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Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter
using local chiral effective-field-theory interactions. In this work, we present a detailed description of the
auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon
interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge
form factor, and Coulomb sum rule in nuclei with 3 � A � 16. Particular attention is devoted to the effect of
different operator structures in the three-body force for different cutoffs. The outcomes suggest that local chiral
interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up
to 16O, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.
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I. INTRODUCTION

The solution of the many-body Schrödinger equation de-
scribing a system of interacting baryons is challenging because
of the nonperturbative nature and the strong spin/isospin
dependence of realistic nuclear interactions. Quantum Monte
Carlo (QMC) methods provide a powerful tool to tackle the
nuclear many-body problem in a nonperturbative fashion. They
have been proven to be remarkably successful in describing the
properties of strongly correlated fermions in a large variety of
physical conditions [1].

Historically, QMC methods have made use of phe-
nomenological nuclear interactions, such as the Argonne v18

(AV18) nucleon-nucleon (NN ) potential combined with Ur-
bana/Illinois models for the three-nucleon (3N ) forces [1]. By
construction, these potentials are nearly local, meaning that the
dominant parts of the interaction depend only on the relative
distance, spin, and isospin of the two interacting nucleons,
and not upon their momenta. This feature has been one of
the keys to success for the application of QMC algorithms to
the study of nuclear systems. Green’s function Monte Carlo
(GFMC) and auxiliary field diffusion Monte Carlo (AFDMC)
methods have employed these phenomenological potentials
to accurately calculate properties of nuclei, neutron drops,
and neutron-star matter [1–8]. Despite the large success of
such models, phenomenological interactions are not free from
drawbacks. They do not provide a systematic way to estimate
theoretical uncertainties, and it is not clear how to improve
their quality. In addition, some models of the 3N force provide
a too soft equation of state of neutron matter [4,9], with the
consequence that the predicted neutron-star maximum mass

is not compatible with the observation of heavy neutron stars
[10,11].

An alternative approach to nuclear interactions that over-
comes the limitations of the phenomenological models is
provided by chiral effective field theory (EFT) [12,13]. In
chiral EFT, nuclear interactions are systematically derived in
connection with the underlying theory of the strong interaction,
by writing down the most general Lagrangian consistent
with the symmetries of low-energy quantum chromodynamics
(QCD) in terms of the relevant degrees of freedom at low
energies: nucleons and pions. A power-counting scheme is
then chosen to order the resulting contributions according to
their importance. The result is a low-energy EFT according
to which nuclear forces are given in an expansion in the ratio
of a soft scale (the pion mass or a typical momentum scale
in the nucleus) to a hard scale (the chiral breakdown scale).
The long-range part of the potential is given by pion-exchange
contributions that are determined by the chiral symmetry of
QCD and low-energy experimental data for the pion-nucleon
system. The short-range terms are instead characterized by
contact interactions described by so-called low-energy con-
stants (LECs), which are fit to reproduce experimental data
(NN scattering data for the two-body part of the interaction,
and few- and/or many-body observables for the many-body
components). Among the advantages of such an expansion,
compared to traditional approaches, are the ability to system-
atically improve the quality of the interaction order by order,
the possibility to estimate theoretical uncertainties, the fact that
many-body forces arise naturally, and that electroweak currents
can be derived consistently.
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In the last decade, intense efforts have been devoted to
the development of chiral EFT interactions, as shown by the
availability of different potentials in the literature [12–19],
typically written in momentum space. It is only in recent years
that chiral EFT interactions have been formulated equivalently
in coordinate space. New potentials are now available, includ-
ing next-to-next-to-leading-order (N2LO) local interactions
[20,21], supplemented by consistent 3N potentials [22,23],
as well as chiral interactions with explicit delta degrees of
freedom [24–26].

Local chiral interactions up to N2LO can be written using
the same operator structure as the phenomenological poten-
tials, providing for the first time the opportunity to combine
EFT-derived interactions and accurate QMC methods. The
GFMC method has been used to study the ground state of
light nuclei employing local chiral interactions [20–23,25–29].
The same potentials have been used in AFDMC calculations
of pure neutron systems, ranging from few-body systems
[30–32] to pure neutron matter [20–22]. More recently, the
first AFDMC study of p-shell nuclei employing local chiral
interactions was reported [33]. In this work, we provide a
comprehensive description of the AFDMC algorithm for the
study of ground-state properties of light and medium-mass
nuclei employing local chiral interactions at N2LO, extending
the findings of Ref. [33].

The structure of this paper is as follows. In Sec. II we
introduce the nuclear Hamiltonian employed in this work. In
Secs. III and IV we review the main features of the employed
QMC methods. Section V is devoted to the description of the
employed trial wave functions. In Sec. VI we present our results
for nuclei with 3 � A � 16. Finally, we give a summary in
Sec. VII.

II. HAMILTONIAN

Nuclei are described as a collection of point-like particles
of mass mN interacting via two- and three-body potentials
according to the nonrelativistic Hamiltonian

H = − h̄2

2mN

∑
i

∇2
i +

∑
i<j

vij +
∑

i<j<k

Vijk, (1)

where the two-body interaction vij also includes the Coulomb
force.

In QMC calculations, it is convenient to express the interac-
tions in terms of radial functions multiplying spin and isospin
operators. The commonly employed Argonne v′

8 (AV8′) poten-
tial [34], as well as the two-body part of the recently developed
local chiral interactions [20], can be expressed as

vij =
8∑

p=1

vp(rij )Op
ij , (2)

with

Op=1,8
ij = [1,σ i · σ j ,Sij ,L · S] ⊗ [1,τ i · τ j ], (3)

where

Sij = 3 σ i · r̂ij σ j · r̂ij − σ i · σ j (4)

is the tensor operator, and

L = 1

2i
(ri − rj ) × (∇i − ∇j ), (5)

S = 1

2
(σ i + σ j ) (6)

are the relative angular momentum and the total spin of the
pair ij , respectively. The radial functions of Eq. (2) are fitted to
NN scattering data. At N2LO, the operator structure of the local
chiral interactions is the same as above, with the only exception
that the L · S τ i · τ j term is not present at N2LO. In this
work, we consider LO, NLO, and N2LO two-body potentials
of Ref. [21] with spectral-function cutoff �̃ = 1000 MeV
and coordinate-space cutoffs R0 = 1.0 fm and R0 = 1.2 fm,
approximately corresponding to cutoffs in momentum space
of 500 and 400 MeV [28] (note, however, also Ref. [35]).

The three-body force Vijk is written as a sum of contri-
butions coming from two-pion exchange (TPE), plus shorter-
range terms. In the case of local chiral interactions at N2LO, P -
and S-wave TPE contributions are included, and they are char-
acterized by the same LECs involved in the two-body sector.
The shorter-range part of the 3N force is instead parametrized
by two contact terms, the LECs of which have been fit to the
α-particle binding energy and to the spin-orbit splitting in the
neutron-α P -wave phase shifts (see Refs. [23,28] for more
details).

The chiral 3N interaction at N2LO can be conveniently
written as

V = V 2π,P
a + V 2π,P

c + V 2π,S + VD + VE, (7)

where the first three terms correspond to the TPE diagrams in
P and S waves (Eqs. (A1b), (A1c), and (A1a) of Ref. [28],
respectively). The subscripts a and c refer to the operator
structure of such contributions, which can be written in terms
of anticommutators or commutators, respectively. VD and VE

involve contact terms. In this work, we employ the form (A2b)
of Ref. [28] forVD , and we consider two choices forVE , namely
Eτ and E1 (Eqs. (A3a) and (A3b) of Ref. [28]).

By defining the quantities

δR0 (r) = n

4πR3
0�(3/n)

e−(r/R0)n ,

T (r) =
(

1 + 3

mπr
+ 3

m2
πr2

)
e−mπ r

mπr
Tc(r),

Y (r) = e−mπ r

mπr
Yc(r),

Z(r) = mπr

3
(Y (r) − T (r)),

Yc(r) = 1 − e−(r/R0)n , (8)

Tc(r) = (1 − e−(r/R0)n)nt ,

Xiαjβ = (
3 δαγ r̂

γ
ij δβμ r̂

μ
ij − δαβ

)
T (rij ) + δαβ Y (rij ),

Xiαjβ = Xiαjβ(rij ) − δαβ

4π

m3
π

δR0 (rij ),

Zijα = Z(rij ) δαγ r̂
γ
ij ,
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we can recast the contributions of Eq. (7) in a form that is suitable for QMC calculations:

V 2π,P
a = A2π,P

a

∑
i<j<k

∑
cyc

{τ i · τ k,τ j · τ k}
{
σα

i σ
γ
k ,σ

μ
k σ

β
j

}Xiαkγ Xkμjβ

= 4 A2π,P
a

∑
i<j

τ i · τ j σ α
i σ

β
j

∑
k �=i,j

Xiαkγ Xkμjβ

= 4 A2π,P
a

∑
i<j

τ i · τ j σ α
i σ

β
j

∑
k �=i,j

(
Xiαkγ − δαγ

4π

m3
π

δR0 (rik)

)(
Xkμjβ − δμβ

4π

m3
π

δR0 (rkj )

)

= V XX
a + V Xδ

a + V δδ
a , (9)

V 2π,P
c = A2π,P

c

∑
i<j<k

∑
cyc

[τ i · τ k,τ j · τ k]
[
σα

i σ
γ
k ,σ

μ
k σ

β
j

]Xiαkγ Xkμjβ

= A2π,P
c

∑
i<j<k

∑
cyc

[τ i · τ k,τ j · τ k]
[
σα

i σ
γ
k ,σ

μ
k σ

β
j

](
Xiαkγ − δαγ

4π

m3
π

δR0 (rik)

)(
Xkμjβ − δμβ

4π

m3
π

δR0 (rkj )

)

= V XX
c + V Xδ

c + V δδ
c , (10)

V 2π,S = A2π,S
∑

i<j<k

∑
cyc

τ i · τ j σ α
i σ

β
j Zikα Zjkα

= A2π,S
∑
i<j

τ i · τ j σ α
i σ

β
j

∑
k �=i,j

Zikα Zjkα, (11)

VD = AD

∑
i<j

τ i · τ j σ α
i σ

β
j

∑
k �=i,j

Xiαjβ

[
δR0 (rik) + δR0 (rjk)

]

= AD

∑
i<j

τ i · τ j σ α
i σ

β
j

∑
k �=i,j

(
Xiαjβ − δαβ

4π

m3
π

δR0 (rij )

)[
δR0 (rik) + δR0 (rjk)

]
= V Xδ

D + V δδ
D , (12)

VE = AE

∑
i<j

τ i · τ j

∑
k �=i,j

δR0 (rik)δR0 (rjk), (13)

where the sum over the coordinate projections (greek in-
dices) is implicit. Equation (13) is the expression for the Eτ
parametrization of the contact term VE . The E1 form is recov-
ered by setting τ i · τ j = 1. For the local chiral interactions at
N2LO, we have

A2π,P
a = 1

2

(
gA

f 2
π

)2( 1

4π

)2
m6

π

9
c3,

A2π,P
c = − c4

2c3
A2π,P

a ,

A2π,S =
(

gA

2fπ

)2(mπ

4π

)2 4m6
π

f 2
π

c1, (14)

AD = m3
π

12π

gA

8f 2
π

1

f 2
π �χ

cD,

AE = cE

f 4
π �χ

,

where gA = 1.267 is the axial-vector coupling constant, fπ =
92.4 MeV is the pion decay constant, mπ = 138.03 MeV is
the averaged pion mass, �χ is taken to be a heavy meson scale
�χ = 700 MeV, and c1, c3, c4, cD, cE are the LECs. Note that,

using these definitions, the structure of the phenomenological
Urbana IX (UIX) model is recovered by imposing δR0 (r) = 0,
n = 2, nt = 2, and A2π,P

c = 1
4A2π,P

a as well as AD = AE = 0.

III. REVIEW OF THE VMC METHOD

In the variational Monte Carlo (VMC) method, given a trial
wave function �T , the expectation value of the Hamiltonian
H is given by

E0 � 〈H 〉 = 〈�T |H |�T 〉
〈�T |�T 〉 =

∫
dR �∗

T (R)H�T (R)∫
dR �∗

T (R)�T (R)
, (15)

whereR = {r1, . . . ,rA} are the coordinates of the particles, and
there is an implicit sum over all the particle spin and isospin
states. E0 is the energy of the true ground state with the same
quantum numbers as �T , and the leftmost equality in the above
relation is valid only if the wave function is the exact ground-
state wave function �0. In the VMC method, one typically
minimizes the energy expectation value of Eq. (15) with respect
to changes in the variational parameters, in order to obtain �T

as close as possible to �0.
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The integral of Eq. (15) can be rewritten as

〈H 〉 =
∫

dR P (R)H�T (R)
�T (R)∫

dR P (R)
, (16)

where P (R) = |�T (R)|2 can be interpreted as a probability
distribution of points R in a 3A-dimensional space. The above
multidimensional integral can be solved using Monte Carlo
sampling. In practice, a number of configurations Ri are
sampled using the Metropolis algorithm [36], and the local
energy of the system is calculated as

〈E〉 = 1

A

A∑
i=1

〈Ri |H |�T 〉
〈Ri |�T 〉 , (17)

where 〈R|�T 〉 = �T (R). More details on the sampling proce-
dure and on the calculation of statistical errors can be found,
e.g., in Ref. [37].

For spin/isospin-dependent interactions the generalization
of Eq. (15) is straightforward:

〈H 〉 =
∫

dR
∑

S,S ′ �∗
T (R,S ′)HS,S ′�T (R,S)∫

dR
∑

S |�T (R,S)|2 , (18)

where now the wave function also depends upon spin and
isospin states S = {s1, . . . ,sA}, and

HS,S ′ = 〈S ′|S〉
[
− h̄2

2m

∑
i

∇2
i

]
+ 〈RS ′|V |RS〉. (19)

In this case, the VMC method can be implemented by either
explicitly summing over all the spin and isospin states,

〈H 〉 =
∫

dR EL(R)P (R),

P (R) =
∑

S |�T (R,S)|2∫
dR

∑
S |�T (R,S)|2 , (20)

EL(R) =
∑

S,S ′ �∗
T (R,S ′)HS,S ′�T (R,S)∑

S |�T (R,S)|2 ,

or by sampling the spin and isospin states

〈H 〉 =
∫

dR
∑

S

EL(R,S)P (R,S),

P (R,S) = |�T (R,S)|2∫
dR |�T (R,S)|2 , (21)

EL(R,S) =
∑

S ′ �∗
T (R,S ′)HS,S ′�T (R,S)

|�T (R,S)|2 .

The Metropolis algorithm can then be used to sample either R
from P (R) in the former case, or R and S from P (R,S) in the
latter case.

IV. REVIEW OF THE AFDMC METHOD

Diffusion Monte Carlo (DMC) methods are used to project
out the ground state with a particular set of quantum numbers.
The starting point is a trial wave function |�T 〉, typically the
result of a VMC minimization, that is propagated in imaginary

time τ :

|�0〉 ∝ lim
τ→∞ e−(H−ET )τ |�T 〉, (22)

where ET is a parameter that controls the normalization.
For spin/isospin-independent interactions, the object to be
propagated is given by the overlap between the wave function
and a set of configurations in coordinate space 〈R|�T 〉 =
�T (R). By using the completeness relation

∫
dR|R〉〈R| = 1,

we can write the propagation in imaginary time as

〈R′|�(τ )〉 =
∫

dR G(R′,R,τ ) 〈R|�T (0)〉, (23)

where the propagator (or Green’s function) G is defined as the
matrix element between the two points R and R′ in the volume

G(R′,R,τ ) = 〈R′|e−(H−ET )τ |R〉, (24)

and 〈R′|�(τ )〉 approaches the true ground state for large
imaginary time.

In practice, it is not possible to directly compute the
propagator G(R′,R,τ ). However, one can use the short-time
propagator G(R′,R,dτ ),

〈R′|�(τ )〉 =
∫

dRn dRn−1 · · · dR1 dR G(R′,Rn,δτ )

× G(Rn−1,Rn−2,δτ ) · · · G(R1,R,δτ )〈R|�T (0)〉,
(25)

and then employ Monte Carlo techniques to sample the paths
Ri in the imaginary-time evolution. The method is accurate for
small values of the time step δτ , and the exact result can be
determined by using different values of δτ and extrapolating
to δτ → 0.

By using the Trotter formula [38] to order dτ 3, the short-
time propagator can be approximated with

G(R′,R,δτ ) ≡ 〈R′|e−(H−ET )δτ |R〉
≈ 〈R′|e−(V −ET ) δτ

2 e−T δτ e−(V −ET ) δτ
2 |R〉, (26)

where T is the nonrelativistic kinetic energy, and V is the
employed potential. The propagator for the kinetic energy
alone corresponds to the free-particle propagator

G0(R′,R) = 〈R′|e−T δτ |R〉

=
(

m

2πh̄2δτ

) 3A
2

e
− m(R−R′ )2

2h̄2δτ , (27)

which yields a Gaussian diffusion for the paths in coordinate
space, with σ 2 = 4 h̄2

2m
δτ . The propagator for spin/isospin-

independent potentials is simply given by

〈R′|e−(V −ET )δτ |R〉 ≈
∏
i<j

e−[V (rij )−ET ]δτ δ(R − R′), (28)

where each pair interaction can be simply evaluated as a
function of the coordinates of the system, and the energy ET

results in a normalization factor. Note that the addition of
spin/isospin-independent three- and many-body interactions
is straightforward.

For spin/isospin-dependent interactions, the propagation of
the potential becomes more complicated. In general, this is
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because quadratic operators like σ i · σ j generate amplitudes
along the singlet and the triplet states of a pair. The propagator
of Eq. (28) generalizes in this case to

〈R′|e−(V −ET )δτ |R〉 → 〈R′S ′|e−(V −ET )δτ |RS〉
≈ 〈S ′|

∏
i<j

e−(V (rij )−ET )δτ |S〉 δ(R − R′), (29)

where now the matrix exp[−(V − ET )δτ ] is not diagonal
in the spin of each pair. One possible strategy to compute
the propagator of Eq. (29) is to include all the spin and
isospin states in the trial wave function, as is done in GFMC
calculations [1]. This, however, implies a number of wave-
function components proportional to 2A, which currently limits
GFMC calculations to A = 12.

The idea of the AFDMC method is to start from a trial
wave function whose computational cost is polynomial with A,
rather than exponential. Such a wave function can be written
in the single-particle representation

〈S|�〉 ∝ ξα1 (s1) ξα2 (s2) · · · ξαA
(sA), (30)

where ξαi
(si) are functions of the spinor si with state αi . In the

above expression, the radial orbitals are omitted for simplicity,
and the antisymmetrization is trivial.

A quadratic operator in the spin acting on the wave function
above generates two different amplitudes,

〈S|σ 1 · σ 2|�〉 = 〈S|2Pσ
12 − 1|�〉

= 2 ξα1 (s2) ξα2 (s1) ξα3 (s3) · · · ξαA
(sA)

− ξα1 (s1) ξα2 (s2) ξα3 (s3) · · · ξαA
(sA)

= 〈S ′|�〉 + 〈S ′′|�〉. (31)

In general, the action of all pairwise spin/isospin opera-
tors (or propagators) generates 2A

(
A
Z

)
amplitudes (if charge

conservation is imposed). Even though this number can be fur-
ther reduced by assuming that the nucleus has good isospin [1],
the action of pairwise operators largely increases the number
of components with respect to the initial wave function, thus
losing the computational advantage of the polynomial scaling
with A. However, linear spin/isospin operators do not break the
single-particle representation. They simply imply rotations of
the initial spinors, without generating new amplitudes, as for
instance

〈S|σα
1 |�〉 = σα

1 ξα1 (s1) ξα2 (s2) ξα3 (s3) · · · ξαA
(sA)

= ξα1 (s ′
1) ξα2 (s2) ξα3 (s3) · · · ξαA

(sA)

= 〈S ′|�〉. (32)

Quadratic operators can be linearized by using the Hubbard-
Stratonovich transformation

e− 1
2 λO2 = 1√

2π

∫
dx e− x2

2 +√−λxO, (33)

where x are usually called auxiliary fields, and the integral
above can be computed with Monte Carlo techniques, i.e.,
by sampling points x with probability distribution P (x) =
exp(−x2/2). By using the transformation of Eq. (33), Hamil-
tonians involving up to quadratic operators in spin and isospin
can be efficiently employed in the imaginary-time propagation
of a trial wave function of the form of Eq. (30), retaining the
good polynomial scaling with A.

A. Propagation of spin/isospin quadratic operators

Let us consider the two-body interaction of Eq. (2) up to
p = 6,

V 6
NN =

∑
i<j

{[v1(rij ) + v2(rij ) τ i · τ j ]1 + [v3(rij ) + v4(rij ) τ i · τ j ]σ i · σ j + [v5(rij ) + v6(rij ) τ i · τ j ]Sij }

=
∑
i<j

v1(rij ) +
∑
i<j

[v2(rij )]τ i · τ j +
∑
i<j

∑
αβ

[
v3(rij ) δαβ + v5(rij )

(
3 r̂α

ij r̂
β
ij − δαβ

)]
σα

i σ
β
j

+
∑
i<j

∑
αβ

[
v4(rij ) δαβ + v6(rij )

(
3 r̂α

ij r̂
β
ij − δαβ

)]
τ i · τ j σ α

i σ
β
j

= VSI (R) + 1

2

∑
i �=j

A
(τ )
ij τ i · τ j + 1

2

∑
i �=j

∑
αβ

A
(σ )
iαjβ σ α

i σ
β
j + 1

2

∑
i �=j

∑
αβ

A
(στ )
iαjβ τ i · τ j σ α

i σ
β
j

= VSI (R) + VSD(R), (34)

where VSI (VSD) is the spin/isospin-independent (-dependent) part of the interaction, and A
(τ )
ij (A × A), A

(σ )
iαjβ (3A × 3A), and

A
(στ )
iαjβ (3A × 3A) are real and symmetric matrices. As such, these matrices can be diagonalized,∑

j

A
(τ )
ij ψ

(τ )
n,j = λ(τ )

n ψ
(τ )
n,i ,

∑
jβ

A
(σ )
iαjβ ψ

(σ )
n,jβ = λ(σ )

n ψ
(σ )
n,iα, (35)

∑
jβ

A
(στ )
iαjβ ψ

(στ )
n,jβ = λ(στ )

n ψ
(στ )
n,iα ,
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and it is possible to define a new set of operators expressed in
terms of their eigenvectors,

O(τ )
nα =

∑
j

τ α
j ψ

(τ )
n,j ,

O(σ )
n =

∑
jβ

σ
β
j ψ

(σ )
n,jβ, (36)

O(στ )
nα =

∑
jβ

τ α
j σ

β
j ψ

(στ )
n,jβ ,

such that the spin/isospin-dependent part of Eq. (34) can be
recast as

VSD(R) = 1

2

3∑
α=1

A∑
n=1

λ(τ )
n

(O(τ )
nα

)2 + 1

2

3A∑
n=1

λ(σ )
n

(O(σ )
n

)2

+ 1

2

3∑
α=1

3A∑
n=1

λ(στ )
n

(O(στ )
nα

)2
. (37)

The potential written in this form contains only quadratic
operators in spin/isospin. We can thus use the Hubbard-
Stratonovich transformation of Eq. (33) to write the propagator
of the V 6

NN interaction acting on a configuration |RS〉 as

e−V 6
NN δτ |RS〉 = e−VSI (R)δτ

15A∏
m=1

1√
2π

×
∫

dxm e
x2
m
2 e

√−λmδτ xmOm |RS〉 = |RS ′〉,
(38)

where 15 auxiliary fields are needed for each nucleon: 3 for τ
operators, 3 for σ , and 9 for στ . The propagation (rotation) of
spinors depends upon the sampling of the auxiliary fields X =
{xm}; so does the new spin/isospin configurations S ′ ≡ S ′(X).
The full short-time propagator, which includes both kinetic and
potential energies, can finally be expressed as

G(R′,R,S ′(X),S,δτ )

= 〈R′S ′|
(

m

2πh̄2δτ

) 3A
2

e
− m(R−R′ )2

2h̄2δτ e−(VSI (R)−ET )δτ
15A∏
m=1

1√
2π

×
∫

dxm e− x2
m
2 e

√−λmδτ xmOm |RS〉. (39)

Note that the above expressions refer to the sim-
ple propagator exp[−T δτ ] exp[−(V − ET )δτ ]. In prac-
tice, we sample the more accurate propagator exp[−(V −
ET )δτ/2] exp[−T δτ ] exp[−(V − ET )δτ/2], which implies
two sets of rotations in δτ/2: the first depending on R, and
the second on the diffused R′, for a total of 30 auxiliary fields.
Compared to the GFMC method, where the coordinates are
sampled and the spin and isospin states are explicitly included
and summed, in AFDMC, spin and isospin are also sampled
via Hubbard-Stratonovich rotations. This largely reduces the
computational cost of the imaginary-time propagation of a
many-body wave function, allowing one to calculate nuclei
more efficiently up 12C, and to go beyond A = 12.

B. Propagation of spin-orbit operators

The spin-orbit operator reads

vLS(rij ) = v7(rij ) L · S, (40)

where L and S are defined in Eqs. (5) and (6), respectively.
As shown in Ref. [39], one way to evaluate the propagator for
spin-orbit operators is to consider the expansion at first order
in δτ ,

e−v7(rij ) L·S δτ ≈ 1 − v7(rij ) L · S δτ, (41)

acting on the free propagator G0 of Eq. (27). The resulting
propagator is

GLS ≈ exp

⎛
⎝∑

i �=j

1

8i

2m

h̄2 v7(rij )(ri − rj )

× (�ri − �rj ) · (σ i + σ j )

⎞
⎠, (42)

where �ri = ri − r′
i is the difference of the particle position

before and after the action of the free propagator G0. Note that
the above propagator is only linear in the spin, i.e., it does not
require any auxiliary field to be sampled. However, it can be
shown that it induces spurious counter terms [9]. These can be
removed by using the modified propagator

GLS ≈ exp

⎛
⎝∑

i �=j

1

4i

m

h̄2δτ
v7(rij )[rij × �rij ] · σ i

⎞
⎠

× exp

⎛
⎝−1

2

⎡
⎣∑

i �=j

1

4i

m

h̄2 v7(rij )[rij × �rij ] · σ i

⎤
⎦

2⎞
⎠.

(43)

This alternative version of the spin-orbit propagator con-
tains quadratic spin operators, and thus it requires additional
Hubbard-Stratonovich fields to be sampled, but it is correct at
order δτ .

C. Propagation of three-body forces

Several terms of the 3N interaction [Eq. (7)] can be directly
included in the AFDMC propagator. These are V 2π,P

a , V 2π,S ,
VD , and VE of Eqs. (9) and (11)–(13), which correspond to
terms involving only quadratic spin and isospin operators.
These have the same operator structure as the spin/isospin-
dependent part of the two-body potential (Eq. (34)). The
dependence on the third particle k enters only in the radial
functions Xiαjβ , Zijα , and δR0 (r), which can be absorbed in the
definition of the matrices A

(τ )
ij and A

(στ )
iαjβ .

The structure of V 2π,P
c contains instead cubic spin and

isospin operators, and the Hubbard-Stratonovich transforma-
tion of Eq. (33) cannot be applied. It follows that these
terms cannot be exactly included in the standard AFDMC
propagation. It may be possible to invoke more complicated
algorithms to sample them, but the imaginary-time step will
need to be higher order in δτ . However, their expectation
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value can always be calculated, and it can be used to derive
an approximate three-body propagator for V 2π,P

c .
Let us define an effective Hamiltonian H ′ that can be exactly

included in the AFDMC propagation:

H ′ = H − V 2π,P
c + α1V

XX
a + α2V

Xδ
D + α3VE. (44)

The three constants αi are adjusted in order to have〈
V XX

c

〉 ≈ 〈
α1V

XX
a

〉
,〈

V Xδ
c

〉 ≈ 〈
α2V

Xδ
D

〉
, (45)〈

V δδ
c

〉 ≈ 〈α3VE〉,
where 〈 · · · 〉 indicates the average over the wave function (see
Sec. IV E), and the identifications are suggested by the similar
ranges and functional forms.

Once the ground state � ′
0 of H ′ is calculated via the

AFDMC imaginary-time propagation, the expectation value
of the Hamiltonian H is given by

〈H 〉 ≈ 〈� ′
0|H ′|� ′

0〉 + 〈� ′
0|H − H ′|� ′

0〉
≈ 〈H ′〉 + 〈

V 2π,P
c − α1V

XX
a − α2V

Xδ
D − α3VE

〉
≈ 〈H ′〉 + 〈Vpert〉, (46)

where the last term is evaluated perturbatively, meaning that
its expectation value is calculated, even though not all the
operators are included in the propagator (V 2π,P

c ). By oppor-
tunely adjusting the constants αi of Eq. (45), we ensure that
the correction 〈Vpert〉 is small compared to 〈H ′〉. A similar
approach is used in the GFMC method to calculate the small
nonlocal terms that are present in the AV18 interaction. In that
case the difference v′

8 − v18 is calculated as a perturbation [40].

D. Importance sampling

Diffusion Monte Carlo algorithms, such as the GFMC
and AFDMC methods, are much more efficient when im-
portance sampling techniques are also implemented. In fact,
sampling spatial and spin/isospin configurations according
to G(R′,R,S ′(X),S,δτ ) might not always be efficient. For
instance, consider the case of a strongly repulsive interaction
at short distances. In such a situation, sampling the spatial
coordinates according to the kinetic energy only is not an
optimal choice because no information about the interaction
is included in sampling the paths, but only through the
weights associated with the configurations. As a result, an
inefficiently sampled path might have a very small weight,
making its contribution very small along the imaginary
time.

Suppose that we construct a positive definite wave function
�G close to that of the true ground state of the Hamiltonian
H . �G can be used to guide the imaginary-time evolution by
defining a better propagator compared to that of Eq. (23), to be
used to sample coordinates and spin/isospin configurations:

〈�G|R′S ′〉〈R′S ′|�(δτ )〉

=
∫

dR G(R′,R,S ′(X),S,δτ ) 〈�G|R′S ′(X)〉〈RS|�T (0)〉

=
∫

dR G(R′,R,S ′(X),S,δτ )

× 〈�G|R′S ′(X)〉
〈�G|RS〉 〈�G|RS〉〈RS|�T (0)〉. (47)

Note that if �G is positive definite, the above propagation does
not change the variance of the computed observables.

In typical DMC calculations the modified propagator is
sampled by shifting the Gaussian in the free propagator,
and then including the local energy in the weight of the
configuration (see, e.g., Ref. [41]). A similar approach has
also been used in AFDMC calculations in the past. However,
in the latest implementation of the AFDMC method, a much
more efficient way to implement the importance sampling
propagator is used.

The goal is to sample the modified propagator

G(R′,R,S ′(X),S,δτ )
〈�G|R′S ′(X)〉

〈�G|RS〉 . (48)

We first sample a set of coordinate displacements �R accord-
ing to Eq. (39) and a set of auxiliary fields X from Gaussian
distributions. Since the propagator G implies the Gaussian
sampling for the kinetic energy and for the auxiliary fields,
sampling �R and X has the same probability of sampling
−�R and −X. Driven by this observation, we calculate the
ratios

w1 = 〈�G|R + �R,S ′(X)〉
〈�G|RS〉 e−[VSI (R+�R)−ET ]δτ ,

w2 = 〈�G|R − �R,S ′(X)〉
〈�G|RS〉 e−[VSI (R−�R)−ET ]δτ ,

w3 = 〈�G|R + �R,S ′(−X)〉
〈�G|RS〉 e−[VSI (R+�R)−ET ]δτ ,

w4 = 〈�G|R − �R,S ′(−X)〉
〈�G|RS〉 e−[VSI (R−�R)−ET ]δτ ,

(49)

where VSI is the spin/isospin-independent part of the interac-
tion. We then sample one of the above choices according to the
ratios wi . Finally, the total weight of the new configuration is
given by

W = 1

4

∑
i

wi, (50)

and W is used for branching as in the standard DMC
method [1].

E. Observables

The expectation value of an observable O is calculated by
using the sampled configurations RiSi as

〈O(τ )〉 =
∑

i
〈RiSi |O|�T 〉

W
W

〈RiSi |�T 〉∑
i

W
〈RiSi |�T 〉

. (51)

The above expression is valid only for observables that com-
mute with the Hamiltonian. For other observables, such as
radii and densities, expectation values are often calculated from
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mixed estimates

〈O(τ )〉 ≈ 2
〈�T |O|�(τ )〉
〈�T |�(τ )〉 − 〈�T |O|�T 〉

〈�T |�T 〉 , (52)

where the first term corresponds to the DMC expectation value
and the second term is the VMC one. Equation (52) is valid
for diagonal matrix elements, but it can be generalized to
the case of off-diagonal matrix elements, e.g., in transition
matrix elements between different initial and final states (see
Ref. [42]).

Note that the extrapolation above is small for accurate trial
wave functions. This is the case, for instance, for closed-
shell nuclei and single operators. For open-shell systems,
particularly for halo nuclei, the information encoded in the
trial wave function may not be as accurate as that for simpler
systems. This can result in a non-negligible extrapolation of
the mixed expectation value. An example of this behavior is
provided by the nuclear radius, the VMC expectation value
of which is typically larger than the DMC one for open-shell
systems. One way to reduce the extrapolation of the mixed
estimate for the radius is to use a penalty function during the
optimization of the variational parameters in the trial wave
function. This penalty function sets a constraint on the VMC
radius so as to adjust its expectation value close to the DMC
estimate, thus reducing the extrapolation.

F. Constrained and unconstrained evolution

The fact that the weight W is always real and positive
and that �T is complex makes the denominator of Eq. (51)
average quickly to zero. This is the well known sign problem
in DMC methods. One way to avoid the sign problem is to use
a constraint during the imaginary-time evolution. In practice,
a configuration is given zero weight (thus it is dropped during
branching) if its real part changes sign.

In our implementation of the AFDMC method, we follow
Ref. [43]. In sampling the propagator, we calculate the weights
wi of Eq. (49) as

〈�G|(R′,S ′(X)〉
〈�G|RS〉 → Re

{ 〈�T |(R′,S ′(X)〉
〈�T |RS〉

}
, (53)

and we then apply the constraint by assigning zero weight to
a move that results in a negative ratio. This is analogous to the
constrained-path approximation [44], but for complex wave
functions and propagators.

This constrained evolution does not suffer a sign problem,
but it makes the final result dependent on the choice of
�T . Moreover, it implies that the calculated energy is not
necessarily an upper bound to the true ground-state energy,
as is the case of the fixed-node approximation in real space
[41,45].

The results given by the constrained evolution can be
improved by releasing the constraint and following the uncon-
strained evolution. After a set of configurations is generated
using the constraint, the guiding function is taken as

〈�G|RS〉 = Re{〈�G|RS〉} + α Im{〈�G|RS〉}, (54)

where α is a small arbitrary constant. This ensures that the
ratio in the weights wi of Eq. (49) is always positive and

real. The propagation continues then according to the modified
〈�G|RS〉, and observables are calculated as before according
to Eq. (51). In several cases the expectation value 〈O〉 reaches
a stable value independent of imaginary time before the signal-
to-noise ratio goes to zero, and the result is exact within the
statistical uncertainty. This is the case for light systems, A � 4.
For larger nuclei the variance grows much faster as a function
of the imaginary time, so that the unconstrained evolution
cannot always be followed until 〈O〉 reaches a plateau. In
these cases, the final result is extrapolated using an exponential
fit as in Ref. [40]. We found that a single-exponential form
with free-sign coefficients yields the most stable fits in our
case. Such a form has been used to obtain all the quoted
results. Examples of unconstrained evolution are provided in
Sec. VI A.

V. TRIAL WAVE FUNCTION

The AFDMC trial wave function we use takes the form

〈RS|�〉 = 〈RS|
∏
i<j

f 1
ij

∏
i<j<k

f 3c
ijk

×
⎡
⎣1 +

∑
i<j

6∑
p=2

f
p
ij Op

ij f
3p
ij +

∑
i<j<k

Uijk

⎤
⎦|�〉Jπ ,T ,

(55)

where |RS〉 represents the sampled 3A spatial coordinates and
the 4A spin/isospin amplitudes for each nucleon, and the pair
correlation functions f

p=1,6
ij ≡ f p=1,6(rij ) are obtained as the

solution of Schrödinger-like equations in the relative distance
between two particles, as explained in Ref. [1]. The two
spin/isospin-independent functions f 3c

ijk and f
3p
ij are defined

as

f 3c
ijk = 1 + qc

1 rij · rik rji · rjk rki · rkj e−qc
2 (rij +rik+rjk ),

f
3p
ij =

∏
k

[1 − q
p
1 (1 − rik · rjk) e−q

p
2 (rij +rik+rjk )], (56)

and they are introduced to reduce the strength of the
spin/isospin-dependent pair correlation functions when other
particles are nearby [40]. Finally, three-body spin/isospin-
dependent correlations are also included as

Uijk =
∑

n

εnV
n
ijk(αnrij ,αnrik,αnrjk), (57)

where the terms V n
ijk are the same as the 3N interactions of

Eq. (7), εn are potential quenching factors, and αn are coor-
dinate scaling factors. In the correlations above, we include
the four terms V 2π,P

a , V 2π,S , VD , and VE . V 2π,P
c can also be

implemented in the trial wave function, but since its structure
involves three-body spin/isospin operators, its inclusion results
in a severely larger computational cost.

The term |�〉 is taken as a shell-model-like wave function.
It consists of a sum of Slater determinants constructed using
single-particle orbitals,

〈RS|�〉Jπ ,T =
∑

n

cn

[∑
CJM D{φα(ri ,si)}J,M

]
Jπ ,T

, (58)
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where ri are the spatial coordinates of the nucleons, and si

represents their spinor. J is the total angular momentum,
M its projection, T the total isospin, and π the parity. The
determinants D are coupled with Clebsch-Gordan coefficients
CJM in order to reproduce the experimental total angular mo-
mentum, total isospin, and parity (Jπ ,T ). The cn are variational
parameters multiplying different components having the same
quantum numbers. Each single-particle orbital φα consists of
a radial function multiplied by the spin/isospin trial states

φα(ri ,si) = �nj (ri)[Yl,ml
(r̂i)χγ (si)]j,mj

, (59)

where the spherical harmonics Yl,ml
(r̂i) are coupled to the spin

state χγ (si) in order to have single-particle orbitals in the j
basis. The radial parts �(r) are obtained from the bound-state
solutions of the Woods-Saxon wine-bottle potential

v(r) = Vs

[
1

1 + e(r−rs )/as
+ αs e−(r/ρs )2

]
, (60)

where the five parameters Vs , rs , as , αs , and ρs can be different
for orbitals belonging to different states, such as 1S1/2, 1P3/2,
1P1/2, ..., and they are optimized in order to minimize the
variational energy. Finally, the spin/isospin trial states are
represented in the |p↑〉, |p↓〉, |n↑〉, |n↓〉 basis (|χγ=1,4〉). The
spinors are specified as

|si〉 ≡

⎛
⎜⎝

ai

bi

ci

di

⎞
⎟⎠ = ai |p↑〉 + bi |p↓〉 + ci |n↑〉 + di |n↓〉, (61)

and the trial spin/isospin states are taken to be

χ1(si) = 〈si |χ1〉 = 〈si |(1,0,0,0)〉 = ai,

χ2(si) = 〈si |χ2〉 = 〈si |(0,1,0,0)〉 = bi,

χ3(si) = 〈si |χ3〉 = 〈si |(0,0,1,0)〉 = ci,

χ4(si) = 〈si |χ4〉 = 〈si |(0,0,0,1)〉 = di.

(62)

Let us consider a system with K states. Accord-
ing to the definitions above, a single Slater determinant

D ≡ D{φα(ri ,si)}J,M is constructed as

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1φ1(r1) a2φ1(r2) · · · aAφ1(rA)
a1φ2(r1) a2φ2(r2) · · · aAφ2(rA)

...
...

. . .
...

b1φ1(r1) b2φ1(r2) · · · bAφ1(rA)
b1φ2(r1) b2φ2(r2) · · · bAφ2(rA)

...
...

. . .
...

d1φ1(r1) d2φ1(r2) · · · dAφ1(rA)
...

...
. . .

...
d1φK (r1) d2φK (r2) · · · dAφK (rA)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (63)

For 16O (0+,0), for instance, the number of states is four:
one 1S1/2, two 1P3/2, and one 1P1/2. Each of them can
accommodate two spins and two isospin states, and the full
〈RS|�〉0+,0 wave function can be written as a single Slater
determinant. For open-shell systems, instead, many Slater
determinants need to be included in order to have a good trial
wave function with the proper (Jπ ,T ). For A = 6 systems, e.g.,
including single-particle orbitals up to the sd shell, there are ten
possible states: one 1S1/2, two 1P3/2, one 1P1/2, three 1D5/2,
two 1D3/2, and one 2S1/2. These can be combined in nine
different Slater determinants in order to have the 6He (0+,1)
wave function, or in 32 Slater determinants to make 6Li (1+,0).
Finally, for 12C (0+,0), by considering only K = 4 as for
16O (0+,0), the number of Slater determinants needed to build a
(0+,0) wave function is already 119, making it computationally
challenging to include sd-shell orbitals for A = 12.

The trial wave function of Eq. (55) contains a sum over
pair correlation functions, meaning that only one pair of
nucleons ij is correlated at a time (linear correlations). This is
different from the GFMC wave function [1], where all pairs are
correlated at the same time. In the AFDMC method, this same
construction would, however, forbid the application of the
Hubbard-Stratonovich transformation, justifying the choice of
Eq. (55). An improved AFDMC two-body wave function could
include linear and quadratic pair correlations:

〈RS|�〉2b = 〈RS|
∏
i<j

f 1
ij

⎡
⎢⎢⎢⎣1 +

∑
i<j

6∑
p=2

f
p
ij Op

ij +
∑
i<j

6∑
p=2

f
p
ij Op

ij

∑
k < l

ij �= kl

6∑
q=2

f
q
kl Oq

kl

⎤
⎥⎥⎥⎦|�〉Jπ ,T , (64)

where the sum over kl includes all nucleon pairs except when
k = i and l = j . The f

p,q
ij functions are solved for as before,

and the operators Op,q
ij are the same as in Eq. (55). Although

the two-body wave function of Eq. (64) contains all quadratic
correlations, most of the relevant physics is captured with a
subset of these correlations, corresponding to the action of the
Op,q

ij operators on four distinct particles (so-called independent
pair correlations). Since these correlations never act on the
same particle, all the Op,q

ij operators commute, removing the
need for an explicit symmetrization of the wave function.

Such a wave function could, in principle, improve the energy
expectation value for large systems, but the computational cost
of its evaluation is significantly higher than for a wave function
with linear correlations only. In fact, the cost of computing
expectation values of two-body operators on a two-body wave
function of the form of Eq. (64) is proportional to A4 for
linear correlations, and to A6 for quadratic correlations. For this
reason in the present work we consider only linear two-body
correlations in the wave function, and we present a test study
of quadratic correlations in Sec. VI B.
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TABLE I. 4He ground-state energies for the AV6′ potential and
different trial wave functions (see text for details). C (U) refers to the
constrained (unconstrained) evolution. Errors are statistical. Results
are in MeV.

Energy Simple w.f. Full w.f.

EVMC −9.49(5) −23.35(1)

EC
AFDMC −25.28(3) −26.45(1)

EU
AFDMC −26.34(12) −26.31(4)

VI. RESULTS

A. Test of constrained and unconstrained evolution

As introduced in Sec. IV F, the energy (and other ob-
servables) calculated with the AFDMC method during the
constrained evolution is dependent on the choice of �T . This
is shown in Table I where the energy of 4He is calculated
for the Argonne v′

6 (AV6′) potential [34] employing different
trial wave functions. Full w.f. refers to the wave function of
Eq. (55) where all the two-body correlations are included.
Simple w.f. is instead a simplified wave function where only
p = 1,5 operators are included in the two-body correlations,
the strength of the latter (O5

ij = Sij ) being artificially reduced
by a factor 3 after the optimization process. At the variational
level it is evident how the simplified wave function is not
the optimal choice for �T , as the energy expectation value
is much higher than for the fully optimized wave function.
For both choices of �T , the constrained evolution reduces
the binding energy, moving towards the GFMC reference
value for the same potential (see Table II), but the results
are still inconsistent. It is only the unconstrained evolution
that brings the results for both wave functions in agreement
within statistical errors. This is also shown in Fig. 1, where the
AFDMC energy is plotted as a function of imaginary time for
the unconstrained evolution.

We report in Table II the constrained and unconstrained
energies for A = 3,4,6 employing the AV6′ potential, in
comparison with the GFMC results for the same interaction
[34]. It is interesting to note that constrained energies do
not always satisfy the variational principle, as anticipated in
Sec. IV F. This is seen, e.g., in 3H and 4He, for which the
constrained energy is below the GFMC prediction, considered
to be the exact solution for the given potential. However, once
the unconstrained evolution is performed, the AFDMC and
GFMC results agree within 1% or less.

In Figs. 2 and 3 we show two examples of unconstrained
calculation for larger systems, 6He and 16O respectively,

TABLE II. Ground state energies for A = 3,4,6 employing the
AV6′ potential. Errors are statistical. Results are in MeV.

AZ (J π ,T ) EC
AFDMC EU

AFDMC EGFMC

3H ( 1
2

+
, 1

2 ) −8.08(1) −7.95(2) −7.95(2)
4He (0+,0) −26.45(1) −26.31(4) −26.15(2)
6Li (1+,0) −28.09(4) −28.26(10) −28.37(4)
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FIG. 1. Energy of 4He as a function of imaginary time after
releasing the constraint for the AV6′ potential. The two data sets
refer to the two different wave functions of Table I. Red lines are
exponential fits to the Monte Carlo results.

employing realistic two- plus three-body interactions. We use
the local chiral potential at N2LO with cutoff R0 = 1.2 fm for
6He and R0 = 1.0 fm for 16O. The employed wave functions
include all two- and three-body correlations, and for 6He
we include single-particle orbitals up to the sd shell. In
general, the larger the system, the shorter the imaginary-time
evolution that can be followed before the variance becomes
too large. This is particularly evident in 16O, for which the
unconstrained evolution can be satisfactorily performed up to
2.5 × 10−4 MeV−1, compared to the 4 × 10−4 MeV−1 for 6He
of Fig. 2 with the same interaction, and to the 5 × 10−3 MeV−1

(10−2 MeV−1) for 4He (with AV6′ of Fig. 1). For example,
at τ = 2 × 10−4 MeV−1 the statistical error per nucleon is
0.01 MeV for 4He and 6Li, and 0.19 MeV for 16O. This is
a direct consequence of the quality of the employed wave
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FIG. 2. 6He unconstrained evolution for the local chiral potential
at N2LO (Eτ ) with cutoff R0 = 1.2 fm. Data points refer to the
expectation value of H ′, Eq. (44).
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FIG. 3. 16O unconstrained evolution for the local chiral potential
at N2LO (Eτ ) with cutoff R0 = 1.0 fm. Data points refer to the
expectation value of H ′, Eq. (44).

function. For small nuclei, the wave function of Eq. (55)
provides a good description of the system, and the energy
expectation value of the constrained evolution is already close
to the expected result. In 6He the difference between the
constrained and unconstrained energy is of the order of 1 MeV,
roughly 3% of the final result. In 16O, instead, the constrained
energy is higher, and the unconstrained evolution lowers its
value by about 25 MeV, ≈22% of the total energy. This could
be improved by employing more sophisticated wave functions
including higher order correlations, such as in Eq. (64), and/or
using more refined techniques to perform the unconstrained
evolution. Studies along these directions are underway.

B. Test of quadratic two-body correlations

The results presented in the previous section are obtained
using a trial wave function of the form of Eq. (55), i.e., by
retaining only two-body linear correlations in 〈RS|�〉. We
present in Table III a test study on the effect of including
quadratic correlations in the wave function on the energy
expectation value. The energy expectation values for the
constrained evolution have been calculated for 4He, 16O,
and symmetric nuclear matter (SNM) with 28 particles in a
box with periodic boundary conditions at saturation density
ρ0 = 0.16 fm−3. We use the AV6′ potential with no Coulomb
interaction for all the systems. Results are shown for the linear,
independent pair, and full quadratic two-body correlations.

TABLE III. Energy per nucleon (in MeV) for 4He, 16O, and SNM
at ρ0. The employed potential is AV6′. No Coulomb interaction is
considered here. Results are shown for the linear, independent pair,
and full quadratic two-body correlations. Errors are statistical.

System Linear Ind. pair Quadratic

4He −6.79(1) −6.81(1) −6.78(1)
16O −7.23(6) −7.59(9) −7.50(9)
SNM −13.92(6) −14.80(7) −14.70(11)

Though there is little difference in 4He, the constrained
energies for both 16O and SNM are lower when employing
quadratic correlations, particularly for SNM. In 16O the energy
gain for the constrained evolution is only ≈0.3(1) MeV/A,
while in SNM this value increases up to ≈0.8(1) MeV/A.
Within statistical uncertainties, no difference in the results is
found between independent pair and full quadratic correla-
tions, though the latter have a higher computational cost. Note
that the variational parameters in the trial wave function of
Eq. (64) were re-optimized for 4He. In the case of 16O and
SNM, instead, due to the cost of optimizing such parameters
using the full wave function of Eq. (64), we used the same
parameters obtained for the linear wave function of Eq. (55).

C. Fit of the three-body interaction

The three-body interaction, which appears naturally in the
chiral expansion at N2LO, introduces two additional LECs that
need to be fit to experimental data. The choice considered here
is to fit the LECs cD and cE , multiplying the intermediate-
and short-range parts of the 3N interaction respectively [see
Eq. (14)], to two uncorrelated observables as in Ref. [23]: the
binding energy of 4He and n-α scattering P -wave phase shifts.
This choice probes properties of light nuclei (the 4He binding
energy) while also providing a handle on spin-orbit splitting via
the splitting in the two P -wave n-α phase shifts. Furthermore,
the n-α system is the lightest nuclear system presenting three
interacting neutrons. It follows that this choice constrains cD

and cE well, and also probes T = 3/2 physics.
The detailed fitting procedure is reported in Ref. [23], where

different parametrizations of the three-body force for different
cutoffs were explored. No fit for the E1 parametrization and the
softer cutoff R0 = 1.2 fm was reported at that time. However,
in Ref. [33] a significant overbinding of 16O was found for this
softer cutoff and the Eτ parametrization of the 3N interaction.
Locally regulated chiral interactions spoil the Fierz ambiguity
typically exploited to allow the selection of one of six operators
in the contact interaction VE ; see Refs. [23,47] for details. This
means that observables will depend on the parametrization
of the 3N interaction and, as suggested in Ref. [23], this
is especially true for larger or more dense nuclear systems.
Reference [23] also showed that the Eτ parametrization was
the most attractive of the two parametrizations, while the E1
parametrization was the least attractive. Therefore, it becomes
important to consider now the E1 parametrization with the
softer cutoff R0 = 1.2 fm. This combination is thus explored
in this work, together with the E1 parametrization for the
R0 = 1.0 fm cutoff, and the Eτ parametrization for both
cutoffs. In Fig. 4 we report the P -wave n-α phase shifts for
the four different combinations of operator structure and cutoff
considered in this work. The corresponding values of cD and
cE are shown in Table IV.

D. Test of the three-body calculation

The energies reported in Figs. 2 and 3 correspond to the
expectation values of the effective Hamiltonian H ′, Eq. (44).
These need to be adjusted with the perturbative correction of
Eq. (46)—also extracted from the unconstrained evolution—in
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FIG. 4. P -wave n-α elastic scattering phase shifts compared to
an R-matrix analysis of experimental data [46].

order to obtain the final results reported in Tables VIII and
IX. Once the optimal set of parameters αi is found, these
corrections are small, almost consistent with zero within Monte
Carlo statistical uncertainties, as shown in Table V.

The final result 〈H 〉 is, however, nearly independent of
variations of the αi parameters, even for larger systems. This
is shown in Table VI where the αi are arbitrarily changed in
16O within 5–10% with respect to the optimal values, given
in the first row for each cutoff. This results in �4% variations
of the total energy, compatible with the overall Monte Carlo
statistical uncertainties. Note that, in order to save computing
time, this test has been done using the constrained evolution.
However, the optimal constrained expectation values 〈Vpert〉
are consistent with the unconstrained ones of Table V.

Unless specified otherwise, in the following, all ground-
state energies correspond to the final expectation value 〈H 〉,
extracted from the unconstrained Monte Carlo results for 〈H ′〉
with an exponential fit, and adjusted with the perturbative
correction of Eq. (46) when 3N forces are employed.

E. Ground-state energies and charge radii

We consider local chiral Hamiltonians at leading-order
(LO), next-to-leading-order (NLO), and N2LO, the latter in-
cluding both two- and three-body forces. At each order we can
assign theoretical uncertainties to observables coming from
the truncation of the chiral expansion; see, e.g., Ref. [48].
For an observable X at N2LO, the theoretical uncertainty is

TABLE IV. LECs cD and cE for different cutoffs and parametriza-
tions of the 3N force.

3N R0 (fm) cD cE

Eτ 1.0 0.0 −0.63
1.2 3.5 0.09

E1 1.0 0.5 0.62
1.2 −0.75 0.025

TABLE V. Energy expectation values of Eq. (46) for A � 6.
Errors are statistical. Results are in MeV.

AZ (J π ,T ) 3N R0 (fm) 〈H ′〉 〈Vpert〉 〈H 〉
6He (0+,1) Eτ 1.0 −28.3(4) 0.1(2) −28.4(4)

1.2 −29.1(1) 0.2(1) −29.3(1)
E1 1.0 −28.5(5) −0.3(2) −28.2(5)

1.2 −27.3(3) 0.1(2)) −27.4(4)
6Li (1+,0) Eτ 1.0 −31.2(4) 0.3(3) −31.5(5)

1.2 −31.9(3) 0.4(1) −32.3(3)
E1 1.0 −30.9(4) −0.2(2) −30.7(4)

1.2 −30.0(3) −0.1(2) −29.9(4)
12C (0+,0) Eτ 1.0 −75(2) 3(1) −78(3)
16O (0+,0) Eτ 1.0 −115(5) 2(1) −117(5)

1.2 −265(25) −2(6) −263(26)
E1 1.0 −114(6) 1(2) −115(6)

1.2 −113(5) −2(2) −111(5)

obtained as

�XN2LO = max(Q4 × |XLO|,
Q2 × |XNLO − XLO|,
Q × |XN2LO − XNLO|), (65)

where we take Q = mπ/�b with mπ ≈ 140 MeV and �b =
600 MeV, as in Ref. [33].

The expectation value of the charge radius is derived from
the point-proton radius using the relation

〈
r2

ch

〉 = 〈
r2

pt

〉 + 〈
R2

p

〉 + A − Z

Z

〈
R2

n

〉 + 3h̄2

4M2
pc2

, (66)

where rpt is the calculated point-proton radius, 〈R2
p〉 =

0.770(9) fm2 [49] the proton radius, 〈R2
n〉 = −0.116(2) fm2

[49] the neutron radius, and (3h̄2)/(4M2
pc2) ≈ 0.033 fm2 the

Darwin-Foldy correction [50]. For 6He a spin-orbit correction
〈r2

so〉 = −0.08 fm2 [51] is also included. The point-nucleon

TABLE VI. Contributions to the energy expectation value of
Eq. (46) in 16O. The parametrization Eτ of the 3N force is used
for different cutoffs. 〈Vpert〉 is extracted from a mixed estimate, as in
Eq. (52). For each cutoff, the first line represents the optimal choice
for αi . Energies (in MeV) are the result of the constrained evolution.
Errors are statistical.

R0 (fm) (α1,α2,α3) 〈H ′〉 〈Vpert〉 〈H 〉
1.0 (2.05,−3.80,−0.95) −90.0(3) 1.8(5) −91.8(6)

(2.50,−3.30,−1.20) −125.1(6) −33.9(8) −92.2(1.0)
(1.95,−4.00,−0.90) −83.3(2) 5.9(9) −89.2(1.0)
(1.80,−4.20,−0.85) −75.6(3) 13.9(1.4) −89.4(1.5)

1.2 (1.80,0.45,8.00) −171(2) −2(1) −169(2)
(1.90,0.50,8.50) −197(3) −25(2) −172(3)
(1.70,0.40,7.50) −147(1) 15(1) −162(1)

044318-12



AUXILIARY FIELD DIFFUSION MONTE CARLO … PHYSICAL REVIEW C 97, 044318 (2018)

TABLE VII. Ground-state energies and charge radii for A = 3,4 employing local chiral potentials at N2LO. The Eτ parametrization of the
3N force is used. Errors are statistical. GFMC results are from Refs. [23,27].

Nucleus Cutoff Potential AFDMC GFMC

AZ (J π ,T ) R0 (fm) E (MeV) rch (fm) E (MeV) rch (fm)

3H ( 1
2

+
, 1

2 ) 1.0 NN −7.54(4) 1.75(2) −7.55(1) 1.78(2)
3N Eτ −8.33(7) 1.72(2) −8.34(1) 1.72(3)

1.2 NN −7.76(3) 1.74(2) −7.74(1) 1.75(2)
3N Eτ −8.27(5) 1.73(2) −8.35(4) 1.72(4)

3He ( 1
2

+
, 1

2 ) 1.0 NN −6.89(5) 2.02(2) −6.78(1) 2.06(2)
3N Eτ −7.55(8) 1.96(2) −7.65(2) 1.97(2)

1.2 NN −7.12(3) 1.98(2) −7.01(1) 2.01(1)
3N Eτ −7.64(4) 1.95(5) −7.63(4) 1.97(1)

4He (0+,0) 1.0 NN −23.96(8) 1.72(2) −23.72(1) 1.73(1)
3N Eτ −27.64(13) 1.68(2) −28.30(1) 1.65(2)

1.2 NN −25.17(5) 1.69(1) −24.86(1) 1.69(1)
3N Eτ −28.37(8) 1.65(1) −28.30(1) 1.64(1)

radius rpt is calculated as

〈
r2
N

〉 = 1

N 〈�|
∑

i

PNi
|ri − Rcm|2|�〉, (67)

where Rcm is the coordinate of the center of mass of the system,
N is the number of protons or neutrons, and

PNi
= 1 ± τzi

2
(68)

is the projector operator onto protons or neutrons. The charge
radius is a mixed expectation value, and it requires the calcu-
lation of both VMC and DMC point-proton radii, according
to Eq. (52). Regardless of the employed optimization of the
variational wave function (free or constrained), the extrapola-
tion of the mixed estimate 〈r2

ch〉 is small, and the final results
for different optimizations typically agree within statistical
uncertainties.

The ground-state energies and charge radii for light systems
(A = 3,4) employing local chiral potential at N2LO are shown
in Table VII. Results with (Eτ parametrization) and without
the 3N force are shown for different choices of the cutoff R0.
For all the s1/2, systems we used the same parameters αi for the
propagation of the 3N force, determined in order to minimize
the perturbative correction of Eq. (46). The agreement with the
GFMC results of Ref. [23,28], where the 3N interactions are
fully included in the propagation, is within a few percent both
at the two- and three-body levels, providing a good benchmark
for the AFDMC propagation technique described in Sec. IV C.

In Fig. 5 we present the ground-state energies per nucleon
of nuclei with 3 � A � 16 for cutoffs R0 = 1.0 and R0 =
1.2 fm, respectively. Results at LO, NLO, and N2LO for both
Eτ and E1 parametrizations of the 3N force are shown.
Error bars are estimated by including both the Monte Carlo
uncertainties and the errors given by the truncation of the chiral
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FIG. 5. Ground-state energies per nucleon for 3 � A � 16 with local chiral potentials: (a) R0 = 1.0 fm cutoff (left panel), (b) R0 = 1.2 fm
cutoff (right panel). Results at different orders of the chiral expansion and for different 3N parametrizations are shown. Smaller error bars
(indistinguishable from the symbols up to A = 6) indicate the statistical Monte Carlo uncertainty, while larger error bars are the uncertainties
from the truncation of the chiral expansion. LO and N2LO Eτ results for 16O with R0 = 1.2 fm are outside the displayed energy region. Updated
from Ref. [33].
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FIG. 6. Charge radii for 3 � A � 16 with local chiral potentials: (a) R0 = 1.0 fm cutoff (left panel), (b) R0 = 1.2 fm cutoff (right panel).
The legend and error bars are as in Fig. 5. Updated from Ref. [33].

expansion, the latter being the dominant ones. For the harder
interaction (R0 = 1.0 fm), the predicted binding energies at
N2LO are in good agreement with experimental data all the way
up to A = 16. No differences, within theoretical uncertainties,
are found for the two different parametrizations of the 3N
force.

12C in the Eτ parametrization is slightly underbound. This
is most likely a consequence of the employed wave function
that results in a too high energy for the constrained evolution.
This could be due to the complicated clustering structure of
12C not included in �T , which would require a much longer
unconstrained propagation to filter out the corresponding
low excitations from �T . For A = 6 the wave function is
constructed using up to sd-shell single-particle orbitals. For
12C, instead, coupling p-shell orbitals only already results in
a sum of 119 Slater determinants. Including orbitals in the
sd-shell could in principle result in a better wave function
for this open-shell system, but it will sizably increase the
number of determinants to consider, making the calculation
prohibitively time consuming. Another possible improvement
would be to include quadratic terms in the pair correlations,
as shown in Eq. (64). However, first attempts in 16O lead
to just a ≈6(2) MeV reduction of the total energy in a
simplified scenario (see Table III), with a noticeably increased
computational cost.

For the softer interaction (R0 = 1.2 fm), NLO and in
particular LO results are typically more bound compared to
the R0 = 1.0 fm case. Both parametrizations of the 3N force
make the N2LO energies compatible with the experimental
values up to A = 6, and consistent with those obtained with
the hard potential.

For the heaviest system considered here, 16O, the picture is
quite different. At LO, the system is dramatically overbound
(≈ − 1 GeV), which would imply very large theoretical un-
certainties at NLO and N2LO coming from the prescription of
Eq. (65). Within these uncertainties, NLO and N2LO two-body
energies are compatible with the corresponding results for
the hard interaction (see Tables VIII and IX). However, the
contribution of the 3N force at N2LO largely depends upon

the employed operator structure. The Eτ parametrization for
the soft potential is very attractive, adding almost 10 MeV per
nucleon to the total energy, and thus predicting a significant
overbinding with a ground-state energy of ≈ − 260 MeV.
The E1 parametrization is instead less attractive, resulting
in ≈0.30 MeV per nucleon more binding with respect to the
two-body case, compatible with the energy expectation values
for the hard potential.

Figure 6 shows the charge radii at different orders of the
chiral expansion and for different cutoffs and parametrizations
of the 3N force. The agreement with experimental data for
the hard interaction at N2LO is remarkably good all the
way up to oxygen. One exception is 6Li, for which the
charge radius is somewhat underpredicted. However, a similar
conclusion is found in GFMC calculations employing the
AV18+IL7 potential, where charge radii of lithium isotopes are
underestimated [1].

For the soft interaction, the description of charge radii
resembles order by order that for the hard potential up to A = 6,
with the N2LO results in agreement with experimental data,
except for 6Li (also shown in Table VII). The picture changes
again for A = 16. The charge radius of 16O turns out to be close
to 2.2 fm with the Eτ parametrization of the 3N force, smaller
than that of 6Li for the same potential, but consistent with
the significant overbinding predicted for A = 16. The oxygen
charge radius for the E1 parametrization is instead closer to
the experimental value.

The details of LO, NLO, and N2LO calculations for A � 6
are reported in Tables VIII and IX for R0 = 1.0 and R0 =
1.2 fm, respectively. Results for the constrained and uncon-
strained evolution energies are both shown, together with the
charge radii. Both Monte Carlo uncertainties and theoretical
errors coming from the truncation of the chiral expansion are
reported (where available). At N2LO the two-body energy is
shown together with that of the two different parametrizations
of the 3N force (Eτ and E1).

The full calculation of 12C at N2LO required on the order
of 106 CPU hours (on Intel Broadwell cores at 2.1 GHz) for
a single cutoff (1.0 fm) and 3N parametrization (Eτ ). Due to
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TABLE VIII. Ground-state energies and charge radii for A � 6 with local chiral potentials. Results at different orders of the chiral expansion
and for different 3N parametrizations are shown. Energy results are shown for both the constrained (EC) and unconstrained (E) evolutions.
The first error is statistical, the second is based on the EFT expansion uncertainty. The employed cutoff is R0 = 1.0 fm. Experimental results
are also shown.

AZ (J π ,T ) Potential EC (MeV) E (MeV) rch (fm)

6He (0+,1) LO −42.1(1) −41.3(1)(9.6) 1.67(4)(39)
NLO −18.19(7) −20.0(3)(5.0) 2.33(5)(15)

N2LO NN −22.24(4) −23.1(2)(1.2) 2.11(4)(5)
N2LO 3N Eτ −26.58(6) −28.4(4)(2.0) 1.99(4)(8)
N2LO 3N E1 −26.33(8) −28.2(5)(1.9) 2.01(4)(7)

Exp −29.3 2.068(11) [52]
6Li (1+,0) LO −42.8(1) −42.4(1)(9.9) 2.03(6)(47)

NLO −19.2(2) −21.5(3)(4.9) 2.76(8)(17)
N2LO NN −24.3(1) −25.5(4)(1.1) 2.46(4)(7)

N2LO 3N Eτ −28.9(1) −31.5(5)(2.3) 2.33(4)(10)
N2LO 3N E1 −28.9(1) −30.7(4)(2.1) 2.33(4)(10)

Exp −32.0 2.589(39) [53]
12C (0+,0) LO −131.5(2) −131(1)(31) 1.66(4)(39)

NLO −31.1(2) −41(2)(21) 3.25(5)(37)
N2LO NN −63.5(2.4) −66(3)(6) 2.66(4)(14)

N2LO 3N Eτ −70.2(5) −78(3)(9) 2.48(4)(18)
N2LO 3N E1

Exp −92.2 2.471(6) [54]
16O (0+,0) LO −251.7(2) −247(1)(58) 1.44(3)(34)

NLO −37.3(2) −49(2)(46) 3.27(5)(43)
N2LO NN −72.8(2) −87(3)(11) 2.76(5)(12)

N2LO 3N Eτ −91.8(6) −117(5)(16) 2.71(5)(13)
N2LO 3N E1 −85.8(5) −115(6)(15) 2.72(5)(11)

Exp −127.6 2.730(25) [55]

the high computational cost, no attempts were made for the E1
parametrization of the 3N force or for the 1.2 fm cutoff.

As shown in Tables VIII and IX, the overbinding in 16O
happens only when the 3N force is included with the Eτ

parametrization for R0 = 1.2 fm. The alternative combina-
tions of three-body operators and cutoffs considered in this
work predict instead binding energies compatible with the
experimental value. A close look at the energy contributions

TABLE IX. Same as Table VIII but for the R0 = 1.2 fm cutoff.

AZ (J π ,T ) Potential EC (MeV) E (MeV) rch (fm)

6He (0+,1) LO −55.65(6) −54.9(2)(12.8) 1.31(2)(31)
NLO −21.41(6) −21.8(1)(7.7) 2.08(4)(18)

N2LO NN −24.25(5) −24.3(1)(1.8) 2.02(4)(4)
N2LO Eτ −28.37(5) −29.3(1)(1.8) 1.92(4)(4)
N2LO E1 −26.98(8) −27.4(4)(1.8) 2.00(4)(4)

Exp −29.3 2.068(11) [52]
6Li (1+,0) LO −56.84(3) −56.0(1)(13.1) 1.59(2)(37)

NLO −23.64(8) −25.2(2)(7.2) 2.47(4)(21)
N2LO NN −26.76(3) −27.0(2)(1.7) 2.41(4)(5)
N2LO Eτ −30.8(1) −32.3(3)(1.7) 2.24(4)(6)
N2LO E1 −29.2(1) −29.9(4)(1.7) 2.29(4)(5)

Exp −32.0 2.589(39) [53]
16O (0+,0) LO −1158.8(5) −1110(31)(259) 1.15(5)(27)

NLO −72.3(1) −77.5(7)(240.8) 2.65(5)(35)
N2LO NN −98.6(1) −106(4)(56) 2.47(5)(8)
N2LO Eτ −169(2) −263(26)(56) 2.17(5)(11)
N2LO E1 −99.5(4) −111(5)(56) 2.55(5)(8)

Exp −127.6 2.730(25) [55]
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TABLE X. Expectation value of the N2LO energy contributions in 6Li and 16O. All energies (in MeV) are mixed estimates from the
constrained evolution: 2 〈ODMC〉 − 〈OVMC〉. Errors are statistical.

System R0 (fm) Potential Ekin vij Ekin + vij Vijk V 2π,P V 2π,S VD VE

6Li 1.0 NN 116.8(4) −151.2(4) −34.4(8)
1.0 3N Eτ 135.3(7) −165.6(5) −30.2(1.2) −11.1(3) −13.3(3) −0.43(1) 0 2.67(2)
1.0 3N E1 135.5(6) −165.8(6) −30.3(1.2) −11.3(2) −13.3(2) −0.42(1) −0.89(2) 3.38(4)

1.2 NN 110.3(3) −145.4(3) −35.1(6)
1.2 3N Eτ 129.3(6) −160.1(5) −30.8(1.1) −11.8(3) −6.1(2) −0.39(1) −4.6(1) −0.63(1)
1.2 3N E1 118.8(4) −154.0(3) −35.2(7) −5.5(1) −5.6(1) −0.26(1) 0.08(1) 0.27(1)

16O 1.0 NN 319(1) −453(1) −134(2)
1.0 3N Eτ 370(1) −500(1) −130(2) −44(1) −55(1) 0.85(1) 0 8.50(4)
1.0 3N E1 367(1) −497(1) −131(2) −41(1) −54(1) 0.72(1) −4.03(5) 15.7(1)

1.2 NN 377(1) −528(2) −151(3)
1.2 3N Eτ 556(4) −712(3) −156(7) −202(3) −101(2) −0.72(9) −94(2) −5.43(3)
1.2 3N E1 377(1) −529(1) −152(2) −26(1) −34(1) 0.94(1) 4.53(8) 1.90(1)

coming from the 3N force in 6Li and 16O (Table X) clearly
shows the issue. A large negative VD contribution in 16O for
the soft Eτ potential drives the system to a strongly bound
state. In fact, even though the total energy at the two-body
level is similar to that of the other soft potentials for A = 16,
the individual expectation values for the kinetic energy and
the two-body potential are severely larger, consistent with a
very compact system. The 3N force adds then ≈13 MeV per
nucleon, roughly half coming from the also increased TPE
contribution, and half from VD . In the case of the R0 = 1.0 fm
cutoff, instead, the 3N force in both parametrizations adds only
<3 MeV per nucleon to the total two-body energy, with similar
TPE contributions and a balance between 〈VD〉 and 〈VE〉. This
is still true in 6Li also for R0 = 1.2 fm, but the balance is
broken for the soft Eτ potential in 16O. The main reason for
such behavior can be attributed to the large value of cD for
this potential (see Table IV), particularly effective for A > 6.
Note that the energies given by the sum Ekin + vij + vijk of
Table X do not correspond to the constrained evolution results
reported in Tables VIII and IX. This is a consequence of the
mixed estimates necessary to evaluate the expectation value
of the individual components of the Hamiltonian. Because the
Hamiltonian commutes with itself, its expectation value is not
extrapolated. Therefore, the total energy does not necessarily
correspond to the sum of its extrapolated pieces, unless the
trial wave function is the true ground-state wave function (see
Ref. [1] for details).

As has been discussed briefly above and in more detail in
Refs. [23,47], locally regulated chiral interactions spoil the
Fierz rearrangement freedom used to select one of the six
possible operators that are consistent with the symmetries
of the theory for the contact interaction at N2LO, VE . This
means that results at finite cutoff depend on this choice.
However, these additional regulator artifacts are absorbed
by higher-order LECs in chiral EFT [47]. Furthermore, the
dependence is typically within the truncation uncertainties
(an exception occurs for denser or heavier systems such as
neutron matter beyond saturation density, or as shown above,
16O). In these cases, since the next order in chiral EFT where
3N contacts appear is next-to-next-to-next-to-next-to-leading

order, a significant challenge at this point, one can use instead
the parametrization VEP of the contact interaction introduced
in Ref. [23], which projects onto the total spin S = 1/2 and
total isospin T = 1/2 triples. These are the triples that survive
in the infinite (momentum-space) cutoff limit, and thus this
parametrization partially restores the Fierz rearrangement free-
dom. However, the VEP parametrization involves spin/isospin
operators beyond quadratic order and presents a challenge to
the direct inclusion in the AFDMC propagation. We leave the
exploration of this parametrization to future works.

F. Charge form factors and Coulomb sum rules

One- and two-body point-nucleon densities are calculated
as

ρN (r) = 1

4πr2
〈�|

∑
i

PNi
δ(r − |ri − Rcm|)|�〉, (69)

ρNN (r) = 1

4πr2
〈�|

∑
i<j

PNi
PNj

δ(r − |ri − rj |)|�〉, (70)

wherePNi
is the projector operator of Eq. (68). With the current

definitions, ρN and ρNN integrate to the number of nucleons
and the number of nucleon pairs, respectively.

As opposed to the charge radius, densities are not observ-
ables themselves, but the one-body densities can be related
to physical quantities experimentally accessible via electron-
nucleon scattering processes, such as the longitudinal elastic
(charge) form factor. In fact, the charge form factor can be
expressed as the ground-state expectation value of the one-
body charge operator [56], which, ignoring small spin-orbit
contributions in the one-body current, results in the following
expression:

FL(q) = 1

Z

G
p
E

(
Q2

el

)
ρ̃p(q) + Gn

E

(
Q2

el

)
ρ̃n(q)√

1 + Q2
el/

(
4m2

N

) , (71)

where ρ̃N (q) is the Fourier transform of the one-body point-
nucleon density defined in Eq. (69), and Q2

el = q2 − ω2
el is

the four-momentum squared, with ωel =
√

q2 + m2
A − mA the
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FIG. 7. Charge form factor in 6Li. The solid blue (red) line is
the AFDMC result for the N2LO E1 potential with cutoff R0 =
1.0 (1.2) fm. Lighter shaded areas indicate the uncertainties from
the truncation of the chiral expansion. Darker shaded areas are the
theoretical error bands only taking into account NLO and N2LO
results. Black triangles are the VMC one-body results for AV18+UIX
[58]. The experimental data are taken from Ref. [59].

energy transfer corresponding to the elastic peak, mA being the
mass of the target nucleus. GN

E (Q2) are the nucleon electric
form factors, for which we adopt Kelly’s parametrization [57].

The charge form factors of 6Li, 12C, and 16O are shown in
Figs. 7–9, respectively. In all the plots, the blue (red) curve
is the AFDMC result for the N2LO E1 potential (Eτ for
12C), with cutoff R0 = 1.0 (1.2) fm. Monte Carlo error bars
are typically of the size of the lines within the momentum
range considered here. Lighter shaded areas indicate the
uncertainties from the truncation of the chiral expansion,
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FIG. 8. Charge form factor in 12C. In blue are the AFDMC results
for the Eτ parametrization of the 3N force and cutoff R0 = 1.0 fm.
Black triangles are the GFMC one-body results for AV18+IL7 [60].
The experimental data are taken from Ref. [61]. Updated from
Ref. [33].
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FIG. 9. Charge form factor in 16O. In blue (red) are the AFDMC
results as in Fig. 7. Black triangles are the cluster-VMC one-body
results for AV18+UIX [62]. Experimental data are from Sick, based
on Refs. [55,63,64].

according to Eq. (65). Darker shaded areas are instead the
theoretical error bands only considering the last term of the
prescription, i.e., taking into account the NLO and N2LO
results only. AFDMC results are compared to experimental
data and to available Monte Carlo calculations employing the
phenomenological potentials and one-body charge operators
only. No two-body operators are included in the calculation
of the charge form factors in the current work. However, as
shown in Refs. [58,60,65] for the three different systems, such
operators give a measurable contribution only for q > 2 fm−1,
as they basically include relativistic corrections.

The charge form factor of 6Li for the E1 interaction is
compatible with experimental data at low momentum for
both cutoffs, with larger theoretical uncertainties for the soft
potential. Results for the Eτ parametrization show a similar
behavior. The discrepancy for q � 2 fm−1 is due to the missing
two-body currents. In fact, AFDMC results for local chiral
forces are compatible with the VMC one-body results for
AV18+UIX [58] up to high momentum.

A similar physical picture is given for both 12C and 16O, for
which the positions of the first diffraction peaks in the form
factors are well reproduced by the hard potentials within the
theoretical error bands, and deviations from the experimental
data occur at high momentum only. For the soft E1 interaction,
instead, the description of the charge form factor in 16O is
less accurate, with the position of the first diffraction peak
overestimated, and the slope of FL(q) for q = 0 underesti-
mated, consistent with the smaller charge radius compared
to the experimental value. The difference with respect to the
experimental results is, however, not as dramatic as for the
soft Eτ potential (see Ref. [33]), and it is mostly covered
by the very large theoretical error bands. These, in particular,
are dominated by the LO contributions to the theoretical error
estimate, as shown by the difference between lighter and darker
bands in the form factor.

044318-17



D. LONARDONI et al. PHYSICAL REVIEW C 97, 044318 (2018)

FIG. 10. Coulomb sum rule for 4 � A � 16. Lines refer to
AFDMC results for the N2LO Eτ potential with cutoff R0 =
1.0 fm. Solid symbols are the GFMC one- plus two-body results for
AV18+IL7 [60,62]. Shaded areas indicate the statistical Monte Carlo
uncertainty.

Finally, it is interesting to note that, for all three systems,
the local chiral interactions with the hard cutoff R0 = 1.0 fm
give the same physical description of the charge form factor
as the phenomenological potentials, provided that one-body
charge operators only are included in the calculation.

Two-body densities are related to the Coulomb sum rule,
which is defined as the energy integral of the electromagnetic
longitudinal response function. As with the charge form factor,
the Coulomb sum rule can be written as a ground-state
expectation value [56], leading to the relation

SL(q) = 1

Z

1

G
p 2
E

(
Q2

qe

) 1

1 + Q2
qe/

(
4m2

N

)
× {

G
p 2
E

(
Q2

qe

)
[ρ̃pp(q) + Z]

+ Gn 2
E

(
Q2

qe

)
[ρ̃nn(q) + (A − Z)]

+ 2 G
p
E

(
Q2

qe

)
Gn

E

(
Q2

qe

)
ρ̃np(q)

− [
G

p
E

(
Q2

qe

)
ρ̃p(q) + Gn

E

(
Q2

qe

)
ρ̃n(q)

]2}
, (72)

where ρ̃NN (q) is the Fourier transform of the two-body point-
nucleon densities defined in Eq. (70), and Q2

qe = q2 − ω2
qe,

with ωqe the energy transfer corresponding to the quasielastic
peak. Although the Coulomb sum rule is not directly an
experimental observable (experimental information can be
extracted, however, from the longitudinal response function,
as done in Ref. [66] for 12C), it is still an interesting quantity
for the study of integral properties of the response of a nuclear
many-body system to an external probe.

We report in Fig. 10 the Coulomb sum rule for 4 � A �
16 using the N2LO Eτ potential with cutoff R0 = 1.0 fm.
The GFMC results for 4He and 12C [60,62] employing the
AV18+IL7 potential are also shown for comparison. The
discrepancy between the AFDMC and GFMC results above
≈3 fm−1 is due to the missing two-body currents in the

present calculation. For lower momenta the description of
the sum rule is remarkably consistent with that provided by
phenomenological potentials. Moreover, the results for 12C are
compatible with the available experimental data as extracted
in Ref. [66], as shown already in Ref. [33]. All p-shell nuclei
show a similar profile for SL(q), with a peak around 1.6 fm−1,
slightly more pronounced for open-shell systems (A = 6,12).
The same observations hold for the E1 parametrization of the
3N force and for both cutoffs, with the Coulomb sum rule
results of 4He and 6Li being very close to those shown in
Fig. 10. An exception is the case of 16O, for which SL(q)
is largely different for the Eτ parametrization and the softer
cutoff, as already shown in Ref. [33].

VII. SUMMARY

We presented a detailed description of the AFDMC method
for nuclei, with particular attention given to the construction
of the trial wave function, the propagation of 3N forces, and
the constrained/unconstrained imaginary-time evolution. We
reported a series of test results for these technical aspects of
the algorithm.

We performed AFDMC calculations of nuclei with 3 �
A � 16 using local chiral EFT interactions up to N2LO,
completing and expanding the results of Ref. [33]. Both two-
and three-body potentials were considered, the latter described
by two different operator structures, namely Eτ and E1.
Two coordinate-space cutoffs, R0 = 1.0 and R0 = 1.2 fm,
were used, with results presented at each order of the chiral
expansion and for each 3N parametrization. To this aim, a
new fit of the three-body LECs cD and cE was presented for
the E1 parametrization with the soft cutoff R0 = 1.2 fm.

Binding energies and charge radii were shown for all the
systems, and results for the charge form factor in 6Li, 12C, and
16O were also reported. For all these observables, the AFDMC
results were supported by statistical Monte Carlo errors and
theoretical errors coming from the truncation of the chiral
expansion. Finally, the Coulomb sum rule for systems with
4 � A � 16 was also shown.

The outcomes of this work confirm that local chiral interac-
tions fit to few-body observables give a very good description
of the ground-state properties of nuclei up to 16O. This is
true for both harder and softer interactions, even though the
latter imply larger theoretical uncertainties coming from LO
contributions to the truncation error estimate. We found that
the overbinding in 16O for the soft Eτ parametrization of the
3N force is generated by large attractive contributions from the
large value of the LEC cD . Therefore, it will be very interesting
to explore further 3N fits and operator choices in heavier nuclei
as well as dense matter.
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APPENDIX: CALCULATING
TWO-BODY CORRELATIONS

Given R = {r1, . . . ,rA} the particle coordinates, S =
{s1, . . . ,sA} the spin/isospin configurations, and |χγ 〉 the |p ↑〉,
|p ↓〉, |n ↑〉, |n ↓〉 basis

|χ1〉 = |(1,0,0,0)〉,
|χ2〉 = |(0,1,0,0)〉,
|χ3〉 = |(0,0,1,0)〉,
|χ4〉 = |(0,0,0,1)〉.

(A1)

We define the Slater matrix element

Sαi = 〈α|ri si〉 =
4∑

γ=1

〈α|ri χγ 〉〈χγ |si〉, (A2)

where |α〉 contains the radial orbitals and spherical harmonics
of Eq. (59). When acting with two-body correlations on the
mean-field part of the wave function, the Slater matrix is
updated by each of the correlation operators. These updates
are computed using the identity

det(S−1S ′) = det S ′

det S
, (A3)

where S ′ is the matrix that has been updated by the action of a
single operator. To reduce the number of operations, the ratio
of determinants for a pair of operators, Oij = OiOj , is written
in the form

〈�|Oij |RS〉
〈�|RS〉 =

4∑
γ=1

4∑
δ=1

d2b(χγ ,χδ,ij )〈χγ χδ|Oij |sisj 〉, (A4)

with

d2b(χγ ,χδ,ij )

= 〈�|R,s1, . . . ,si−1,χγ ,si+1, . . . ,sj−1,χδ,sj+1, . . . ,sA〉
〈�|RS〉 ,

(A5)

where χγ and χδ replace si and sj , respectively. The d2b matrix
elements are derived from the precalculated matrix elements
Pχ,ij :

d2b(χγ ,χδ,ij ) = det

(
Pχγ ,ii Pχγ ,ij

Pχδ,j i Pχδ,jj

)
, (A6)

where

Pχγ ,ij =
∑

α

S−1
jα Sαi(si ← χγ ),

Pχδ,ij =
∑

α

S ′ −1
jα S ′

αi(sj ← χδ).
(A7)

Though the above relations only address two-body oper-
ators, this method can be generalized to arbitrary N -body
operators as well. To include additional operators the matrix
elements Pχ,ij need to be updated:

Pχη,mn =
∑

α

S ′′ −1
nα S ′′

αm(sm ← χη), (A8)

where

S ′′
αm(sm) =

{
Sαm, m �= i,

〈α|Oi |ri si〉, m = i.
(A9)

To calculate the updated inverse matrix, the identity of Eq. (A3)
is used with S ′ ← S ′′. Both sides of the identity are expanded,
and like terms are grouped, noting that when j �= i, S ′′

mi = S ′
mi .

The wave function with linear correlations [Eq. (55)] is
calculated by first acting on the coordinate and spin/isospin
configurations with each possible operator, and calculating the
sum of each term

∑
χγ ,χδ

d2b(χγ ,χδ,ij )〈χγ ,χδ|f p
ijOp

ij |sisj 〉.
The expectation value of the potential on the linear wave
function is calculated including correlation and potential oper-
ators, Oc

ij and Op
ij respectively, organized in the form (1 +

Oc
ij )Op

kl , which includes four potentially distinct operators.
For this calculation the P matrix is updated twice, once for
Oc

i and once for Oc
j , where Oc

ij = Oc
i Oc

j as before. The ratio
of determinants is calculated following Eq. (A4), using the
updated distribution d ′′

2b.
The quadratic wave function includes the same correlation

terms of the linear wave function plus a piece with two addi-
tional operators, resulting in structures like 1 + Oc

ij + Oc
ijOc

kl .
The operators up to linear terms are treated as above. The
quadratic product of operators is handled in the same fashion as
the expectation value of the potential acting on the linear wave
function, i.e., the P matrix is updated twice, once for Oc

i and
once for Oc

j , and the ratio of determinants is calculated with
the updated distributions. It follows that the calculation of the
correlation operators for the quadratic wave function requires
O(A4) operations, compared to O(A2) for the linear wave
function.

The expectation value of the potential acting on the
quadratic wave function requires the product of six operators
Oc

ijOc
klOp

mn. As a result, a total of four updates are needed to
calculate the quadratically correlated terms for the potential.
After including the updated distributions for the Oc

ij operators,
the same distribution s are updated two more times for the
Oc

kl terms. These quadratically updated distributions are then
used to calculate the expectation value of the potential as
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before. It follows that the calculation of the expectation value
of the potential acting on the quadratic wave function requires
O(A6) operations, compared to O(A4) for the linear wave
function.

The two-body correlations of Eq. (55) have the same oper-
ator structure as the AV6′ potential. The Cartesian breakup of

such structure generates 39 Oc
ij operators: 9 σαi σβj , 3 τγ i τγj ,

and 27 σαi σβj τγ i τγj operators. The number of operators can
be reduced to 15 if, instead of Cartesian coordinates, one uses
the pair distance rij and two orthogonal coordinates. This
reduces the number of operators used in the spatially dependent
part of the tensor term, 3 σ i · r̂ij σ j · r̂ij , from 9 to 3.
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