one is quite different.
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I. INTRODUCTION

This paper deals with identifying the order of phase transi-
tion from experimental data in intermediate-energy heavy ion
collisions. We focus here on the total multiplicity M resulting
from central collisions of two heavy ions; M is a function of the
beam energy. The derivative of M with energy as a function of
energy may go through a maximum. In a previous paper [1] we
claimed that the appearance of this maximum is a signature of
a first-order phase transition in the collision. The absence of a
maximum would imply there is no first-order phase transition.
We used a canonical thermodynamic model (CTM) [2] to reach
this conclusion. As is usual in canonical model calculations the
M derivative is easiest to obtain with respect to temperature
and can then be mapped in terms of energy.

The model is based on the ansatz that in heavy ion collisions
a heated conglomeration of nucleons in an expanded volume
is formed. Nucleons get grouped into various composites and
the total number of composites plus monomers is the total
multiplicity M . This system of particles can go through a phase
transition [3–7]. The system is characterized by a temperature
T and has an average energy E. At the phase transition temper-
ature, Cv , the derivative of energy with respect to temperature
goes through a maximum. The quintessential problem is how to
recognize this maximum experimentally. Using CTM we found
that the maximum of dE/dT and the maximum of dM/dT
coincide. Because dM/dE is experimentally accessible, the
signal for a first-order transition can be recognized.

Although the calculations in Ref. [1] were done with
CTM only, we expect similar results with microcanonical
models [8,9]. The basic physics assumptions are the same.
In examples where microcanonical and canonical calculations
were compared [10] they were found to be very close. We note
in passing that both canonical and microcanonical models are
found to give in general very good fits to experimental data.

Here we examine features of M derivatives for models
different from standard thermodynamic models. Of particular
interest is the percolation model [11,12], which has been exten-
sively used in the past to establish a link between experimental
data and phase transition. In the context of the present work
percolation results will be very interesting because percolation

is a model of continuous phase transition. We next examine
the M derivative in the lattice gas model which uses geometry
similar to that of percolation but is much more elaborate with
the insertion of a Hamiltonian. First-order transition is possible
here [7,13,14].

II. TOTAL MULTIPLICITY AND ITS DERIVATIVE
IN THE PERCOLATION MODEL

We consider a system of 63 nucleons in the bond percolation
model. The model does not distinguish between neutrons
and protons. There are 63 boxes and each box contains one
nucleon. Nearest neighbors (these have a common wall) can
bind together with a probability ps . If ps is 1 there is just
one nucleus with 63 nucleons and M = 1. If ps is 0 there
are 63 monomers and M = 63. For intermediate values of ps ,
nucleons can group into several composites. For an “event”
this is obtained by Monte Carlo sampling. Let the average
number of clusters of a nucleons be na . Then M = ∑

a na .
In the bond percolation model there is just one parameter,
ps . Thus we can plot M against ps and examine the M
derivative. Instead of plotting M against ps we plot M against
pb = 1 − ps , which is the bond-breaking probability. If pb is
0, then 63 nucleons appear as one cluster and M = 1. If pb

is 1 then we have 63 monomers and M = 63. Figure 1 plots
M and dM/dpb in the range of pb 0 to 1. For reference in
Fig. 2 we have plotted M and dM/dT as was obtained in the
CTM [1]. Both M and M derivatives are very different in the
two models. The percolation model has no first-order phase
transition and as conjectured before [1] there is no maximum
in the M derivative. Also note that the CTM calculations are
quite realistic. The inputs were liquid-drop-model energies
for composites. Coulomb interactions between composites are
included approximately. If one omits the Coulomb interactions
between the different composites the maximum in the M
derivative becomes sharper.

The well-known function of pb that is normally used is not
M(pb) but a second moment function, m2(pb). That function
has a maximum at about pb = 0.8 (equivalently ps = 0.2). We
use that function in Sec. IV.
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FIG. 1. Variation of M (a) and dM/dpb (b) with pb obtained from
the bond percolation model for a system of 63 nucleons.

III. TOTAL MULTIPLICITY AND ITS DERIVATIVE
IN THE LATTICE GAS MODEL

The next topic we deal with is the M derivative in the
lattice gas model. This is shown in Fig. 3. Here M and its
derivative are plotted against the temperature T . The lattice gas
model is considerably more complicated than the percolation
model but expositions of the model exist [7,13,14] and we
refer to Ref. [14] for details. Let A = N + Z be the number
of nucleons in the system that dissociate. We consider D3

cubic boxes where each cubic box has a volume of (1.0/0.16)
fm3. D3 is larger than A (they have the same value in the
bond percolation model). Here D3/A = Vf /V0, where V0 is
the normal volume of a nucleus with A nucleons and Vf

is the freeze-out volume where the partitioning of nucleons
into clusters is computed. For nuclear forces one adopts
nearest-neighbor interactions. Following normal practice, we
use the neutron-proton interaction vnp = −5.33 MeV and set
vnn = vpp = 0.0. The Coulomb interaction between protons
is included. Each cube can contain 1 or 0 nucleon. There
is a very large number of configurations that are possible (a
configuration designates which cubes are occupied by neu-
trons, which are occupied by protons, and which are empty; we
sometimes call a configuration an event). Each configuration
has an energy. If a temperature is specified, the occupation
probability of each configuration is proportional to its energy:
P ∝ exp(−E/T ). This is achieved by Monte Carlo sampling
using the Metropolis algorithm.

FIG. 2. Variation of M (a) and dM/dT (b), with T obtained from
the CTM for a fragmenting system having Z = 82 and N = 126.

The calculation of clusters need further work. Once an
event is chosen we ascribe to each nucleon a momentum. The
momentum of each nucleon is picked by Monte-Carlo sam-
pling of a Maxwell-Boltzmann distribution for the prescribed
temperature T . Two neighboring nucleons are part of the same
cluster if �P 2

r /2μ + ε < 0, where ε is vnp, vnn, or vpp. Here
�Pr is the relative momentum of the two nucleons and μ is the

reduced mass. If nucleon i is bound with nucleon j and nucleon
j is bound with nucleon k, then i, j , and k are part of the same
cluster. At each temperature we calculate 50 000 events to
obtain the average energy 〈E〉 and the average multiplicity na

(where a is the mass number of the cluster) of all clusters. A
cluster with 1 nucleon is a monomer, one with 2 nucleons is
a dimer and so on. The total multiplicity is M = ∑

na and∑
ana = A where A = N + Z is the mass number of the

dissociating system. Plots of dM/dT and d〈E〉/dT are shown
in Fig. 4. Note that cv goes through a maximum at some temper-
ature which is a hallmark of a first-order phase transition and
this occurs at the same temperature where dM/dT maximizes.
This is remarkably different from the percolation model results
but very similar to the CTM results of Ref. [1], corroborating
the evidence that the appearance of a maximum in dM/dT is
indicative of a first-order phase transition.

IV. THE SECOND MOMENT m2 IN THE MODELS

Although the percolation model curves that we have shown
above are even qualitatively different from those emerging
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FIG. 3. Variation of M (a) and dM/dT (b), with T obtained from
the lattice gas model for a fragmenting system having Z = 82 and
N = 126.

from the lattice gas model and the CTM, there is one curve
that is similar and was used a great deal when percolation
was the only available microscopic model to link experimental
multifragmentation data to phase transition. We call this the
second moment curve m2. Consider the percolation curve of
Fig. 1 where we chose the dissociating system to consist of
A = 216 nucleons. Define reduced multiplicity as n = M/A,
where M is the total multiplicity and A is the mass of the
dissociating system; n varies from 1/A ≈ 0 to 1 as pb goes
from 0 to 1. We expect M to increase if more energy is
pumped into the system. For example, in counter experiments
one can gate on central collisions and vary the beam energy.
In emulsion experiments [11,15] there is no selection on
the impact parameter and in collisions at different impact
parameters different amounts of energies are pumped in for
multifragmentation. For our illustration purposes we consider
central collisions for two models, the percolation model and
the lattice gas model in a range of energies. For these we plot
m2 as a function of n. Define m2 as

m2 =
[ ∑

a2na − a2
max

]

A
. (1)

We denote the largest cluster in an event by amax. For perco-
lation we pick a pb and get n, na , and a2

max by averaging over
50 000 events. Thus we can plot m2 against n. For the lattice gas
model we take 50 000 events at each temperature and follow the
same procedure. The m2 curves are given in Fig. 5. Note that m2

FIG. 4. Variation of dM/dT (red solid lines) and Cv (green
dashed lines) with temperature from the lattice gas model at D = 8
(see text) for a fragmenting system having Z = 82 and N = 126. To
draw dM/dT and Cv in the same scale, Cv is normalized by a factor
of 1/10; dM/dT is given in units of MeV−1.

curves for the lattice gas model and the percolation models are
quite similar, and from experimental data (which can be fitted
only approximately) one could choose either a percolation
model or a lattice gas model. However the models have in fact
even different orders of transition. If we define m1 = ∑

ana/A
the answer is identical in both the models with value 1; just a
straight line with a value of 1 for all n’s. One can build a little bit
of structure if we define m1 = [

∑
ana − amax]/A, but the m2 is

the first interesting quantity, though not a confirmatory signal.

V. BACK TO PERCOLATION

In the previous section we compared m2 obtained from
the lattice gas model and the percolation model. For that
purpose it was convenient to plot m2 as a function of n. Now
we concentrate on the percolation model only and it is more
convenient to draw m2 as a function of pb. In Fig. 5 we drew

FIG. 5. Variation of m2 with n calculated with the lattice gas
model at D = 7 (red solid line) and D = 8 (blue dashed line) and with
the percolation model (black dotted line) for a fragmenting system
having Z = 82 and N = 126.
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FIG. 6. Variation of m2 (a) and d2M/dp2
b (b), with pb obtained

from the bond percolation model for a system of 63 nucleons.

a curve of m2 as a function of n. In this section it is more
convenient to draw m2 as a function of pb. In Fig. 1 of Sec. II we
drew a curve of both M and dM/dpb. We now draw a curve of
d2M/dp2

b and compare it with m2(pb) in Fig. 6. The similarity
of the two is remarkable. The mathematical procedures used in
computing m2 and the second derivative are very different. One
is tempted to conclude that the second derivative of M having
a maximum is an indication that this is a case of second-order
phase transition.

VI. DISCUSSION

Recognition of phase transition in intermediate-energy
collisions has been an interesting and intriguing problem of
long standing. A popular approach has been to try to best
fit individual multiplicity na to a form suggestive of critical
phenomenon: na = a−τ f [aσ (T − Tc)] [11,12,16–18]. It is
impossible to get a very good fit as the masses a need to
be big for the model to work and in heavy ion collisions
in the laboratory fragment sizes are limited. As fits are only
approximate very different models can give similar quality fits.
Thus the conclusions are ambiguous. Here we have specialized
to an observable that is very feasible to scan and will give
an unambiguous answer. In addition we have identified an
interesting feature of M in the percolation model that was not
recognized before.
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