The $1d_{5/2}$ single-particle state and widths in ¹⁴O and ^{15,16}F

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 18 February 2018; published 17 April 2018)

I have examined spectroscopic factors for predominantly $1d_{5/2}$ single-particle states in isospin multiplets having A = 14-16. Results indicate a serious problem with the width of the $5/2^+$ resonance in ¹⁵F. Calculations provide recommended widths in ¹⁴O and ¹⁶F.

DOI: 10.1103/PhysRevC.97.044314

I. INTRODUCTION

The ground states (g.s.'s) of ¹⁷O and ¹⁷F are predominantly $1d_{5/2}$ single-particle (sp) states. In lighter nuclei, this is an excited state ($J_{core} = 0$) or a multiplet ($J_{core} \neq 0$). Here, I summarize information for these states in A = 14-16 nuclei, and then I address widths in ¹⁴O, ^{15,16}F.

II. ANALYSIS AND RESULTS

In the reaction ${}^{16}O(d, p)$ ${}^{17}O$, at energies of 25.4, 36.0, and 63.2 MeV, the g.s. spectroscopic factor is S = 0.9(1) [1]. In ${}^{16}O({}^{3}He,d) {}^{17}F$, S(g.s.) is 0.94 [2]. Until quite recently, the spectroscopic factors in ${}^{16}N$ and ${}^{16}F$ were poorly known. In the reaction ${}^{15}N(d,p) {}^{16}N$ at $E_d = 5.0, 5.5$, and 6.0 MeV, S for all four of the so-called sp states was about 0.5 [3]-rather than near unity as expected. Recently, an investigation of the reaction ${}^{15}N({}^{7}Li, {}^{6}Li){}^{16}N$ reported $S(2^{-}) = 0.96(9)$ and $S(3^{-}) = 0.84(8)$ [4]. Those authors used those spectroscopic factors and mirror symmetry to compute widths in ¹⁶F. In the latest compilation [5], those widths are listed as $\Gamma(2^{-}) =$ 40(30) and $\Gamma(3^{-}) < 15$, both in keV. Widths from other sources are summarized elsewhere [4,6]. The calculations of Ref. [4] produced widths of 3.66 ± 0.35 for 2^- and 11.2 ± 1.1 for 3^- , both in keV. A recent ${}^{15}O + p$ elastic scattering experiment [6] reported widths of 4.0(13) and 15.1(34) keV for 2^- and 3^{-} , respectively. I have computed sp widths in a Woods-Saxon potential well having geometric parameters of r_0 , a = 1.26, 0.60 fm. The Coulomb potential was that of a uniform sphere with $r_{0c} = 1.40$ fm. I then computed expected widths from the expression $\Gamma_{calc} = S \Gamma_{sp}$. Results are listed in Table I, where they are compared with the earlier results.

In ¹⁵F, the first-excited resonance is $5/2^+$, at $E_p = 2.785$ MeV. Various values have been reported for its width [7], but the best values are near 300 keV. Stefan *et al.* [8] report $\Gamma = 311(10)$ keV, whereas deGrancey, *et al.* [9] give $\Gamma = 305(12)$ keV. My computed sp width is $\Gamma_{sp} = 294$ keV, with a small uncertainty. With an average experimental width of 303(10) keV, the resulting spectroscopic factor is S = 1.03(4). By itself, this value does not present a problem. However, the other $T = 3/2 J^{\pi} = 5/2^+$ states in A = 15 nuclei have S near 0.70 [7,10] (Fig. 1). In the reaction ¹⁴C(d, p) ¹⁵C, S is 0.69 [11], to which I have assigned an uncertainty of 10%. For the other two nuclei, the widths and spectroscopic factors are related by

the expression $\Gamma = C^2 S \Gamma_{sp}$, where the squares of the isospin Clebsch-Gordan coefficient C^2 are 1/3 for ¹⁵N and 2/3 for ¹⁵O. Widths and *S*'s are listed in Table II for these four nuclei [7]. The average for ¹⁵C, ¹⁵N, and ¹⁵O is S = 0.72(4), so that the difference between $S(^{15}F)$ and the average *S* for the other three nuclei is 0.31(6), about 5.5 σ away from zero.

I earlier explored the possibility of isospin mixing for the lowest T = 3/2 states in ¹⁵N and ¹⁵O, and I stated [10], "The $5/2^+$, T = 3/2 state has no discernible neutron or alpha width in ¹⁵N and no alpha or g.s. proton width in ¹⁵O, so any mixing there is very small." Thus, it would appear that either the width in ¹⁵F is only about 2/3 as large as currently thought, or the extracted *S* in the three other nuclei are all too small by about the same factor. The newest width measurements in ¹⁵F have no obvious problems, but it is unlikely that results for all three of the other nuclei are incorrect. Because of this large discrepancy, I have investigated the $d_{5/2}$ spectroscopic factors in another isospin multiplet, viz A = 14.

In ${}^{14}C$, the 3⁻ and 2⁻ states at energies of 6.728 and 7.341 MeV [7] have large $d_{5/2}$ strength. In the ${}^{13}C(d,p) {}^{14}C$ reaction, $S(3^-)$ is 0.65 and $S(2^-)$ is 0.72 [12]. The analogs at 8.907 and 9.509 MeV in ¹⁴N are unbound, with widths of 16(2) and 41(2) keV for 3^- and 2^- , respectively [7]. With sp widths of 35 and 110 keV, these correspond to spectroscopic factors of 0.91(11) and 0.75(4), respectively. Various values have been reported for the widths of the mirror states at 6.280 and 6.769 MeV in ¹⁴O [7,13–15]. These are listed in Table III and plotted in Fig. 2, where I have again assigned 10% uncertainty to S from (d, p). I have omitted the width of 103(6) keV [7] [S = 1.94(11)]. The weighted average of all these spectroscopic factors is 0.71(4) for 3^- and 0.72(4) for 2^{-} . The horizontal band in the figure represents the average of 0.715(25). We note that the overall agreement is good. Requiring S for 2^- and 3^- members of this isospin multiplet to be separately equal provides computed values for the widths in 14 O. They are 38(2) for 3⁻ and 94(5) for 2⁻, both in keV. Thus, this isospin multiplet does not exhibit the behavior displayed for A = 15, T = 3/2.

Table IV lists reported energies and widths of the $5/2^+$ resonance in ¹⁵F from various experiments [8,9,16–21]. Ironically, the very first one of 0.24(3) MeV [16] is close to the value indicated as necessary from the present analysis. All the other widths are significantly larger.

TABLE I. Results for $1d_{5/2}$ doublet in ¹⁶N and ¹⁶F (energies in MeV, widths in keV).

J^{π}	$E_x(^{16}\mathrm{N})^{\mathrm{a}}$	<i>S</i> (¹⁶ N) ^b	$E_p(^{16}\mathrm{F})^{\mathrm{a}}$	Γ_{sp}^{c}	$\Gamma_{calc}{}^{d}$	Γ_{exp}^{e}
2-	0.0	0.96(9)	0.961	3.44	3.3(0.3)	4.0 (1.3)
3-	0.298	0.84(8)	1.256	12.2	10.2(1.0)	15.1 (3.4)
^a Ret ^b Ret	f. [5]. f. [4].					
^c Pre	sent work.					
${}^{d}\Gamma_{ca}$	$_{\rm lc} = S \Gamma_{\rm sp}$					
eRet	f. [6]: uncer	tainties are	$e 1\sigma$ values.			

TABLE IV. Energies and widths (both in MeV) of first $5/2^+$ resonance in ${}^{15}F$.

Reference	E_p	Г
16	2.8(2)	0.24(3)
17	2.67(10)	0.5(2)
18	2.853(45)	0.34
19	2.80(5)	0.38(10)
20	2.795(45)	0.32(6)
21	2.810(20)	0.30(6)
8	2.78(1)	0.311(10)
9	2.763(9)(10)	0.305(9)(10)
9, recommended average	2.794(16)	0.301(16)
Used in present analysis	2.785	0.303(10)

nuclei (energies in MeV, widths in keV). $\frac{Experimental}{E_x^{a} E_p \Gamma^{a}} \frac{Calculated}{\Gamma_{sp} S = \Gamma_{exp}/(C^2\Gamma_{sp})^{c}}$

TABLE II. Properties of lowest $5/2^+$, T = 3/2 states in A = 15

Nucl.	$E_x^{\mathbf{a}}$	E_p	Γ ^a	$\Gamma_{\rm sp}$	$S = \Gamma_{\rm exp}/(C^2\Gamma_{\rm sp})$
¹⁵ C	0.74				0.69(7) ^d
¹⁵ N	12.522	2.315	58(4)	232	0.75(5)
¹⁵ O	12.255	2.645 ^b	135(15)	300 ^b	0.68(8)
¹⁵ F		2.785	303(10)	294	1.03(4)

^aRef. [7].

^bFor decay to the 0⁺, T = 1 state of ¹⁴N. ^c $C^2 = 1/3$, 2/3, 1 for ¹⁵N, ¹⁵O, ¹⁵F.

14 nuclei (energies in MeV, widths in keV).

^dFrom ${}^{14}C(d, p)$ [11].

FIG. 1. Spectroscopic factors [plotted vs. $T_z = (N-Z)/2$] for the lowest $5/2^+$ states for A = 15, T = 3/2 nuclei.

Nucl.	J^{π}	$E_x (\exp.)^{\mathbf{a}}$	E_p (exp.)	Γ_{exp}^{a}	Γ_{sp}	$S = \Gamma_{\rm exp} / (C^2 \Gamma_{\rm sp})$	Γ_{calc}
¹⁴ C	3-	6.728				0.65 ^e	
	2-	7.341				0.72 ^e	
^{14}N	3-	8.907	1.356	16(2)	35	0.91(11)	12.4(7)
	2-	9.509	1.958	41(2)	110	0.75(4)	39.6(22)
¹⁴ O	3-	6.280	1.652	103(6)	53	1.94(11)	38(2)
				50(6) ^b		0.94(11)	
				42(2) ^c		0.79(4)	
				25(3) ^d		0.47(6)	
	2^{-}	6.769	2.141	107(40) ^b	130	0.82(31)	94(5)
				90(5) ^c		0.69(4)	

TABLE III. Properties of lowest 3^- and 2^- , T = 1 states in A =

^aRef. [7], unless noted otherwise.

^bRef. [13].

^cRef. [14].

^dRef. [15].

^eFrom ${}^{13}C(d, p)$, Ref. [12].

FIG. 2. As Fig. 1, but for lowest 3^- (diamonds) and 2^- (squares) states for A = 14, T = 1.

III. SUMMARY

I have examined spectroscopic factors for predominantly $1d_{5/2}$ single-particle states in isospin multiplets having A = 14, 15, and 16. Calculations provide recommended widths in ¹⁴O and ¹⁶F that are in good agreement with experimental

- M. D. Cooper, W. F. Hornyak, and P. G. Roos, Nucl. Phys. A 218, 249 (1974).
- [2] H. T. Fortune, L. R. Medsker, J. D. Garrett, and H. G. Bingham, Phys. Rev. C 12, 1723 (1975).
- [3] W. Bohne, J. Bommer, H. Fuchs, K. Grabisch, H. Kluge, and G. Roschert, Nucl. Phys. A 196, 41 (1972).
- [4] Z. D. Wu et al., Phys. Rev. C 89, 054315 (2014).
- [5] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A 564, 1 (1993).
- [6] D. W. Lee, K. Perajarvi, J. Powell, J. P. O'Neil, D. M. Moltz, V. Z. Goldberg, and J. Cerny, Phys. Rev. C 76, 024314 (2007).
- [7] F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).
- [8] I. Stefan *et al.*, Phys. Rev. C **90**, 014307 (2014).
- [9] F. de Grancey et al., Phys. Lett. B 758, 26 (2016).
- [10] H. T. Fortune, Phys. Rev. C 74, 054310 (2006).
- [11] J. D. Goss, P. L. Jolivette, C. P. Browne, S. E. Darden, H. R. Weller, and R. A. Blue, Phys. Rev. C 12, 1730 (1975).

values. Results indicate a serious problem with the width of the $5/2^+$ resonance in ¹⁵F. Most recent experimental values of this width are about 1.5 times as large as expected from spectroscopic factors for the lowest $5/2^+$ state in other A = 15, T = 3/2 nuclei.

- [12] R. J. Peterson, H. C. Bhang, J. J. Hamill, and T. G. Masterson., Nucl. Phys. A 425, 469 (1984).
- [13] A. Negret et al., Phys. Rev. C 71, 047303 (2005).
- [14] T. Teranishi et al., Phys. Lett. B 650, 129 (2007).
- [15] Y. B. Wang, B. X. Wang, X. Qin, X. X. Bai, B. Guo, C. Jiang, Y. J. Li, Z. H. Li, G. Lian, J. Su, S. Zeng, and W. P. Liu, Phys. Rev. C 77, 044304 (2008).
- [16] W. Benenson, E. Kashy, A. G. Ledebuhr, R. C. Pardo, R. G. H. Robertson, and L. W. Robinson, Phys. Rev. C 17, 1939 (1978).
- [17] G. J. KeKelis, M. S. Zisman, D. K.Scott, R. Jahn, D. J. Vieira, J. Cerny, and F. Ajzenberg-Selove, Phys. Rev. C 17, 1929 (1978).
- [18] W. Peters et al., Phys. Rev. C 68, 034607 (2003).
- [19] A. Lepine-Szily *et al.*, Nucl. Phys. A **734**, 331 (2004); (private communication).
- [20] V. Z. Goldberg, G. G. Chubarian, G. Tabacaru, L. Trache, R. E. Tribble, A. Aprahamian, G. V. Rogachev, B. B. Skorodumov, and X. D. Tang, Phys. Rev. C 69, 031302(R) (2004).
- [21] F. Q. Guo et al., Phys. Rev. C 72, 034312 (2005).