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Statistical analysis of experimental multifragmentation events in 64Zn + 112Sn at 40 MeV/nucleon
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A statistical multifragmentation model (SMM) is applied to the experimentally observed multifragmentation
events in an intermediate heavy-ion reaction. Using the temperature and symmetry energy extracted from
the isobaric yield ratio (IYR) method based on the modified Fisher model (MFM), SMM is applied to the
reaction 64Zn + 112Sn at 40 MeV/nucleon. The experimental isotope distribution and mass distribution of the
primary reconstructed fragments are compared without afterburner and they are well reproduced. The extracted
temperature T and symmetry energy coefficient asym from SMM simulated events, using the IYR method, are also
consistent with those from the experiment. These results strongly suggest that in the multifragmentation process
there is a freezeout volume, in which the thermal and chemical equilibrium is established before or at the time of
the intermediate-mass fragments emission.
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I. INTRODUCTION

In violent heavy-ion collisions of central collisions in the
intermediate energy regime (20 MeV/nucleon < Einc < a
few hundred MeV/nucleon) and peripheral collisions in the
relativistic energy regime (a few GeV/nucleon), intermediate-
mass fragments (IMFs) are copiously produced in multifrag-
mentation processes. Nuclear multifragmentation was pre-
dicted in the 1930s [1] and has been extensively studied
following the advent of 4π detectors [2–6]. Nuclear multifrag-
mentation occurs when a large amount of energy is deposited
in a finite nucleus. In general, the nuclear multifragmentation
process can be divided into three stages in intermediate heavy-
ion collisions, i.e., dynamical compression and expansion, the
formation of primary hot fragments, and, finally, the separation
and cooling of the primary hot fragments by statistical γ
and particle emissions. Nuclear multifragmentation is of great
importance for the constraining of density dependence of sym-
metry energy, which plays a key role for various phenomena
in nuclearastrophysics, nuclear structure, and nuclear reactions
[7–9]. Moreover, the multifragmentation in relativistic heavy-
ion collisions also allows for producing a new kind of large
nuclei - hypernuclei [10,11].

Different transport models have been developed to model
the multifragmentation process. They are the Boltzmann-
Uehling-Uhlenbeck model (BUU) [12], the stochastic mean-
field model (SMF) [13–15], the Vlasov-Uehling-Uhlenbeck
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model (VUU) [16], the Boltzmann-Nordheim-Vlasov model
(BNV) [17], the quantum molecular dynamics model (QMD)
[18–20], the constrained molecular dynamics model (CoMD)
[21–24], the improved quantum molecular dynamics model
(ImQMD) [25–29], the fermionic molecular dynamics model
(FMD) [30], and the antisymmetrized molecular dynamics
model (AMD) [31–33], among others. Most of these can
account reasonably well for many characteristic properties of
experimental observables.

In transport models, simulated events for a given reaction
system show large fluctuations in space and time for the
formation of IMFs. The large fluctuation causes difficulty in
identifying, on an event-by-event basis, a unique freezeout
volume and time, when thermal and chemical equilibrium is
established. However there are some evidences that statistical
equilibrations are established before or at the time of the
IMFs produced while the observables are averaged over many
events. Furuta et al. demonstrated in Ref. [34] that, in AMD
calculations of 40Ca + 40Ca at 35 MeV/nucleon, IMFs are
formed in a wide range of time intervals (100 fm/c–300
fm/c) and the isotope yield distributions change with time.
However the yield and excitation energy distributions as a
function of mass at a given time can be identified as one
of statistically equilibrated ensembles generated by the same
model separately. In Ref. [35], it is reported that isoscaling
holds, which is not evident a priori in dynamical models in a
study of similar reaction systems.

In our previous works, we presented that IMFs with mass
�15 show a power-law distribution with the critical exponent,
A−2.3, in the reconstructed primary fragments [36,37]. A self-
consistent analysis for AMD events of 40Ca + 40Ca at energy
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range from 35 to 300 MeV/nucleon [38] strongly suggests that
the variety in the dynamical fragmentation process originates
from the fluctuation of a statistical ensemble in time, that is,
IMFs are formed at a freezeout volume, which is characterized
by the time- and event-averaged density and temperature. The
density and temperature of an equilibrated ensemble are the
basic assumptions of statistical multifragmentation models.
The reconstructed primary fragment yields in 64Zn + 112Sn at
40 MeV/nucleon [36,37] also provide the direct comparisons
with model calculations without secondary decay processes,
which often cause complexity for the comparisons [39,40].

In this paper we present a common feature of a freezeout
concept between the dynamical transport model simulations
and the statistical multifragmentation calculations, focusing on
the formation of the IMFs in intermediate heavy-ion collisions.

The paper is organized as follows. In Sec. II, the modified
Fisher model (MFM) and SMM with symmetry entropy are
briefly described. The consistency between SMM with the
symmetry entropy and the isobaric yield ratio (IYR) method
based on MFM is presented in Sec. III. Detailed comparisons
between SMM primary fragment yields and the experimental
results of 64Zn + 112Sn at 40 MeV/nucleon are carried out in
Sec. IV. A summary is given in Sec. V.

II. MODELS

A. MFM formulation

The MFM [41–44] is applied to characterize the emitting
source of IMFs in previous works [36–38,45,46]. In the
framework of MFM, the yield of an isotope with I = N − Z
and mass A (N and Z are the numbers of neutrons and protons,
respectively) produced in a multifragmentation reaction, can
be given as

Y (I,A) = Y0A
−τ exp

[
W (I,A) + μnN + μpZ

T
+ Smix

A,Z

]
, (1)

where Smix
A,Z = − ln(N !Z!/A!) ≈ −[N ln(N/A)+Z ln(Z/A)]

is the mixing entropy from the two components of nuclear
matter at the classical limit of the noninteracting Fermi gas
at the time of the fragment formation. μn (μp) is the neutron
(proton) chemical potential. Using the generalized Weizsäcker-
Bethe semiclassical mass formula [47,48], W (I,A) can be
approximated as

W (I,A) = avA − asA
2/3 − ac

Z(Z − 1)

A1/3

−asym
I 2

A
− ap

δ

A1/2
,

δ = − (−1)Z + (−1)N

2
. (2)

In general the coefficients, av , as , asym, ap and the chemical
potentials are temperature and density dependent, even though
they are not shown explicitly.

The isobaric yield ratio method, based on the MFM,
proposed in Ref. [45] allows one to extract asym/T from the
yield ratio of two pairs of isobars produced in the same reaction

system, R(I + 2,I,A) = Y (I + 2,A)/Y (I,A), as

asym

T
= −A

8
{ln[R(3,1,A)] − ln[R(1,−1,A)]

−�(3,1,A) + �Ec}, (3)

where �(3,1,A) is the difference in the mixing entropy of
isobars A with I = 3 and 1 and �Ec = 2ac/(A1/3T ) is the
difference of Coulomb energy between neighboring isobars.
The Coulomb energy coefficient relative to temperature and
the yield ratio of isobar A with I = 1 and −1 are related by
the following equation as:

ln[R(1,−1,A)] = [�μ + 2ac(Z − 1)/A1/3]/T . (4)

B. SMM

In SMM, the fragmenting system is in the thermal and
chemical equilibrium at low density [49–51]. A Markov chain
[50] is generated to represent the whole partition ensemble in
the version discussed below. All breakup channels (partitions)
for nucleons and excited fragments are considered under
the conservation of mass, charge, momentum, and energy.
The primary fragments are described by liquid drops at a
given freezeout volume. Light clusters with mass number
A � 4 are considered as stable particles (“nuclear gas”). Their
masses and spins are taken from the experimental values. Only
translational degrees of freedom of these particles are taken
into account in the entropy of the system. Fragments with
A > 4 are treated as spherical excited nuclear liquid drops and
the free energies FA,Z are given as a sum of the bulk, surface,
Coulomb, and symmetry-energy contributions,

FA,Z = FB
A,Z + FS

A,Z + EC
A,Z + E

sym
A,Z, (5)

where

FB
A,Z = (−W0 − T 2/ε0)A, (6)

FS
A,Z = B0A

2/3

[
T 2

c − T 2

T 2
c + T 2

]5/4

, (7)

EC
A,Z = 3

5

e2

r0
[1 − (ρ/ρ0)1/3]

Z2

A1/3
= a′

c

Z2

A1/3
, (8)

E
sym
A,Z = γ (A − 2Z)2/A, (9)

where W0 = 16 MeV is used for the binding energy of infinite
nuclear matter and ε0 = 16 MeV is related to the level density;
B0 = 18 MeV is used for the surface coefficient. Tc = 18 MeV
is used for the critical temperature of infinite nuclear matter, e
is the charge unit and r0 = 1.17 fm, γ is the symmetry energy
parameter.

The entropy of fragments SA,Z can be derived from the free
energy as

SA,Z = −∂FA,Z

∂T
= SB

A,Z + SS
A,Z. (10)

Note that there is no symmetry entropy in Eq. (10). According
to the definition in Ref. [52], as shown in the Appendix, the
symmetry entropy depends on the density and temperature for
a Fermi gas and it becomes zero for the symmetric nuclear
matter. In the following, the symmetry entropy, Ssym, from
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Eq. (A7) in the Appendix at normal density is used. The
symmetry free energy becomes

F
sym
A,Z = E

sym
A,Z − T Ssym. (11)

In the microcanonical approximation, the equation of equi-
librium temperature (Tf ) characterizing a partition f is given
in constraining the average energy associated with the partition
by

∀f : Ef (Tf ,V ) = E0, (12)

where V and E0 are the breakup volume and total energy of
system, respectively. The statistical weight of the partition f
is calculated as

Wf = 1

ξ
exp[Sf (E0,V ,A0,Z0)], (13)

where

ξ =
∑
{f }

exp[Sf (E0,V ,A0,Z0)], (14)

Sf is the entropy of the system of partition f , which is a
function of the total energy E0, mass number A0, charge Z0,
and other parameters of the source and calculated as

Sf =
∑
A,Z

NA,ZSA,Z + ST

=
∑
A,Z

NA,Z

(
SB

A,Z + SS
A,Z + Ssym

) + ST , (15)

where ST is the translational entropy of system and calculated
as

ST =
∑
A,Z

[
NA,Z ln

(
gA,Z

Vf

λ3
T

A3/2

)
− ln(NA,Z!)

]

− ln

(
Vf

λ3
T

A
3/2
0

)
, (16)

NA,Z is the number of fragments with mass A and charge Z in
partition f , gA,Z is the degeneracy factor of the fragment, λT is
the nucleon thermal wavelength, and Vf is the “free” volume.
The symmetry entropy Ssym is added through SA,Z in Eq. (15).
Since most fragments generated in the SMM simulations in
this work are nearly symmetric [(N − Z)/A � 0.2], the effect
of the added symmetry entropy is rather small as shown in the
next section. No afterburner has been applied for the SMM
generated events throughout the paper; thus all IMFs from the
SMM calculations are the primary hot fragments.

III. CONSISTENCY BETWEEN SMM AND MFM

In order to examine the consistency between SMM and
the IYR method based on the MFM formulation described
in Sec. II, SMM input values and those extracted by the
IYR method from the SMM fragments are compared. The
SMM input parameters are chosen as follows: the source mass
number As = 100, charge number Zs = 45, and the frag-
menting volume V = 6V0. Source excitation energy is
7 MeV/nucleon. The input symmetry energy coefficient γ
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FIG. 1. (a) Quasitemperature of SMM without (solid circles) and
with (open circles) the symmetry entropy as a function of fragment
mass A for γ = 25 MeV. (b) The average temperature of SMM
without (solid circles) and with (open circles) the symmetry entropy
as a function of γ .

varies between 0 MeV and the default value at normal density,
25 MeV. One million events are generated for each input γ .

In SMM the “temperature” depends slightly on the frag-
menting channel, because the energy fluctuates from partition
to partition with the Markov-chain method and they are deter-
mined from the energy balance in Eq. (12) for a given partition.
The fragment mass dependence of the quasitemperature is
shown in Fig. 1(a) for γ = 25 MeV. In Fig. 1(b), the average
quasitemperature of SMM as a function of input γ is shown. No
notable changes are observed with and without the symmetry
entropy.

The ac value also can be extracted from the fragments
generated by SMM, using Eq. (4). In Fig. 2, ln[R(1,−1,A)]
are plotted from the fragments generated by SMM in the case
of γ = 25 MeV. Using ac and �μ as free parameters in Eq. (4),
the ac and �μ values are extracted and the fitting results are
shown by lines in the figure.

Using the ac value above and the quasitemperature in Fig. 1,
the average asym values are calculated using Eq. (3) from the
SMM fragments and plotted in Fig. 3 as a function of the
fragment mass by green circles for the system size = 100 and
γ = 25 MeV. They show a rather strong mass dependence and
increase with mass. As discussed below, the mass dependence
depends significantly on the system size.

In Ref. [46], a mass dependence is observed in the extracted
asym/T from the experimentally reconstructed isotopes. In that
analysis, the mass dependence of the asym/T is attributed
to the temperature, which originates from the momentum
conservation during the fragmentation process. Since T in
SMM shows almost mass independent for A < 40 for the
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FIG. 2. ln[R(1,−1,A)] are plotted as a function of the fragment
mass number A produced in SMM without (solid circles) and with
(open circles) the symmetry entropy for γ = 25 MeV. The solid and
dashed lines are the fitting results with Eq. (4) for SMM without and
with the symmetry entropy, respectively.

system size = 100 case, see Fig. 1, the mass dependence of asym

in Fig. 3 comes from asym itself. In Fig. 3, the mass dependence
of asym is compared among different system sizes, As = 40, 60,
100, and 200, with the fixed Zs/As = 0.45. When the system
becomes larger, the mass dependence of asym becomes less and
it becomes closer to the input γ value of 25 MeV. In Fig. 4,
the average temperature values are plotted as a function of the
system mass As with the fixed Zs/As = 0.45. The results show
that the temperature has a system-size dependence in SMM.
The decreasing trend as increasing the system size reflects the
fact that the mass dependence becomes less for the heavier
fragmenting system.

From these facts, we concluded that the mass dependence
observed in the extracted asym originates from a system-size
effect and we call it “finite-size effect.” The correction made
for the effect is called “finite-size correction” throughout
the paper.

A
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 = 100sA
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FIG. 3. Extracted asym values as a function of fragment mass A

for system size As = 40 (solid circles), As = 60 (solid squares), As =
100 (open circles), and As = 200 (open squares).
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FIG. 4. Quasitemperature of SMM with the symmetry entropy for
As = 40, 60, 100, and 200 with the fixed Zs/As = 0.45.

In order to take into account the finite-size effect for the
SMM events, the free energy in MFM is modified as

Y (A,Z)

= Y0A
−τ exp

{[
W (I,A) + μnN + μpZ

TSMM
+ Smix

A,Z

]

× (1 + kA)}, (17)

where TSMM is the quasitemperature from SMM. The k value
is optimized to make the asym mass independent for a given
system size and a given γ value. The finite-size correction
is made for events generated at all γ values except for γ =
0 MeV. For the case of γ = 0 MeV, no mass dependence is
observed for the extracted asym values. One should note that
the correction made in Eq. (17) is not universal and should
only apply for the SMM generated events. Figure 5 shows the
results for ln[R(1,−1,A)] in (a) and the extracted asym in (b)
as a function of the fragment mass A. Solid and open circles
show the results before and after the correction in the case of
γ = 25 MeV, respectively. For different γ values, the extracted
ac before (solid circles) and after (open circles) the correction
are plotted in Fig. 6(a) for SMM with symmetry entropy in
the case of As = 100 and Zs/As = 0.45. The extracted ac

values are almost constant for different γ values after the
finite-size correction and the average ac value with standard
deviation is 〈ac〉 = 0.40 ± 0.01 MeV. This value is slightly
larger than the SMM input Coulomb energy coefficient under
the Wigner-Seitz approximation of a′

c = 1.44 × 3/(5r0)[1 −
(V0/V )1/3] = 0.33 MeV for V = 6V0. This issue is further
discussed in Sec. IV. In Fig. 6(b) the extracted asym are com-
pared with the input values (line). All extracted average asym

before and after the correction are distributed around the input
γ values (line) for different γ values and agree with the input
values within ∼2 MeV. The k value is determined for each
γ value except for γ = 0 MeV, which is the value averaged
over those of γ > 0 MeV. The extracted k values are plotted
as a function of γ in Fig. 6(c). As shown in the inset, the k
value decreases significantly as the system size, As , increases.
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FIG. 5. (a) ln[R(1,−1,A)] without (solid circles) and with (open
circles) the finite-size correction are plotted as a function of the
fragment mass number A for SMM with the symmetry entropy. The
solid and dashed lines are the fitting results of Eq. (4). (b) Extracted
average asym values without (solid circles) and with (open circles) the
finite-size correction as a function of the fragment mass number A
for SMM with the symmetry entropy.

This reflects the fact that the system mass dependence of asym

values becomes smaller when As becomes larger as shown in
Fig. 3. The k values are distributed around a constant value of
0.01 for different γ values as shown in Fig. 6(c) in the case of
As = 100.

IV. STATISTICAL ANALYSIS OF THE RECONSTRUCTED
EXPERIMENTAL DATA

In this section, the experimental data from the reconstructed
isotopes are compared with SMM simulated events. In our
previous works [36,37], the primary isotope yields were
experimentally reconstructed in the 64Zn + 112Sn reaction at
40 MeV/nucleon. These yields allow us to compare directly to
the SMM primary fragments without an afterburner. The SMM
calculations are performed with source size As = 60, charge
number Zs = 27, which are extracted from the NN source
component of the experimentally observed energy spectra for
all particles, including neutrons [53]. The source excitation
energy is calculated using the temperature from self-consistent
analysis [36,37] and the fragment multiplicities Mi as

E∗ =
∑

i

(3/2)T Mi − Q. (18)

For the multiplicity, the experimental values of the NN
source from the cold light particles (LPs) and fragments are
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(a) Before correction
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 = 25 MeVγ

FIG. 6. (a) Extracted ac values as a function of input γ before
(solid circles) and after (open circles) the finite-size correction for
SMM with symmetry entropy. The fitting errors are smaller than the
symbol size. The line is from a constant fit. (b) Average asym values
of the constant fit as a function of input γ before (solid circles) and
after (open circles) the finite-size correction for SMM with symmetry
entropy. The open squares are those after the finite-size correction for
SMM without the symmetry entropy. The line is corresponding to the
SMM input value of asym = γ . (c) Extracted k values are plotted as
a function of γ in the case of system size = 100. The k value for
γ = 0 MeV is averaged over those of γ > 0 MeV. The inset shows
the extracted k values as a function of the system size for the case of
γ = 25 MeV.

used, since the reconstructed primary LP multiplicity values
are not available. LPs’ contribution dominates in Eq. (18). Q
is an average Q value. E∗ = 6.7 MeV/nucleon is obtained
from the experimentally extracted temperature value of T =
5.9 MeV [36,37]. γ = 20.7 MeV from the self-consistent
analysis is used. In Refs. [36,37], the density of the fragments at
the time of the fragments formation ρ/ρ0 = 0.54 is extracted.
However this density is the average density inside fragments
and different from the SMM density, which represents the
density for the whole system at the time of the fragmentation.
In SMM, no solution was found for the fragment partition
at V/V0 � 3. Therefore in simulations below, the breakup
volume of V/V0 = 4, 6, 10, are examined.

In Fig. 7, the temperature from the self-consistent analysis
(shaded area) and that from SMM at different breakup volumes
(symbols) are compared. The SMM temperature values are
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FIG. 7. Average temperature from self-consistent analysis
(shaded area) from Refs. [36,37] and that from SMM with V/V0 = 4,
6, and 10. Open circles and open squares are without and with the
symmetry entropy, respectively.

nearly constant for different breakup volumes and agree well
with the temperature from the self-consistent analysis of the
reconstructed isotope yields. The Coulomb energies extracted
in the same way as those in the previous section are also
compared. In Fig. 8(a), ln[R(1,−1,A)] are plotted from IMFs
in the SMM events for different breakup volumes. The finite-
size effect has been taken into account. For each breakup
volume, ac and �μ values are extracted as free parameters,
using Eq. (4). The ac value relates to the different curvatures

A
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04V 06V 010V

(b)

FIG. 8. (a) ln[R(1,−1,A)] as a function of fragment mass from
IMFs generated by SMM for different breakup volumes of V/V0 = 4,
6, and 10. Lines are the fitting results using Eq. (4) for each breakup
volume. (b) Open circles are the extracted ac values from the fitting in
(a) and solid circles are the SMM input values under the Wigner-Seitz
approximation.
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M
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(c) -2.3A
Experiment
SMM T = 4 MeV
SMM T = 5.9 MeV
SMM T = 8 MeV

FIG. 9. (a) The experimental mass distribution (solid squares) is
compared with that of SMM without (open circles) and with (open
squares) the symmetry entropy at T = 5.9 MeV and the breakup
volume of 6V0. The mass distribution of AMD from Refs. [36,37] is
also shown by triangles. The distributions of the simulated results are
normalized to the reconstructed data at A = 15. (b) The experimental
mass distribution is compared with that of SMM with different
breakup volumes at T = 5.9 MeV. (c) The experimental mass dis-
tribution is compared with that of SMM with different temperatures
at V = 6V0.

in Fig. 8(a) and one can see clear differences in the figure.
The extracted ac values are plotted in Fig. 8(b) for different
breakup volumes (open circles). The solid circles represent the
SMM input values which are calculated under the Wigner-Seitz
approximation. The extracted ac values are ∼0.02–0.03 MeV
larger than those of the input values, but the increasing
trend as a function of different breakup volumes is well
reproduced.

In Fig. 9(a), mass distribution of the experimentally recon-
structed isotopes (solid squares) is compared with the simu-
lations. The results for SMM with and without the symmetry
entropy are almost identical (open squares and circles). AMD
results from Refs. [36,37] are also plotted (open triangles). All
calculated yields are normalized to that of the reconstructed
data at A = 15. They reproduce the experimental primary
mass distribution for fragments with 10 < A < 30 reasonably
well. The experimental yields in A < 10 show a significant
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FIG. 10. Isotope distributions of the experimentally reconstructed
primary fragments (solid squares) and those from SMM without (open
circles) and with (open squares) the symmetry entropy at V = 6V0

are compared for Z = 3–14. AMD results from Refs. [36,37] are also
shown by open triangles. All results are plotted in an absolute scale.

uneven structure, but all calculated results show rather smooth
distributions. The experimental uneven structure is partially
caused by unstable nuclei, such as 8Be and 9B, which are
included in the calculated yields, but for those such as A = 6
or 10 the reason is unknown. The experimentally observed
power law distribution of fragment yields with the exponent
of τ = −2.3 in 10 < A < 30 is also held for all simulations.
The deviation from the power-law line for the reconstructed
data above A = 30 is partially caused by the experimental
limitation of the available identified isotopes, which were used
for the reconstruction (Z � 15). The simulated fragment yields
do not have such limitations, but SMM results show a similar
trend as that of the experiment. The deviation of the AMD
results is much less as the mass increases. We also investigate
the effects of breakup volume and temperature in the SMM.
The experimental mass distribution is compared with those
from the SMM events at different breakup volumes in Fig. 9(b)
and at different breakup temperatures in Fig. 9(c). The SMM
mass distribution is not sensitive to the breakup density. On the
contrary, it is very sensitive to the breakup temperature. The
best result is obtained at T ∼ 6 MeV, which is consistent to the
experimentally determined temperature value of T = 5.9 MeV
in Refs. [36,37].

In Fig. 10 detail comparison of isotope yield distributions
are carried out in an absolute scale for Z = 3–14 between the
experimentally reconstructed primary isotopes and the frag-
ments from the SMM events at V = 6V0 without (open circles)
and with (open squares) the symmetry entropy. AMD results
from Ref. [36] are also shown by open triangles. Reasonable
agreements are found between the SMM calculations and the
reconstructed data, but the widths of the SMM distributions
are slightly wider than the experimental ones for all Z values,
whereas those of AMD simulations reproduce the widths

A
5 10 15 20 25 30 35

 (
M

eV
)

sy
m

a

10

20

30

40

50
Experiment
SMM

symSMM with S
AMD old g0as

FIG. 11. asym as a function of fragments mass A for the recon-
structed data (shaded area) and the SMM results without (open circles)
and with (open squares) the symmetry entropy at V = 6V0 are shown,
together with those of AMD from Refs. [36,37].

slightly closer to those of the experimental distributions. The
significant differences in the simulated results for Z = 4 are
caused by the fact that 8Be was missing among the final
secondary products in the reconstruction, which is crucial for
Z = 4 primary fragments.

In order to see the consistency of symmetry energy co-
efficient between the reconstructed data and the simulation
events, we apply Eq. (3) both to the SMM and experimental
isotope yields. Figure 11 shows the extracted asym from the
SMM fragments and those of the experiment as a function
of the fragment mass. The extracted values are consistent to
those extracted from the reconstructed data within the error
bars shown by the shaded area. AMD results from Ref. [36]
are also plotted by open triangles. The larger errors for the
AMD results are because of the poor statistics.

The reasonable agreements between the results from the
reconstructed experimental data and those from the SMM
fragments, shown in Figs. 9 to 11, strongly suggest that the
experimentally observed IMFs originate from a thermally and
chemically equilibrated source at a freezeout volume through a
multifragmentation process. This is consistent to our previous
results obtained in Ref. [38], in which the existence of the
freezeout volume for the IMF production is suggested from the
AMD simulated events from 35 to 300 MeV/nucleon, using
the IYR technique and the self-consistent method.

V. SUMMARY

First, the consistency between SMM and MFM is examined,
using the IYR technique based on MFM. The extracted ac

and asym values from the SMM fragments are consistent to
the SMM input values after the system-size effect is taken
into account, though tiny deviations are also observed. The
newly added symmetry entropy does not affect the results
very much, because most isotopes generated in this work
has (N − Z)/A � 0.2 and the symmetry entropy is close to
zero. Utilizing the experimentally extracted temperature and
symmetry energy, SMM is applied to 64Zn + 112Sn reaction at
40 MeV/nucleon. Experimentally observed primary fragment
mass and isotope distributions are compared with those of
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SMM at three breakup volumes (4V0, 6V0, and 10V0). Good
agreements are observed at T ∼ 6 MeV and γ ∼ 20 MeV
for all break up volumes. The extracted asym, using the IYR
technique both from these SMM events and the reconstructed
IMFs from experimental data are also consistent. These agree-
ments strongly suggest that the experimentally observed IMFs
originate from a thermally and chemically equilibrated source
at a freezeout volume through a multifragmentation process.
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APPENDIX: SYMMETRY ENTROPY FOR A FERMI
GAS SYSTEM

For an ideal Fermi gas, the average number of fermions in a
single-particle state i is given by the Fermi-Dirac distribution
as

fi = 1

e(εi−μ)/T + 1
, (A1)

where T is the temperature, εi is the energy of the single-
particle state i, and μ is the chemical potential. The number of
states between ε and ε + dε is

D(ε)dε = g
2πV

h3
(2m0)3/2ε1/2dε, (A2)

where g is the degeneracy factor, V is the system volume, and
m0 is the mass of the fermion. The density ρ, total number A,
and energy U of the free Fermi gas are given by

ρ = g
2π

h3
(2m0T )3/2

∫ ∞

0

x1/2dx

ex−μ/T + 1
, (A3)

A = g
2πV

h3
(2m0T )3/2

∫ ∞

0

x1/2dx

ex−μ/T + 1
, (A4)

U = g
2πV

h3
(2m0T )3/2T

∫ ∞

0

x3/2dx

ex−μ/T + 1
. (A5)

Then the entropy of the free Fermi gas is given as

S(A)

A
= U − F

AT
= U + PV − μA

AT

=
5
3U − μA

AT
= 5

3

∫ ∞
0

x3/2dx
ex−μ/T +1∫ ∞

0
x1/2dx

ex−μ/T +1

− μ

T
, (A6)

where F = μA − PV is the free energy of system and P =
2
3

∂U
∂V

is the pressure of fermion system.

m
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sy
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S
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-3 = 0.16 fm
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FIG. 12. Symmetry entropy per nucleon, Ssym/A, as a function of
m for T = 3 MeV (solid circles), 6 MeV (solid squares), 9 MeV (solid
up-triangles), 15 MeV (solid down-triangles), and 50 MeV (open
circles) at density ρ = ρ0. Solid line corresponds to the symmetry
entropy at the classical limit, and dashed line represents the results
using Eq. (A9).

According to Ref. [52], the symmetry entropy is defined as
the difference between the entropies of pure proton or neutron
and symmetric nuclear matter. For a nuclear system with A
nucleons (N neutrons and Z protons), therefore, the symmetry
entropy per nucleon is calculated as

Ssym

A
= S

B,
A,Z

A
− S

B,tot
A,A/2

A
, (A7)

where
S

B,tot
A,Z

A
= 1+m

2
S(N)
N

+ 1−m
2

S(Z)
Z

is the average entropy of

N neutrons and Z protons system. m = N−Z
A

= ρn−ρp

ρ
is the

asymmetry parameter. One should note that S
B,tot
A,A/2 is the

volume entropy taken into account in the second term in
the right-hand side of Eq. (6), SB

A,Z = S
B,tot
A,A/2. The calculated

symmetry entropy per nucleon as a function of m is shown
in Fig. 12 at density ρ = ρ0 and different temperatures. The
solid line represents the symmetry entropy per nucleon at the
classical limit, which is given analytically as

Ssym

A
= −

[
N

A
ln(N/A) + Z

A
ln(Z/A)

]
− ln(2). (A8)

In Eq. (A7) the exact derivation of the symmetry entropy
from a Fermi gas is used. However, in SMM, the bulk entropy in
Eq. (6) is derived, using the low-temperature approximation. In
order to verify the consistency in the above discussion with the
exact quantum symmetry entropy, the approximated symmetry
entropy with the same low-temperature approximation used in
SMM, which reads as

Ssym

A
= π2

2

T

εF

[
1

2
(1 + m)1/3 + 1

2
(1 − m)1/3 − 1

]
, (A9)

where εF = 36.8 MeV at ρ = ρ0 is also shown in dashed line
in Fig. 12 at T = 6 MeV. The approximated symmetry entropy
shows slightly higher value than the exact quantum one.
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