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Application of a Coulomb energy density functional for atomic nuclei: Case studies of local density
approximation and generalized gradient approximation
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We test the Coulomb exchange and correlation energy density functionals of electron systems for atomic nuclei
in the local density approximation (LDA) and the generalized gradient approximation (GGA). For the exchange
Coulomb energies, it is found that the deviation between the LDA and GGA ranges from around 11% in 4He
to around 2.2% in 208Pb, by taking the Perdew-Burke-Ernzerhof (PBE) functional as an example of the GGA.
For the correlation Coulomb energies, it is shown that those functionals of electron systems are not suitable for
atomic nuclei.
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I. INTRODUCTION

Atomic nuclei are systems that are self-bounded by the
nuclear and electromagnetic forces. Although the contribution
of the nuclear force for the binding energy is much larger
than that of the electromagnetic force, it is important to study
the electromagnetic contribution, for example, for the mirror
nuclei mass difference [1], the energy of the isobaric analog
state [2,3], and the isospin symmetry-breaking correction to
superallowed β decay [4,5], which are caused only by the
electromagnetic force if the nuclear force has full isospin
symmetry [6]. The form of the static electromagnetic force
in the non-relativistic scheme is known as the Coulomb
interaction. Therefore, it in principle allows high-accuracy
evaluation of such electromagnetic contributions. However,
so far the most widely used scheme is the Hartree-Fock
or even the Hartree-Fock-Slater or Hartree approximations
[7–10]. Moreover, the Fock potential is non-local, and thus the
corresponding numerical cost is O(N4), with N the number of
particles.

In contrast, in electron systems, such as in atomic physics,
molecular physics, and condensed matter physics, the phenom-
ena are intrinsically determined by the Coulomb interaction.
High-accuracy calculations for the ground-state energy have
been developed, for example, by quantum Monte Carlo cal-
culations [11–13] and density functional theory (DFT) [14].
It was proved by Hohenberg, Kohn, and Sham [15,16] that,
in principle, DFT gives the exact ground-state energy Egs

corresponding to the Hamiltonian

H = − h̄2

2m

∑
j

∇2
j +

∑
j

Vext(rj ) +
∑
j<k

Vint(rj ,rk) (1)

as
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Egs = T0[ρgs] +
∫

Vext(r) ρgs(r) d r

+ 1

2

∫∫
Vint(r,r ′) ρgs(r) ρgs(r ′) d r d r ′ + Exc[ρgs], (2)

where ρgs is the ground-state density distribution, T0 is the
kinetic energy of the non-interacting reference system, m
is the mass, and Vext and Vint are the external field and
two-body interaction, respectively. The exchange-correlation
energy density functional (EDF) Exc[ρ] includes the correction
of kinetic energy for the interacting system from the non-
interacting reference system [15,16]. The accuracy of DFT
depends only on the accuracy of the exchange-correlation EDF.
High-accuracy non-empirical exchange-correlation EDFs for
electron systems have been proposed for decades [17–24],
although a systematic way of deriving the exact EDF is still an
open problem [25–27]. The numerical cost of DFT calculation
is O(N3), and high-accuracy large-scale calculation is thus
easier to perform than other methods with similar accuracy.

From the point of view of the electromagnetic force, protons
in atomic nuclei and electrons in electron systems share com-
mon properties except for the difference in mass and the sign of
the charge. Therefore, it is interesting to investigate to what ex-
tent the knowledge of electron systems is applicable for study-
ing the effect of the electromagnetic force in atomic nuclei.

In this paper, we test the exchange and correlation EDFs
of electron systems in the context of atomic nuclei. Both the
local density approximation (LDA) and generalized gradient
approximation (GGA) functionals are investigated. The error
due to the approximations in the EDF is separable into two
parts: density-driven error and functional-driven error [28]. In
this work, we use the experimentally observed charge-density
distribution for quantitative calculations of selected nuclei to
avoid the first error. For the second part, a straightforward ap-
plication of the EDFs developed for electron systems obviously
suffers from the subtle errors due to the coexistence of the
Coulomb and nuclear forces. Nevertheless, in atomic nuclei,
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the effects of different many-body correlations are not cleanly
isolated when fitting new nuclear EDFs [29,30]. Also, see the
discussion in Sec. II B below.

This paper is organized in following way: First, in Sec. II
we show the general expressions of LDA and GGA function-
als and discuss the separability of exchange and correlation
functionals. Then in Sec. III we show the calculations by using
experimental charge-density distributions. Finally, in Sec. IV
we give the conclusion and perspectives. In the Appendix, we
show the details of Coulomb EDFs.

II. EXCHANGE AND CORRELATION ENERGY
DENSITY FUNCTIONALS

A. General expressions

It is assumed the exchange-correlation EDF is divided into
two parts, the exchange EDF Ex[ρ] and the correlation EDF
Ec[ρ] as [14]

Exc[ρ] = Ex[ρ] + Ec[ρ], (3)

and both EDFs are written as

Ei[ρ] =
∫

εi[ρ]ρ(r) d r (i = x, c), (4)

where εi[ρ] as a functional of density is called the energy
density in electron systems, which corresponds to the concept
of energy per particle in nuclear physics.

When it is assumed that the energy density depends only on
the density at r locally as

Ei[ρ] =
∫

εLDA
i (ρ(r)) ρ(r) d r (i = x, c), (5)

this approximation is called the LDA. The LDA gives the
exact solutions for the systems with homogeneous density
distribution, and it also gives high-accuracy results for the
systems with nearly constant density distribution.

In the GGA, the energy density depends not only on the
density distribution ρ but also on its gradient |∇ρ| at r locally.
It is expressed as

Ei[ρ] =
∫

εGGA
i (ρ(r),|∇ρ(r)|) ρ(r) d r (i = x, c). (6)

Several non-empirical GGA functionals have been proposed
[20–23].

See the Appendix for the details of Coulomb EDFs as well
as the translation from the Hartree atomic unit to the general
unit.

B. Separability of exchange and correlation functionals

In the following, let us discuss carefully the separability
of exchange and correlation functionals. According to the
Hohenberg-Kohn theorem [15], the ground-state energy is
written as

Egs = F [ρgs] +
∫

ρgs(r) Vext(r) d r, (7)

with the universal functional F for each given interaction Vint.
The universal functional is written as

F [ρ] = T0[ρ] + 1

2

∫∫
Vint(r,r ′) ρ(r) ρ(r ′) d r d r ′ + Ex[ρ]

+Ec[ρ], (8)

in the Kohn-Sham scheme [16].
Here, we consider two systems: System 1 has one interac-

tion V1, and system 2 has two interactions, V1 and V2. We also
define the universal functional F1 for the interaction V1 and
the functional F1+2 for the interaction V1 + V2. The universal
functionals F1 and F1+2 correspond to [31,32]

F1[ρ] = inf
�∈Wρ

[〈�|T |�〉 + 〈�|V1|�〉]

= T0[ρ] + 1

2

∫∫
V1(r,r ′) ρ(r) ρ(r ′) d r d r ′

+E1
x[ρ] + E1

c [ρ], (9)

F1+2[ρ] = inf
�∈Wρ

[〈�|T |�〉 + 〈�|V1|�〉 + 〈�|V2|�〉]

= T0[ρ] + 1

2

∫∫
[V1(r,r ′) + V2(r,r ′)]

× ρ(r) ρ(r ′) d r d r ′ + E1+2
x [ρ] + E1+2

c [ρ], (10)

where T is the kinetic operator, and Wρ is the set of the N -
particle wave functions � which satisfy

ρ(r) = N

∫
�∗(r,r2,r3, . . . ,rN ) �(r,r2,r3, . . . ,rN )

× d r2 d r3 · · · d rN . (11)

In order to compare with F1, we define F 1
1+2 and F 2

1+2 as

F 1
1+2[ρ] = 〈�0|T |�0〉 + 〈�0|V1|�0〉

= T0[ρ] + 1

2

∫∫
V1(r,r ′) ρ(r) ρ(r ′) d r d r ′

+ Ẽ1
x[ρ] + Ẽ1

c [ρ], (12)

F 2
1+2[ρ] = 〈�0|V2|�0〉

= 1

2

∫∫
V2(r,r ′) ρ(r) ρ(r ′) d r d r ′

+ Ẽ2
x [ρ] + Ẽ2

c [ρ], (13)

where �0 gives the infimum value of Eq. (10). Because of the
variational principle, the following inequality holds:

F 1
1+2[ρ] � F1[ρ]. (14)

Therefore, there is no guarantee to assume the same exchange-
correlation EDFs in both system 1 and system 2.

For the exchange EDF, if the Fock term is defined as the
exchange term of the Kohn-Sham orbitals, the Fock term of
two interactions V1 and V2 in system 2 are separable as

E1+2
F = E1

F + E2
F, (15)

where Ei
F denotes the Fock term for interaction, Vi (i =

1, 2, and 1 + 2). In the homogeneous systems, the exchange
EDF Ei

x[ρ] is identical to the Fock term Ei
F. As a result,
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Ẽ1
x[ρ] in Eq. (12) is equal to E1

x[ρ] in Eq. (9). Note that,
in inhomogeneous systems, Ei

F and Ei
x[ρ] are different. As

a result, Ẽ1
x[ρ] is only approximately equal to E1

x[ρ] in the
GGA.

For the correlation EDF, the difference between E1
c [ρ]

and Ẽ1
c [ρ] includes the difference of F 1

1+2 − F1 as shown in
Eq. (14). In addition, the correlation EDF includes the deviation
between the kinetic energy of the realistic interacting system
and that of the non-interacting reference system. Such a devi-
ation is caused by all interactions. Therefore, the separability
of the correlation EDF is in question.

In the present context, systems 1 and 2 correspond to
electron systems and atomic nuclei, respectively. We apply the
EDFs of electron systems to atomic nuclei as a test of these
functionals by keeping the above discussions in mind.

In addition, we note that in nuclear DFT, the Coulomb
part of the EDF does not include the correlation energy,
and the nuclear part of the EDF is determined by parameter
fittings, correspondingly. Thus, the nuclear part includes all the
correlation effects, including the Coulomb one. If the Coulomb
correlation EDF is considered while the nuclear part remains
the same, a part of the correlation is double counted. In such a
case, it is necessary to refit the parameters in the nuclear part
of the EDFs accordingly. Nevertheless, the ultimate refitted
nuclear EDFs can reproduce not only nuclear masses, radii,
etc., but also the experimental charge-density distributions.
Therefore, the issue of refitting nuclear EDFs will not matter
in the following results and conclusions, which are calculated
directly from the experimental charge-density distributions
ρch.

III. RESULTS AND DISCUSSION

In this section, the Coulomb exchange and correlation
functionals Ex[ρ] and Ec[ρ] in LDA and GGA are applied
to atomic nuclei. Different versions of εLDA

c [17–19] behave
almost the same in the density region of nuclei, and therefore
we focus on the results obtained with PZ81 [18], and denote
them as LDA hereafter. Nevertheless, as discussed at the end
of this section, the Coulomb correlation functionals Ec[ρ] are
not suitable for atomic nuclei, and thus the GGA Coulomb
correlation functionals are not discussed explicitly.

A. Calculations for 208Pb

In the following discussions, we use the experimental
charge-density distributions ρch(r) given by the sum-of-
Gaussian analysis in Ref. [33] as the inputs of ground-state
density distributions for testing the LDA and GGA exchange
and correlation functionals.

The charge-density distribution ρch(r) of 208Pb is shown
in Fig. 1(a). The surface is defined as the region where the
density is between 90% and 10% of the maximum density.
A dimensionless density gradient s and the local Fermi wave
number kF are given as

s = |∇ρ|
2kFρ

, kF = (3π2ρ)1/3, (16)
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FIG. 1. (a) Experimental charge-density distribution ρch(r) for
208Pb [33]. The surface is defined as the region where the density
is between 90% and 10% of the maximum density. (b) Dimensionless
density gradient s as a function of r .

respectively. The corresponding dimensionless density gradi-
ent s is shown as a function of r in Fig. 1(b). The corresponding
GGA exchange energy density weighted with ρch(r) for 208Pb
is shown in Fig. 2. On the one hand, the LDA result is shown
with the long-dashed line. On the other hand, those given by the
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FIG. 2. GGA exchange energy densities weighted with ρch for
208Pb as a function of r . The LDA result is shown with the long-dashed
line. Those given by the GGA functionals B88 [20], PW91 [21], PBE
[22], and PBEsol [23] are shown with the short-dashed, dot-dashed,
solid, and dot-dot-dashed lines, respectively.
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TABLE I. Direct Ed, exchange Ex, and correlation Ec Coulomb
energies in the LDA for selected nuclei, together with the ratios of
Ec/Ex. The experimental root-mean-square charge radii 〈r2

ch〉1/2 [33]
are also shown.

Nuclei 〈r2
ch〉1/2 (fm) Ed (MeV) Ex (MeV) Ec (MeV) Ec/Ex (%)

4He 1.676 (8) 1.518 −0.6494 −0.01296 1.996
12C 2.469 (6) 9.481 −1.962 −0.03904 1.990
16O 2.711 15.41 −2.638 −0.05218 1.978
40Ca 3.480 (3) 75.74 −7.087 −0.1329 1.875
48Ca 3.460 75.68 −7.113 −0.1332 1.873
58Ni 3.772 (4) 136.6 −10.28 −0.1879 1.828
116Sn 4.627 (1) 356.5 −18.41 −0.3361 1.826
124Sn 4.677 (1) 352.5 −18.24 −0.3356 1.840
206Pb 5.490 810.3 −30.38 −0.5527 1.820
208Pb 5.503 (2) 808.5 −30.31 −0.5524 1.823

GGA functionals B88 [20], PW91 [21], PBE [22], and PBEsol
[23] are shown with the short-dashed, dot-dashed, solid, and
dot-dot-dashed lines, respectively.

In the central region r � 5 fm, the density is almost constant
with a value around half of the saturation density, and thus
the dimensionless density gradient s is almost equal to zero.
Therefore, the LDA and GGA give almost the same εxρch. In
contrast, s increases substantially with r outside the central
region. In particular, in the surface region, corresponding to
5.4 � r � 8.0 fm, the dimensionless density gradient s reads
0.14 � s � 2.0. It is seen that the εxρch given by the LDA and
GGA diverge from each other, while those given by different
GGA functionals are quite similar. Outside of the surface
region, s keeps increasing, but it is not relevant to the Ex since
the charge-density distribution ρch(r) decreases exponentially.

The Coulomb energy is calculated separately as the direct
term Ed, exchange term Ex, and correlation term Ec. The direct
term reads

Ed = 1

2

e2

4πε0

∫∫
ρch(r) ρch(r ′)

|r − r ′| d r d r ′. (17)

In the level of LDA, the results for 208Pb are shown in Table I. It
is found that the ratio of the correlation energy to the exchange
energy is around 1.8%, which is consistent with the estimate
of order of magnitude in Fig. 8 shown in the Appendix. In the
level of GGA, the results of the exchange Coulomb energy
are shown in Table II, where four different GGA exchange
functionals are used.

Here �Ex denotes the deviations between the LDA and
GGA in the exchange energy as

�Ex = EGGA
x − ELDA

x

EGGA
x

. (18)

For the GGA exchange energy Ex, an overall enhancement
around 2% is found compared to the LDA one. Among
different functionals, the PW91 and PBE show the largest
enhancements,�EPW91

x � 2.3 % and �EPBE
x � 2.2 %, respec-

tively, whereas the PBEsol shows the smallest enhancement,
�EPBEsol

x � 1.4 %. This indicates the differences between the
GGA and LDA exchange energies are around 500 keV, which

TABLE II. Exchange Coulomb energies Ex in the LDA and in the
GGA by the B88, PW91, PBE, and PBEsol functionals. All units are
in MeV.

Nuclei LDA B88 PW91 PBE PBEsol

4He −0.6494 −0.7150 −0.7290 −0.7281 −0.7030
12C −1.962 −2.077 −2.109 −2.105 −2.056
16O −2.638 −2.773 −2.812 −2.806 −2.748
40Ca −7.087 −7.319 −7.395 −7.381 −7.277
48Ca −7.113 −7.349 −7.420 −7.409 −7.305
58Ni −10.28 −10.57 −10.66 −10.65 −10.52
116Sn −18.41 −18.81 −18.94 −18.92 −18.74
124Sn −18.24 −18.64 −18.77 −18.75 −18.57
206Pb −30.38 −30.91 −31.09 −31.06 −30.81
208Pb −30.31 −30.84 −31.02 −30.99 −30.74

are not negligible for the discussions of Coulomb energy or
nuclear mass. The main enhancement comes from the surface
region, where the enhancement factor reaches around 1.5 as
shown in Fig. 9. Thus, it is expected that for lighter nuclei the
overall enhancement will further increase.

B. Calculations for 4He and 16O

In order to see the effects of the surface region, here we com-
pare the results of the heavy nucleus 208Pb to the light nuclei
4He and 16O. The experimental charge-density distributions
ρch(r) and the corresponding dimensionless density gradients
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FIG. 3. Same as Fig. 1 but for 4He.
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FIG. 4. Same as Fig. 1 but for 16O.

s for 4He and 16O are shown in Figs. 3 and 4, respectively. It is
seen that the behaviors of ρch and s for 4He and 16O are almost
the same as those for 208Pb, while the ratio of the surface region
to the whole nuclear region is larger for light nuclei. Note that
the ratio εc/εx increases as ρch decreases as shown in Fig. 8.
Therefore, the ratio Ec/Ex for light nuclei is enhanced slightly
compared with that for heavier nuclei (see Table I).

In Figs. 5 and 6, the GGA exchange energy density weighted
with ρch(r) is shown for 4He and 16O, respectively. Comparing
with those shown in Fig. 2, the difference between the LDA and
GGA are more visible by using the same scale. Therefore, by
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FIG. 5. Same as Fig. 2 but for 4He.
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FIG. 6. Same as Fig. 2 but for 16O.

taking the PBE functional as an example, the GGA exchange
energies show enhancements of �EPBE

x � 11 % and �EPBE
x �

6.0 % for 4He and 16O, respectively.

C. Calculations from light to heavy nuclei

The direct, exchange, and correlation Coulomb energies in
the LDA for selected nuclei from light to heavy regions are
shown in Table I. The experimental root-mean-square charge
radii 〈r2

ch〉1/2
[33] are also shown. The corresponding exchange

Coulomb energies for each functional in the GGA are shown
in Table II.

For isotopes, it is seen in Table I that the nucleus with larger
radius gives smaller exchange and correlation energies. The
correlation energy is in general around 2% of the exchange
energy, which is consistent with the estimate of order of
magnitude in Fig. 8. For electron systems, the correlation
energy is around 10% of the exchange energy; thus the
correlation energy reduces the error of the Hartree-Fock-
Slater approximation, i.e., the exchange LDA, and thus the
exchange-correlation LDA calculations often give reasonable
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FIG. 7. Deviation between the LDA and GGA in Ex defined as
Eq. (18) as a function of A. Those given by the B88, PW91, PBE,
and PBEsol functionals are shown with the short-dashed, dot-dashed,
solid, and dot-dot-dashed lines, respectively.

044319-5



TOMOYA NAITO, RYOSUKE AKASHI, AND HAOZHAO LIANG PHYSICAL REVIEW C 97, 044319 (2018)

results [14]. In contrast, for atomic nuclei, the correlation
energy is only around 2% of the exchange energy; thus it does
not change substantially the result of the Hartree-Fock-Slater
approximation.

In the whole mass region, the behaviors of the GGA
functionals are similar to those in 208Pb. The enhancements
from LDA to GGA in light nuclei are larger than those in
heavy nuclei because of the ratio of the surface region. The
deviations between the LDA and GGA in the exchange energy
�Ex is shown in Fig. 7.

On the one hand, these non-empirical GGA functionals are
determined to satisfy some conditions about the exchange-
correlation hole for electron systems [34], but the exchange-
correlation hole in atomic nuclei is determined mainly by the
nuclear force. Therefore, there is no guarantee to apply electron
EDFs for nuclei, as discussed in Sec. II B.

On the other hand, the deviation between the LDA exchange
energy and the exact Fock energy by self-consistent calcula-
tions was given by Le Bloas et al. [35]. The result in Fig. 7
here shows a quite similar behavior compared with their work.
This indicates that the application of the electron GGA for
atomic nuclei gives at least almost the same accuracy as the
exact Hartree-Fock calculation; i.e., these functionals are valid
for atomic nuclei as well as electron systems.

In the self-consistent calculations, all potentials derived
from these GGA functionals are local, and thus the numerical
cost of the DFT calculations is O(N3). In contrast, the Fock
potential is non-local; hence the numerical cost of the Hartree-
Fock calculations is O(N4) [14]. Therefore, the self-consistent
calculations for Coulomb energy with GGA EDFs would be of
high accuracy and low numerical cost, compared with the less
accurate Hartree-Fock-Slater calculations or more accurate but
higher-numerical-cost exact Hartree-Fock calculations. Along
this direction, some progress concerning the localized form
of Fock terms in nuclear covariant DFT has been carried out
[36–38]. In addition, these GGA EDFs hold the possibility
of evaluating the electromagnetic contribution of the binding
energy from the experimental data directly.

One may consider the applicability of Coulomb correlation
functionals for nuclear systems. The test results of the Coulomb
correlation energies Ec are shown in Table I from light to heavy
nuclei. It is seen that in these calculations Ec are all around 2%
of Ex. However, Bulgac and Shaginyan [39,40] evaluated that
in atomic nuclei Ec/Ex would be around −40% to −20%,
instead of 2%. To understand this big difference in a simple
picture, we keep in mind that between protons there exist
not only weak repulsive Coulomb but also strong attractive
nuclear interactions. Hypothetically, if there is only Coulomb
interaction, since correlation always further decreases the
energy of the whole system, we have the signs of the Hartree,
exchange, and correlation energies as Ed > 0, Ex < 0, and
Ec < 0, respectively; i.e., Ec has the same sign as Ex. In
reality, as discussed in Sec. II, the correlation energy density
functional is not separable at all. In Refs. [39,40] the correlation
functionals are written in terms of the response functions,
and such response functions are determined by the total
interaction, i.e., mainly by the attractive nuclear part, instead
of the repulsive Coulomb part. The total correlation energy
is still negative, which mainly comes from the contribution

of the nuclear interaction. As a result, the contribution of the
Coulomb interaction becomes positive; i.e., for the Coulomb
energies Ec has a different sign than Ex. In short, the correlation
energy density functionals of electron systems cannot be
applied directly to atomic nuclei.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we applied the exchange and correlation EDFs
of the local density approximation and generalized gradient
approximation in electron systems for atomic nuclei.

For the exchange Coulomb energies, it is found that the
deviation between the LDA and GGA �Ex ranges from around
11% in 4He to around 2.2% in 208Pb, by taking the PBE
functional as an example of the GGA. From light to heavy
nuclei, it is seen that �Ex behaves in a very similar way as
the deviation between the Hartree-Fock-Slater approximation
and the exact Hartree-Fock calculation given by Le Bloas
et al. [35]. In this sense, the GGA exchange functionals of
electron systems are valid for atomic nuclei. Furthermore, the
numerical cost of GGA is O(N3), whereas that cost of the
exact Hartree-Fock calculation is O(N4) for self-consistent
calculations.

In contrast, the correlation Coulomb energy density func-
tionals of electron systems are not applicable for atomic nuclei,
because these functionals are not separable and the nuclear
interaction determines the properties of atomic nuclei mainly.

For future studies, we would like to use these Coulomb
GGA functionals for self-consistent calculations. There are
two main open questions here. One is the double counting of
the correlation effects as we discussed in Sec. II B. Another
important point is the finite-size effect of protons, which
electron systems do not suffer.

So far, in most if not all of the DFT or Hartree-Fock
calculations in nuclear physics the proton is treated as a point
particle, and the Coulomb energy is calculated with the proton-
density distribution ρp(r). However, it is well known that
the charge-density distribution is different from the pointlike
proton-density distribution in atomic nuclei. From the point
of view of the electromagnetic force, the Coulomb energy
should be calculated with the charge-density distribution. For
example, it is given by the convolution of ρp(r) with the proton
form factor as [41]

ρch(r) = 1

2π2r

∫ ∞

0
k sin(kr) ρ̃p(k) exp

[
k2

4
(B2 − a2)

]
dk,

(19)

where

B =
(

41.47

Ah̄ω

)1/2

, a =
√

2

3
〈rp〉, 〈rp〉 = 0.8 fm, (20)

A is the mass number, h̄ω = 41A−1/3 MeV [42], and ρ̃p(k) is
the Fourier transformation of ρp(r). This leads to a general
question about how to construct a DFT for the particles with
finite size, which also corresponds to some progress in the DFT
with frozen core approximation in condensed matter physics
[43–46].
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APPENDIX A: DETAILS OF COULOMB ENERGY
DENSITY FUNCTIONALS

1. Local density approximation

When it is assumed the energy density depends only on the
density at r locally as

Ei[ρ] =
∫

εLDA
i (ρ(r)) ρ(r) d r (i = x, c), (A1)

this approximation is called the LDA. The LDA gives the
exact solutions for the systems with homogeneous density
distribution, and it also gives high-accuracy results for the
systems with nearly constant density distribution.

In the homogeneous electron gas, the exchange energy
density εx is known exactly. That is used for the LDA exchange
energy density εLDA

x . For electron systems,

εLDA
x (ρ) = −3

4

(
3

π

)1/3

ρ1/3 = −3

4

(
9

4π2

)1/3 1

rs
(A2)

in the Hartree atomic unit, i.e., the electron mass me = 1,
electron charge e2 = 1, and 4πε0 = 1, while h̄ = 1 and c =
1/α � 137. This is nowadays widely known as the Slater
approximation [47], derived by Dirac [48]. Here, rs is the
Wigner-Seitz radius,

rs =
(

3

4πρ

)1/3

. (A3)

In contrast, the correlation energy density εc for the homo-
geneous electron gas is not known analytically. In the LDA,
it was derived by fitting for the ground-state energy of the
homogeneous electron gas evaluated by the diffusion Monte
Carlo calculation [49]. Several fittings of εc have been proposed
[17–19]. One of the most widely used forms is PZ81 [18],
which reads

εPZ81
c (rs) =

{−0.0480 + 0.0311 ln rs − 0.0116rs + 0.0020rs ln rs (rs < 1),

−0.1423/(1 + 1.0529
√

rs + 0.3334rs) (rs > 1).
(A4)

The LDA correlation function satisfies εLDA
c → −0.0480 + 0.0311 ln rs in the high-density limit rs → 0 [50], which is satisfied

by the PZ81 functional.

2. Generalized gradient approximation

The DFT with LDA does not always represent correct results, which can be improved by the DFT with GGA (see, e.g.,
Ref. [51]). In the GGA, the energy density depends not only on the density distribution ρ but also on its gradient |∇ρ| at r locally.
It is expressed as

Ei[ρ] =
∫

εGGA
i (ρ(r),|∇ρ(r)|) ρ(r) d r (i = x, c). (A5)

Several non-empirical GGA functionals have been proposed [20–23]. Most GGA exchange energy densities εGGA
x are written

as the product of the LDA counterpart εLDA
x and an enhancement factor F GGA:

εGGA
x (ρ,|∇ρ|) = εLDA

x (ρ) F GGA(s). (A6)

The enhancement factors of the GGA-B88 [20], GGA-PW91 [21], GGA-PBE [22], and GGA-PBEsol [23] functionals are given
below:

F B88(s) = 1 + 0.0168

3

(
π

6

)1/3 [2(3π2)1/3s]2

1 + 0.0252[2(3π2)1/3s] sinh−1[2(3π2)1/3s]
, (A7)

F PW91(s) = 1 + 0.19645s sinh−1(7.7956s) + (0.2743 − 0.1508e−100s2
)s2

1 + 0.19645s sinh−1(7.7956s) + 0.004s4
, (A8)

F PBE(s) = 1 + 0.804 − 0.804

1 + 0.21951s2/0.804
, (A9)

F PBEsol(s) = 1 + 0.804 − 0.804

1 + 0.1235s2/0.804
. (A10)
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3. Translation from Hartree atomic unit to general unit

When we apply the EDFs of electron systems for atomic
nuclei, we have to pay special attention to the relation between
the Hartree atomic unit and the natural unit used in nuclear
physics. In the Hartree atomic unit, the energy and length
units are

1 Hartree = h̄2

mea
2
B

, (A11)

1 a.u. (length) = aB, (A12)

respectively, where aB is the Bohr radius:

aB = 4πε0h̄
2

mee2
= h̄

αmec
. (A13)

When every quantity is written explicitly, the dimensionless
Wigner-Seitz radius is given by

rs =
(

3

4πρ

)1/3
αmec

h̄
. (A14)

In order to create no confusion, we define a general dimen-
sionless variable ξ as

ξ =
(

3

4πρ

)1/3
αmc

h̄
, (A15)

where m is the corresponding mass of the particles, i.e., me

in electron systems and mp in atomic nuclei. In addition, the
energy unit now reads α2mc2. With this general variable ξ , the
LDA exchange energy density in Eq. (A2) reads

εLDA
x (ξ ) = −3α2mc2

4

(
9

4π2

)1/3 1

ξ
, (A16)

and the LDA correlation energy density of PZ81 in Eq. (A4) reads

εPZ81
c (ξ ) =

{
(−0.0480 + 0.0311 ln ξ − 0.0116ξ + 0.0020ξ ln ξ )α2mc2 (ξ < 1),

−0.1423α2mc2/(1 + 1.0529
√

ξ + 0.3334ξ ) (ξ > 1).
(A17)

For the GGA, kF and s retain their forms as in Eqs. (16).
In the natural unit in nuclear physics, h̄ = c = 1 and

e2/4πε0 = α � 1/137 are used, and the units fm and MeV
are connected via 1 = h̄c � 197.33 MeV fm. The proton mass
is mp � 938.272 MeV .

4. Order-of-magnitude estimates

In Fig. 8, the ratio of the correlation energy density to the
exchange energy density εc/εx in LDA is shown as a function
of ξ . For electron systems, the range of ξ is generally 1 � ξ �
100. It is seen in the figure that the correlation energy Ec is of
O(10−1) with respect to the exchange energy Ex. In the limit
of ξ → ∞, εc/εx goes to 0.9316.

In contrast, the nuclear saturation density ρ0 � 0.16 fm−3

corresponds to ξ0 � 0.052. When the density ρ drops by

10−4

10−3

10−2

10−1

100

10−3 10−2 10−1 100 101 102

Nuclei Electron Systems

ρ0 0.001ρ0εL
D

A
c

/ε
L
D

A
x

ξ

FIG. 8. Ratio of the correlation energy density to the exchange
energy density, εc/εx, in LDA with the PZ81 [18] functional as a
function of ξ .

three orders of magnitude, the corresponding ξ increases by
one order of magnitude. This range is illustrated in Fig. 8.
Therefore, Ec/Ex is of O(10−2) in atomic nuclei. In the limit
of ξ → 0, εc/εx goes to zero.

In terms of the fine-structure constant α, the exchange
energy density εx in LDA is exactly proportional to α; i.e.,
the exchange energy comes from the two-body Coulomb
interaction only. For the correlation energy density εc in LDA,
it is found that εc is also proportional to α in the case of large ξ .
This indicates at the low-density limit, e.g., in electron systems,
the leading-order contribution to the correlation energy also
comes from the two-body Coulomb interaction. In contrast,
in the case of small ξ , εc is of the order of O(α2 log α).

0

1

2

3

4

0 2 4 6 8 10

Surface

F
G

G
A

s

LDA
B88
PW91
PBE
PBEsol

FIG. 9. GGA exchange enhancement factors F GGA as a function
of s. Those given by the B88 [20], PW91 [21], PBE [22], and PBEsol
[23] functionals are shown with the short-dashed, dot-dashed, solid,
and dot-dot-dashed lines, respectively. For comparison, F ≡ 1 by the
LDA is shown with the long-dashed line.
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This implies in atomic nuclei the leading-order contribution
to the correlation energy comes from beyond the two-body
interaction.

In Fig. 9, the GGA exchange enhancement factors F GGA

given by the B88, PW91, PBE, and PBEsol functionals are

shown as a function of s. It is seen that all four GGA functionals
behave similarly in the range 0 � s � 3, before they start to
diverge from each other. In this region, F (s) � 1, which means
the absolute value of the GGA exchange energy is larger than
that of the LDA.
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