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To describe quantal collective phenomena, it is useful to requantize the time-dependent mean-field dynamics.
We study the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory for the two-level pairing Hamiltonian,
and compare results of different quantization methods. The one constructing microscopic wave functions, using
the TDHFB trajectories fulfilling the Einstein-Brillouin-Keller quantization condition, turns out to be the most
accurate. The method is based on the stationary-phase approximation to the path integral. We also examine the
performance of the collective model which assumes that the pairing gap parameter is the collective coordinate.
The applicability of the collective model is limited for the nuclear pairing with a small number of single-particle
levels, because the pairing gap parameter represents only a half of the pairing collective space.
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I. INTRODUCTION

Pairing correlation plays a decisive role in a number of
nuclear phenomena, which is especially important in open-
shell nuclei. Many evidences of the pairing correlation were
observed in experiment, including odd-even mass difference,
moments of inertia of rotational bands, and quasiparticle
spectra in odd nuclei. Even in closed-shell nuclei, the pairing
dynamically plays an important role in elementary modes
of excitation, such as pairing vibrations [1–3]. Properties of
low-lying modes of excitation in even-even nuclei are expected
to be determined dominantly by interplay between the pairing
and the quadrupole correlations. However, the true nature of
the low-lying excitations is still unclear, especially for excited
Jπ = 0+ states [4,5]. Understanding the pairing dynamics is a
key ingredient for solving mysteries of excited 0+ states.

The ground states in many of the even-even nuclei are
well described by the Bardeen-Cooper-Schrieffer (BCS) and
the Hartree-Fock-Bogoliubov (HFB) theories [2,6]. Its time-
dependent version, the time-dependent HFB (TDHFB) theory
[7,8], is a natural extension of the static HFB theory. Thanks to
increasing computational power, realistic applications of the
TDHFB calculations in real time become available for studies
of linear response properties [9–13] and of various nuclear
dynamics [14–19]. The small-amplitude limit of the TDHFB
is known to be the quasiparticle random phase approximation
(QRPA). The QRPA was extensively utilized and successfully
describes properties of giant resonances. Recently, the QRPA
calculations with modern energy density functionals for giant
resonances in deformed nuclei have become available [20–27].
In contrast, many of the low-lying excited states cannot be well
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reproduced by QRPA [8]. This may be because of their slowly
moving large-amplitude nature.

In principle, the TDHFB dynamics can be applicable to
large amplitude motion. The problem is that it is not easy
to determine quantum mechanical quantities, such as energy
eigenvalues and transition matrix elements, from the TDHFB
trajectories. In addition, the TDHFB lacks a part of quantum
fluctuation associated with low-energy large amplitude collec-
tive motion, which leads to difficulties in the description of
the quantum tunneling processes, such as spontaneous fission
and sub-barrier fusion reaction. For this purpose, because the
TDHF(B) trajectory corresponds to a stationary-phase limit of
the path integral formulation, the requantization of the mean-
field dynamics was proposed [28–33]. It recovers quantum
fluctuations missing in the mean-field level, and possibly
enables us to describe large-amplitude collective tunneling
phenomena. The requantization of the TDHFB is particularly
feasible for integrable systems, because the system is described
by separable action-angle variables (Ik,φk), leading to the
Einstein-Brillouin-Keller (EBK) quantization condition. How-
ever, for nonintegrable systems in general, it is difficult to find
suitable periodic orbits to quantize. A possible solution to this
difficulty is to find a decoupled collective subspace spanned by
a single coordinate and its conjugate momentum [8]. Because
the one-dimensional system is integrable, the quantization is
practicable.

Another somewhat phenomenological approach to nuclear
collective dynamics is the collective model. In this approach,
the collective Hamiltonian is constructed by choosing collec-
tive coordinates intuitively. The nuclear energy density func-
tional model is often used as a tool for a microscopic derivation
of the collective Hamiltonian [8]. The most well-known and
successful model is the Bohr model [1], which was introduced
to describe low-energy nuclear collective motion in quadrupole
degrees of freedom with the deformation parameters (β,γ )
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and the Euler angles (φ,θ,ψ). For the pairing motion, the
collective coordinates are analogously chosen as the pair
deformation (gap) � and the gauge angle 	 [34]. Based on
the pairing collective Hamiltonian, effects of the pair motion
on the quadrupole vibrations have been discussed in literature
[35,36]. However, it is not trivial whether the pair deformation
is really a suitable choice for the collective coordinate, which
should be investigated in a microscopic approach based on the
TDHFB dynamics.

Our final goal is to study the role of large-amplitude pairing
dynamics and to reveal the nature of the mysterious excited
0+ states. As the first step, toward this goal, we investigate
accuracy and applicability of the requantized TDHFB model
for a two-level pairing model with equal degeneracy 
 [37],
especially on the calculation of two-particle-transfer matrix el-
ements. In Ref. [38], the two-particle-transfer matrix elements
were evaluated as Fourier components of the time-dependent
mean values of the pair-creation operators, which demonstrates
nice agreement with the exact results at large 
 values (
 =
40). However, in realistic values of 
, we will show that the
deviation is substantial. The collective model of the pairing
motion, which assumes the pair deformation as the collective
coordinate, has a similar tendency, namely, applicability lim-
ited to large 
 cases [34]. This deficiency is mainly from the
small collectivity in the pairing motion in realistic situations.
In this paper, to improve the quantitative estimate of the matrix
elements, we construct microscopic wave functions based on
the EBK quantization for the integrable systems. The wave
functions are obtained from the stationary-phase approxima-
tion for the path-integral form [39]. Its superiority to the other
methods becomes more evident for smaller values of 
.

The paper is organized as follows. In Sec. II, we derive
a TDHFB classical Hamiltonian for the pairing model. In
Sec. III, the requantization of the TDHFB is performed
using different methods, based on the canonical and the EBK
quantization. In Sec. IV, the numerical results for the two-level
model are shown and compared with exact results. Properties
of the pairing collective coordinate is also discussed. We give
a conclusion in Sec. V.

II. CLASSICAL FORM OF TDHFB HAMILTONIAN

The Hamiltonian of the pairing model is given in terms of
single-particle energies εl and the pairing strength g as

H =
∑

l

εlnl − g
∑
l,l′

S+
l S−

l′

=
∑

l

εl

(
2S0

l + 
l

) − gS+S−, (2.1)

where we use the SU(2) quasispin operators, S = ∑
l Sl , with

S0
l = 1

2

( ∑
m

a
†
lmalm − 
l

)
, (2.2)

S+
l =

∑
m>0

a
†
lma

†
lm, S−

l = S
+†
l . (2.3)

Each single-particle energy εl possesses (2
l)-fold degeneracy
(
l = jl + 1/2) and

∑
m>0 indicates the summation over

m = 1/2,3/2, . . . , and 
l − 1/2. The occupation number of
each level l is given by nl = ∑

m a
†
lmalm = 2S0

l + 
l,. The
quasispin operators satisfy the commutation relations,[

S0
l ,S

±
l′
] = ±δll′S

±
l , [S+

l ,S−
l′ ] = 2δll′S

0
l . (2.4)

The magnitude of quasispin for each level is Sl = 1
2 (
l − νl),

where νl is the seniority quantum number, namely the number
of unpaired particles at each level l. In the present study,
we only consider seniority zero states with ν = ∑

l νl = 0.
The residual two-body interaction only consists of monopole
pairing interaction which couples two particles to zero angular
momentum. We obtain exact solutions either by solving the
Richardson equation [40–42] or by diagonalizing the Hamil-
tonian using the quasispin symmetry.

A. Coherent-state representation of the TDHFB Hamiltonian

The coherent state for the seniority ν = 0 states (Sl = 
l/2)
is constructed as

|Z(t)〉 =
∏

l

(1 + |Zl(t)|2)−
l/2 exp[Zl(t)S
+
l ] |0〉 , (2.5)

where |0〉 is the vacuum (zero particle) state, Zl(t) are
time-dependent complex variables which describe motion
of the system. In the SU(2) quasispin representation, |0〉 =∏

l |Sl, − Sl〉. The coherent state |Z(t)〉 is a superposition
of states with different particle numbers without unpaired
particles. In the present pairing model, the coherent state
is the same as the time-dependent BCS wave function with
Zl(t) = vl(t)/ul(t), where (ul(t),vl(t)) are the time-dependent
BCS u,v factors.

The TDHFB equation can be derived from the time-
dependent variational principle,

δS = 0, S ≡
∫

〈φ(t)|i ∂

∂t
− H |φ(t)〉 dt, (2.6)

where |φ(t)〉 is the time-dependent generalized Slater deter-
minant. In the present case, we adopt the coherent state of
Eq. (2.5), |φ(t)〉 = |Z(t)〉. The action S is

S =
∫

L(t)dt

=
∫

dt

{
i

2

∑
l


l

1 + |Zl|2 (Z∗
l Żl − ZlŻ

∗
l ) − 〈Z|H |Z〉

}
,

(2.7)

and

〈Z|H |Z〉 =
∑

l

εl

2
l|Zl|2
1 + |Zl|2 − g

∑
l


l|Zl|2(
l + |Zl|2)

(1 + |Zl|2)2

− g
∑
l1 �=l2


l1Zl1

1 + |Zl1 |2

l2Z

∗
l2

1 + |Zl2 |2
. (2.8)

We transform the complex variables Zl into real variables
(ql,χl) by Zl = tan θl

2 e−iχl and ql = cos θl (0 � θ � π ). The
Lagrangian L and the expectation value of Hamiltonian
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become

L(t) =
∑

l


l

2
(1 − ql)χ̇l − H(Z,Z∗), (2.9)

H(Z,Z∗) ≡ 〈Z|H |Z〉
=

∑
l

εl
l(1 − ql) − g

4

×
∑

l


l

[

l

(
1 − q2

l

) + (1 − ql)
2
]

− g

4

∑
l1 �=l2


l1
l2

√(
1 − q2

l1

)(
1 − q2

l2

)
e−i(χl1 −χl2 ).

(2.10)

Here, χl represents a kind of gauge angle of each level, and
ql are related to the occupation probability, ql = |ul|2 − |vl|2.
If we choose χl as canonical coordinates, their conjugate
momenta are given by pl ≡ ∂H/∂χ̇l = 
l(1 − ql)/2. Because
the Hamiltonian (2.10) depends only on the relative difference
in the gauge angles, the “global” gauge angle, 	 ∝ ∑

l χl , is
a cyclic variable.

B. Two-level case

In a two-level system, it is convenient to define global and
relative gauge angles, 	 and φ, respectively.

	 ≡ χ1 + χ2

2
, φ ≡ χ2 − χ1, (2.11)

whose ranges are 0 � 	 � 2π and −2π � φ � 2π . Their
conjugate momenta (J,j ) are given by

J = ∂L
∂	̇

=
2∑

l=1


l

2
(1 − ql),

j = ∂L
∂φ̇

= 
2(1 − q2) − 
1(1 − q1)

4
. (2.12)

By calculating the occupation number nl in the level l,
the physical meaning of these conjugate momenta becomes
obvious:

nl = 〈Z|nl|Z〉 = 
l(1 − ql). (2.13)

Therefore, J corresponds to the total particle number N =∑
l nl , while j corresponds to the difference of the occupation

number between the upper level and the lower level:

J = N

2
, j = n2 − n1

4
. (2.14)

The Hamiltonian in terms of these canonical variables
(φ,j ; 	,J ) is given by

H(φ,j ; J ) =
∑
l=1,2


lεl(1 − ql)

− g

4

∑
l=1,2


l

[

l

(
1 − q2

l

) + (1 − ql)
2
]

− g

2

1
2

√(
1 − q2

1

)(
1 − q2

2

)
cos φ, (2.15)

with

ql = 
l − J − 2(−1)lj


l

for l = 1,2. (2.16)

Note that the Hamiltonian does not depend on the global
gauge angle 	. This leads to the particle number conservation,
dN/dt = 0.

The TDHFB equation can be written in a form of the
classical equations of motion:

d	

dt
= ∂H

∂J
,

dJ

dt
= −∂H

∂	
, (2.17)

dφ

dt
= ∂H

∂j
,

dj

dt
= −∂H

∂φ
. (2.18)

Because the J = N/2 and the total energy E are constants
of motion, the TDHFB trajectories with given N and E are
determined in the two-dimensional phase space (φ,j ) with the
condition,

H(φ(t),j (t); J = N/2) = E. (2.19)

Examples of the classical trajectories in the phase space (φ,j )
are shown in Fig. 1. The figure shows contour lines of energy
for systems, which correspond to the TDHFB trajectories, with

1 = 
2 = 8 and N = 16 with different values of g. The
transition from the normal to the superfluid phase takes place
at g = �ε(2
)−1 with �ε = ε2 − ε1. Using a dimensionless
parameter x = 2g
/�ε, at x < 1, the ground state is normal
with the fully occupied lower level n1 = N and the empty
upper level (n2 = 0). All the TDHFB trajectories represent
the rotational behavior with respect to the relative angle φ.
Here, the “rotational behavior” means that the motion spans
the whole region of the angle φ, while we use “vibrational” for
the classical motion in a bound region of φ (−π < φ < π ).
At g = x = 0, the Hamiltonian becomes independent from
(	,φ), then, the occupation numbers, n1 and n2, are constants
of motion. At x > 1, the energy-minimum point and the closed
trajectories appear around j = j0 (−N/4 < j0 < N/4) and
φ = 0, which suggests the vibrational behavior for φ. At higher
energies, the trajectories become open (rotational-like), which
suggests a phase transition from super to normal phases as a
function of excitation energy.

In the single-j model, because the second term in the Hamil-
tonian (2.15) is absent, the Hamiltonian is exactly quadratic
with respect to N , H(N ) = H0 + (N − N0)2/(2J ). The mo-
ment of inertia for the pair rotation is J = 2/g × 
/(
 −
1) ≈ 2/g at 
 → ∞. In the multi-j case, the Hamiltonian
contains higher-order terms in general.

III. REQUANTIZATION OF TDHFB FOR THE
TWO-LEVEL PAIR MODEL

To determine energy eigenstates, we need to requantize the
TDHFB trajectories. Because the present two-level model is
integrable (Sec. II), it is feasible to apply the stationary-phase
approximation to the path integral expression. In addition, we
also study the canonical quantization of the TDHFB Hamilto-
nian, and the matrix elements extracted by the Fourier com-
ponents [38]. We show results of these different approaches to
the pairing model.
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FIG. 1. Energy contour plot for 
1 = 
2 = 8 and N = 16. The lines indicate the TDHFB trajectories fulfilling the EBK quantization
condition of Eq. (3.7).

A. Stationary-phase approximation to the path integral

Starting an arbitrary state |ψ(0)〉 at time t = 0, the time-
dependent full quantum state can be written in the path integral
form,

|ψ(t)〉 =e−iH t |ψ(0)〉

=
∫

dμ(Z′′) |Z′′〉
∫

dμ(Z′)

×
∫ Z(t)=Z′′

Z(0)=Z′
Dμ[Z(τ )]eiS[Z(τ )]ψ(Z′), (3.1)

where ψ(Z) ≡ 〈Z|ψ(0)〉 and the invariant measure dμ(Z) is
defined by the unity condition,∫

dμ(Z) |Z〉 〈Z| = 1. (3.2)

In Eq. (3.1),S[Z(τ )] is the action (2.7) along a given path Z(τ )
with the initial coherent state |Z(0)〉 = |Z′〉 and the final state
|Z(t)〉 = |Z′′〉, then, the integration

∫
Dμ[Z(τ )] is performed

over all possible paths |Z(τ )〉 between them. Among all
trajectories in the path integral, the lowest stationary-phase
approximation selects the TDHFB (classical) trajectories.1

|ψ(t)〉 ≈
∫

dμ(Z′) |Z′
cl(t)〉 eiScl(Z′

cl(t),Z
′)ψ(Z′), (3.3)

where the TDHFB trajectory starting from |Z′〉 ends at |Z′
cl(t)〉

at time t . The action Scl(Zf ,Zi) is calculated along this
classical trajectory connecting Zi = Z′

cl(0) = Z′ and Zf =
Z′

cl(t).

Scl(Z
′
cl(t),Z

′) ≡
∫ t

0
〈Zcl(t)|i ∂

∂t
− H |Zcl(t)〉 dt

= T [Zcl] − H(Z′,Z′∗)t, (3.4)

1In this formulation, the stationary-phase approximation agrees with
the TDHF(B) trajectories, while that to the auxiliary-field path integral
of Refs. [28,29] leads to the TDH(B) without the Fock potentials.

with

T [Zcl] ≡
∫ t

0
〈Zcl(t)|i ∂

∂t
|Zcl(t)〉 dt

=
∫ Z′

cl(t)

Z′

i

2

∑
l


l

1 + |Zl|2 (Z∗
l dZl − ZldZ∗

l ). (3.5)

In the last equation of Eq. (3.4), we used the fact that the
TDHFB trajectory conserves the energy, H(Zcl(t),Z∗

cl(t)) =
H(Z′,Z′∗).

The energy eigenstates correspond to stationary states,
〈Z|ψ(t)〉 ∝ 〈Z|ψ(0)〉 = ψ(Z), which can be constructed by
superposing the coherent states along a periodic TDHFB
trajectory Z

(k)
cl as [31,32,39]

|ψk〉 =
∮

dμ
(
Z

(k)
cl

) ∣∣Z(k)
cl

〉
eiT [Z(k)

cl ]. (3.6)

The single valuedness of the wave function leads to the
quantization condition (k, integer):

T◦
[
Z

(k)
cl

] =
∮

i

2

∑
l


l

1 + ∣∣Z(k)
l

∣∣2

× (
Z

(k)∗
l dZ

(k)
l − Z

(k)
l dZ

(k)∗
l

)
=2kπ. (3.7)

The state evolves in time as |ψk(t)〉 = |ψk〉 e−iEkt , with the
energy of the kth periodic trajectory, Ek = H(Z(k)

cl ,Z
(k)∗
cl ).

Finding TDHFB trajectories satisfying the quantization
condition (3.7) is an extremely difficult task in general. It is
better founded and more practical if the classical system is
completely integrable. In integrable systems, M complex vari-
ables Z(t) can be transformed into the action-angle variables;

Z(t) = {Zl(t); l = 1, · · · ,M}
→ {E; v1, · · · ,vM−1; θ1(t), · · · ,θM (t)}, (3.8)

where the variables E and v define an invariant torus, while
θ (t) parametrize the coordinates on the torus. The integration
path of Eq. (3.7) is now taken as a topologically independent
closed path on the torus, namely the EBK quantization condi-
tion. There are M independent closed paths and M quantum
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numbers, k = (k1, . . . ,kM ), to specify the stationary energy
eigenstate. These are associated with M invariant variables,
{Ek; v(k)

1 , . . . ,v
(k)
M−1}. Using the invariant measure,

dμ(Z) = ρ(E,v,θ )dEdv1 · · · dvM−1dθ1 · · · dθM, (3.9)

the kth semiclassical wave function can be calculated as

|ψk〉 ∝
∮

dθ1 · · ·
∮

dθMρ(Ek,v
(k),θ ) |Ek,v

(k),θ〉 eiT [Ek,v
(k),θ].

(3.10)

Here, we omit the integration with respect to the invariant
variables, E and v.

We apply the semiclassical approach to the two-level pairing
model. The invariant measure in SU(2)⊗SU(2) is

dμ(Z) =
∏

l


l + 1

π
(1 + |Zl|2)−2dReZldImZl (3.11)

=
∏

l


l + 1

4π
d cos θldχl (3.12)

=
( ∏

l=1,2

1 + 
−1
l

2π

)
d	dJdφdj. (3.13)

In the last equation, we transform the canonical coordinates by
Eqs. (2.11) and (2.12). Because the particle number J = N/2
and the total energyE are invariant, the two-level pairing model
is integrable. Thus, we can construct the semiclassical wave
function using Eq. (3.10). The action integral is given by

Tk(	,φ; J ) = J	 +
∫ φ

−π

j ′dφ′ = N

2
	 +

∫ t

0
j (t ′)

dφ

dt ′
dt ′

≡ TN,Ek
(	,t), (3.14)

where the integration
∫

jdφ is performed on the kth closed
trajectory of Eq. (3.7), and the variables (φ,j ) are transformed
into (t,E). The semiclassical wave function fulfilling the EBK
quantization condition becomes

|ψN
k 〉 ∝

∮
d	

∮
dteiTN,Ek

(	,t) |	,t〉N,Ek
(3.15)

∝
J∑

m=0

C(Ek,J )
m |S1, − S1 + m; S2, − S2 + (J − m)〉 ,

(3.16)

with Sl = 
l/2, J = N/2, and the coefficients,

C(Ek,J )
m =

(
J

m

) ∫ T

0
dt

× exp

(
i

∫ t

j (t ′)φ̇(t ′)dt ′ − i(J/2 − m)φ(t)

)

× A(q1,S1,m)A(q2,S2,J − m), (3.17)

A(q,S,m) =
(

1 − q

2

)m/2(1 + q

2

)S−m/2
√

(2S)!m!

(2S − m)!
,

where T is the period of the closed trajectory. The TDHFB-
requantized wave functions (3.16) are eigenstates of the total

particle number. This is because of the integration over the
global gauge angle 	, which makes the particle number
projection not only for the ground state but also for excited
states. See appendix for detailed derivation of Eq. (3.16).

Because we obtain the microscopic wave function of every
eigenstate, the expectation values and the transition matrix
elements for any operator can be calculated in a straightforward
manner. In Sec. IV, we show those of the pair-addition operator
S+ which characterize properties of the pair condensates.

Before ending this section, let us note the periodic con-
ditions of the coordinates and the quantization condition.
Because the two original variables, (χ1,χ2), are independent
periodic variables of the period 2π , in addition to the trivial
periodicity of 2π for 	 and of 4π for φ, we have periodic
conditions for (	,φ) → (	 ± π,φ ± 2π ) and (	,φ) → (	 ±
π,φ ∓ 2π ). The former (latter) corresponds to χ2 ± 2π (χ1 ±
2π ) with χ1 (χ2) being fixed. For open TDHFB trajectory (e.g.,
Fig. 1), the quantization condition becomes

TN,Ek
(	 ± π,φ ± 2π ; J ) = TN,Ek

(	,φ; J ) + 2mπ

⇔ ±N

2
π +

∫ π

−π

jdφ = 2mπ. (3.18)

This leads to the following:

∫ π

−π

jdφ =
{

2kπ for N = 4n,
(2k + 1)π for N = 4n + 2,

(3.19)

where m, k, and n > 0 are integer numbers.

B. Canonical quantization

The most common approach to the quantization of the
nuclear collective model is the canonical quantization [1]. In
the pairing collective model, the canonical quantization was
adopted in previous studies [34–36]. Assuming magnitude and
phase of the pairing gap as collective coordinates, a collective
Hamiltonian was constructed in the second order in momenta.
Then, the Hamiltonian was quantized by the canonical quan-
tization with Pauli’s prescription. In this section, we apply
a similar quantization method to the TDHFB Hamiltonian
(2.15). The main difference is that the collective canonical
variables are not assumed in the present case, but are obtained
from the TDHFB dynamics itself.

It is not straightforward to apply Pauli’s prescription to the
present case, because the TDHFB Hamiltonian (2.15) is not
limited to the second order in momenta. In the present study,
we adopt a simple symmetrized ordering, as

H (φ̂,ĵ ,Ĵ ) =
∑
l=1,2


lεl(1 − ql)

− g

4

∑
l=1,2


l

(

l

(
1 − q2

l

) + (1 − ql)
2
)

− g

4

1
2

{√(
1 − q2

1

)(
1 − q2

2

)
cos φ̂

+ cos φ̂

√(
1 − q2

1

)(
1 − q2

2

)}
. (3.20)
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As in Eq. (2.16), ql contain J and j which are replaced by

Ĵ = −i
∂

∂	
, ĵ = −i

∂

∂φ
. (3.21)

Because 	 is a cyclic variable, we write the collective wave
function �(	,φ) as eigenstates of the particle number N in a
separable form,

�
(N)
k (	,φ) = 1√

2π
ei N

2 	ψ
(N)
k (φ). (3.22)

Then, the problem is reduced to the one-dimensional
Schrödinger equation for the motion in the relative angle φ.
The Schrödinger equation is,

H

(
φ, − i

d

dφ
;
N

2

)
ψ

(N)
k (φ) = E

(N)
k ψ

(N)
k (φ). (3.23)

The wave function should have a periodic property with re-
spect to the variable φ; ψk(φ) = ψk(φ + 4π ). For the adopted
simple ordering of Eq. (3.20), it is convenient to use the
eigenstates of ĵ as the basis to diagonalize the Hamiltonian.
They are

χj (φ) = 1√
4π

eiφj , with j : integer or half integer.

(3.24)
Because the Hamiltonian (3.20) contains only terms linearly
proportional to e±iφ , the basis states χj with half-integer
difference in j are not coupled with each other. Thus, the
eigenstates of Eq. (3.23) can be expanded as

ψ
(N)
k (φ) =

jmax∑
j=jmin,jmin+1,...

c
(N)
k,j χ

(N)
j (φ). (3.25)

According to the relation j = (n2 − n1)/4 = (N − 2n1)/4 in
Eq. (2.14), we adopt the (half-)integer values of j for N =
4n (N = 4n + 2) with integer n. This is consistent with the
quantization condition (3.19). The coupling term with different
j in Eq. (3.20) vanishes for nl = 0 and nl = 2
l , which
restricts values of j in a finite range of jmin � j � jmax.

To estimate the two-particle transfer matrix elements, we
construct the corresponding operators as follows. The classical
form of matrix elements are obtained as

S+(	,J ; φ,j ) = 〈Z|Ŝ+|Z〉 = 1
2

(

1

√
1 − q2

1e−iφ/2

+
2

√
1 − q2

2eiφ/2
)
ei	, (3.26)

S−(	,J ; φ,j ) = 〈Z|Ŝ−|Z〉 = 1
2

(

1

√
1 − q2

1eiφ/2

+
2

√
1 − q2

2e−iφ/2
)
e−i	. (3.27)

Again, we adopt a simple symmetrized ordering for the
quantization:

S±(	̂,Ĵ ; φ̂,ĵ ) = 1
4

(

1

√
1 − q2

1e∓iφ̂/2 + 
2

√
1 − q2

2e±iφ̂/2
)

× e±i	̂ + 1
4e±i	̂

(
e∓iφ̂/2
1

√
1 − q2

1

+ e±iφ̂/2
2

√
1 − q2

2

)
. (3.28)

The exponential factors e±i	 change the total particle number
N → N ± 2, while e±iφ/2 change the relative numbers, n2 −
n1 → n2 − n1 ± 2. Using these operators, the pair-addition
transition strengths are calculated as

B(Pad; k → k′) = | 〈N ′,k′|S+(	̂,Ĵ ; φ̂,ĵ )|N,k〉 |2

=
∣∣∣∣ 1

2π

∫ 2π

0
d	

∫ 2π

−2π

dφψ
(N ′)∗
k′ (φ)e−i N ′

2 	

× S+(	̂,Ĵ ; φ̂,ĵ )ψ (N)
k (φ)ei N

2 	

∣∣∣∣
2

, (3.29)

which automatically vanishes for N ′ �= N + 2.

C. Fourier decomposition of time-dependent matrix elements

The requantization and calculation of the matrix elements
also can be performed using the time-dependent solutions of
the TDHFB. It was proposed and applied to the two-level
pairing model [38], which we recapitulate in this section.

The TDHFB provides a time-dependent solution Z(t) start-
ing from a given initial state Z(0). The energy eigenvalues
and the corresponding closed trajectories are determined from
the EBK quantization condition (3.7). The pair-transfer matrix
elements are evaluated as the Fourier components of the time-
dependent mean values S±(t) = S±(Z(t)), Eqs. (3.26) and
(3.27). Because the global gauge angle 	 is a cyclic variable,
the motion in the relative gauge angle φ is independent from
	. Thus, we calculate the time evolution of φ(t), and find the
period of the kth closed trajectory T satisfying Eq. (3.7). Then,
the Fourier component,

S̃±(Ek; ω) = 1

T

∫ T

0
dteiωtS±(t), (3.30)

corresponds to the pair-transfer matrix element from the state
k to k′ when ω = 2π (k′ − k)/T . The pair-addition transition
strengths are calculated as

B(Pad; k → k′) =
∣∣∣∣S̃+

(
Ek;

2π

T
�k

)∣∣∣∣
2

, (3.31)

with �k = k′ − k. In this approach, the transition between the
ground states of neighboring nuclei (N → N + 2) corresponds
to the stationary component (k = 0 and �k = 0), namely the
expectation value in the BCS approximation.

The derivation of Eq. (3.30) is based on the wave packet in
the classical limit [43]. The TDHFB state is assumed to be a
superposition of eigenstates |φN

k 〉 in a narrow range of energy
Ek0 − �E < Ek < Ek0 + �E,

|Z(t)〉 =
∑
N

∑
k

cN
k

∣∣φN
k

〉
e−iEkt , (3.32)

where the eigenenergies are evenly spaced and the coefficients
cN
k slowly vary with respect to k and N . The expectation value

of S± is

S±(t) =
∑
N

∑
k,k′

cN+2∗
k′ cN

k

〈
φN+2

k′
∣∣S±∣∣φN

k

〉
ei(Ek′ −Ek)t . (3.33)

The matrix element 〈φN+2
k′ |S±|φN

k 〉 quickly disappears as
|k′ − k| increases, while it stays almost constant for the
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small change of k and N with |k′ − k| being fixed. Thus,
we may approximate cN+2

k′ ≈ cN
k , Ek′ − Ek ≈ ω0�k, and that

〈φN+2
k′ |S±|φN

k 〉 ≈ 〈φN+2
k0+�k|S±|φN

k0
〉,

S±(t) ≈
∑
N

∑
k

∣∣cN
k

∣∣2 ∑
�k

〈
φN+2

k0+�k

∣∣S±∣∣φN
k0

〉
eiω0�kt

=
∑
�k

〈
φN+2

k0+�k

∣∣S±∣∣φN
k0

〉
eiω0�kt , (3.34)

where k0 is a representative index value of the superposition in
Eq. (3.32). From this classical wave packet approximation, we
obtain Eq. (3.30). It is not trivial to justify the approximation
for small values of 
 and for transitions around the ground
state.

IV. RESULTS

In this section, we study the seniority-zero states (ν1 =
ν2 = 0) in the two-level system with equal degeneracy, 
1 =

2 = 
. Because all the properties are scaled with the ratio
g/�ε, where �ε is the level spacing �ε = ε2 − ε1, we define
a dimensionless parameter to control the strength of the pairing
correlation,

x = 2

g

�ε
. (4.1)

For sub-shell-closed systems with the N = 2
 system, the
transition from normal (x < 1) to superfluid (x > 1) states
takes place at x = 1.2

We apply the requantization methods in Sec. III. In the fol-
lowing, the stationary-phase approximation to the path integral
in Sec. III A is denoted as “SPA,” the Fourier decomposition
method (Sec. III C) as “FD,” and the canonical quantization
with periodic boundary condition (Sec. III B) as “CQ.” Note
that the SPA and the FD produce the same eigenenergies which
are based on the EBK quantization rule.

A. Large-� cases

In the limit of 
 → ∞, we expect that the classical
approximation becomes exact. Here, we adopt 
 = 50 with
N = 100 (closed-shell configuration) and N = 50 (mid-shell
configuration).

Calculated excitation energies are shown in Fig. 2. The
results of SPA/FD and CQ are compared with the exact values.
At the weak pairing limit of x → 0, the excitation energies are
multiples of 2�ε, which correspond to pure 2n-particle-2n-
hole excitations. Both the weak and the strong pairing limits
are nicely reproduced by all the calculations, while the CQ
method produces excitation energies slightly lower than the
exact values in an intermediate region around x = 1. It is
somewhat surprising to see that the deviation is larger for the
case of the mid-shell configuration (N = 50) than the closed
shell (N = 100).

The deviation in the CQ method is mainly from the
zero-point energy in the ground state. Because we solve the

2Strictly speaking, the phase transition takes place at x =
2
/(2
 − 1).

(a)

 0
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 0  0.5  1  1.5  2  2.5

E
/Δ
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x
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(b)
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 2

 4
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 10

 0  0.5  1  1.5  2  2.5
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exact
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FIG. 2. Excitation energies of |0+
2 〉 , |0+

3 〉, and |0+
4 〉 for 
 = 50

systems with (a) N = 50 and (b) N = 100 as functions of the
dimensionless parameter x of Eq. (4.1).

collective Schrödinger equation (3.23) with the quantized
Hamiltonian of Eq. (3.20), the zero-point energy �E > 0 is
inevitable in the CQ method. The �E is associated with the de-
gree of localization of the wave function. Thus, the magnitude
of �E for “bound” states is different from that for “unbound”
states. See Fig. 1. In the strong pairing limit, the potential
minimum is deep enough to bound both ground and excited
states. Conversely, all the states are unbound in the weak limit.
In both limits, �E for ground and excited states are similar,
and they are canceled for the excitation energy. However, near
x = 1, the ground state is bound, while the excited states are
unbound. In this case, �E is larger in the ground state than in
the excited states, which makes the excitation energy smaller.
This also explains the difference between the mid-shell and
closed-shell configurations. In the closed shell, all the states
are unbound for x < 1, while, in the mid-shell, there is a region
in x < 1 where the ground state is bound but the excited state
is unbound.

The obtained wave functions in the SPA and the CQ can be
decomposed in the 2n-particle-2n-hole components in Fig. 3.
In the SPA, it is done as Eq. (3.16) and the normalized squared
coefficients |C(Ek,J )

m |2 are plotted in Fig. 3. For the CQ, |c(N)
k,j |2

in Eq. (3.25) are shown. Here, m and j are related to each other,
2j = J − 2m. They show excellent agreement with the exact
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FIG. 3. Occupation probability in excited 0+ states as a function of j for 
 = 50 systems with (a) N = 50 and (b) N = 100. The upper
and lower panels display the results for x = 0.5 and x = 2, respectively. The three vertical bars at each j from the left to the right represent the
squared components of the wave functions from exact, SPA, and CQ calculations, respectively. The left end of the horizontal axis at j = jmin

corresponds to a component with (n1,n2) = (N,0). The next at j = jmin + 1 corresponds to the one with (n1,n2) = (N − 2,2), and so on.

results, not only for the ground state but for excited states. We
find the SPA is even more precise than the CQ.

Next, let us discuss the transition matrix elements. In this
paper, we discuss only k = 0 (ground state) and k = 1 (first
excited ν = 0 state). The FD calculation is based on the time
evolution of the expectation value S+(t) with fixed (J,	) in
Eq. (3.30). For (N,k) → (N + 2,k′) transitions, we basically
adopt the trajectories for the initial state, namely, the one with
J = N/2 satisfying the kth EBK quantization condition. The
k → k (�k = 0) transitions correspond to the intraband tran-
sitions of the pair-rotational band, when the state is deformed
in the gauge space (pair deformation). For the ground-state
band (k = 0), this is nothing but the expectation value at the
BCS wave function, with the constant value of S+. Because
the constant S+ provides only �k = 0 intraband transitions,
for the interband transition of (N,k = 0) → (N + 2,k = 1)
transitions, the trajectory satisfying the EBK condition of
k = 1 is used to perform the Fourier decomposition (3.30) of
ω = 2π/T .

The calculated pair-addition strengths B(Pad) are shown
in Fig. 4 for N = 48 → 50, and in Fig. 5 for N = 98 →
100. Near the closed-shell configuration (N = 98 → 100), the
pair-addition strengths for the intraband transitions (�k = 0)

drastically increase around x = 1. This reflects a character
change from the pair vibration (x � 1) to the pair rotation (x �
1). The B(Pad; k → k) in the pair-rotational transitions are
about 20 times larger than those in the vibrational transitions.
The interband B(Pad; 0 → 1) are similar to the B(Pad; 0 → 0)
in the vibrational region (x � 1), because they both change
the number of pair-phonon quanta by one unit. In contrast,
B(Pad; 1 → 0), which change the phonon quanta by three, are
almost zero. In the pair-rotational region (x � 1), B(Pad; 1 →
0), and B(Pad; 0 → 1) are roughly identical. This is because
both B(Pad; 1 → 0) and B(Pad; 0 → 1) correspond to one-
phonon excitation in “deformed” cases (x � 1).

In the mid-shell region (N = 48 → 50), the intraband
B(Pad; k → k) smoothly increases as x increases. Their values
are larger than the interband strengths by about one (two)
order of magnitude at x ∼ 0 (x ∼ 2.5), indicating the pair-
rotational character. The interband B(Pad; 0 → 1) shows a
gradual decrease as a function of x, while B(Pad; 1 → 0) is
negligibly small, even at x � 1. This presents a prominent
difference from the closed-shell case.

All the features of the pair-transfer strengths are nicely
reproduced in the SPA method, for both the closed- and mid-
shell configurations. The CQ method qualitatively agrees with
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FIG. 4. The strength of pair-addition transition B(Pad; k → k′) for 
 = 50 systems from N = 48–50. Left panels, results of the CQ method;
middle panels, FD; right panels, SPA. Dashed lines represent exact calculation. Upper panels show the intraband transitions of |0+

1 〉 → |0+
1 〉

and |0+
2 〉 → |0+

2 〉, while lower panels show the interband transition of |0+
1 〉 → |0+

2 〉 and |0+
2 〉 → |0+

1 〉.

the exact calculation. For instance, the order-of-magnitude dif-
ference between intraband and interband transitions. However,
the precision of the CQ method is not so good, especially
around x = 1. The FD method properly describes the main
features in the superfluid phase, while it fails for the normal
phase (x � 1). In the mid-shell configuration, the ground state
is always in the superfluid phase at x > 0, while the k = 1
excited state corresponds to the open (closed) trajectory at 0 <
x � 1 (x � 1). For the open trajectory, the FD produces wrong
values. However, somewhat surprisingly, the SPA, which uses
these open trajectories for the construction of wave functions,
reproduces main features of the exact results.

B. Small-� cases

Next, we discuss systems with smaller degeneracy 
 = 8.
Again, we study systems near the closed-shell and the mid-
shell configurations.

1. Mid-shell configuration

The calculated excitation energies are shown in Fig. 6 for
the N = 8 case. The SPA/FD reproduces the exact calculation
in the entire region of x, not only for the lowest but also for
higher excited states. The CQ reproduces the exact result in
a weak pairing region (x � 1), while it underestimates the
excitation energies at x � 1. Analogous to the case of 
 = 50,
this is mainly from the effect of the zero-point energy �E. The
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FIG. 5. The same as Fig. 4 but for N = 98 → 100.
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FIG. 6. Excitation energies of |0+
2 〉 , |0+

3 〉, and |0+
4 〉 for 
 = N =

8 systems as functions of x.

ground-state energy in the CQ calculation is bound at x � 1.
However, because of the weak collectivity with N = 8, the first
excited state stays unbound even at the maximum x in Fig. 6.
Therefore, the energy shift �E > 0 is larger in the ground
state, which makes the excitation energy smaller.

The wave functions are plotted in Fig. 7. At the weak pairing
case of x = 0.5, both the SPA and the CQ reproduce the exact
result. At x = 2, the squared coefficients of the ground state has
an asymmetric shape peaked at the lowest j , which suggests
that the state is not deeply bound in the potential. It is in contrast
to the symmetric shape in Fig. 3. The wave functions obtained
by the CQ method has noticeable deviation from the exact
results. On the other hand, the SPA wave functions are almost
identical to the exact ones.

The pair-addition transition strengths from N = 6 to N = 8
are shown in Fig. 8. The intraband k → k transitions increase
and the interband k = 0 → 1 transitions decrease as functions
of x. Their relative difference becomes more than one order
of magnitude at x � 2. Thus, even at relatively small 
 and
N , the intraband transitions in the pair rotation is qualitatively
different from the interband transitions.

We find the excellent agreement between the SPA and the
exact calculations. The first excited state corresponds to the
open trajectory which turns out to almost perfectly reproduce
the exact wave function. In contrast, this open trajectory
produces results far from the exact one in the FD method. It
produces almost vanishing the intraband B(Pad; 1 → 1). The
B(Pad; 0 → 0) shows a qualitative agreement for its behavior,
but is significantly underestimated. The CQ method also
underestimates the intraband transitions.

For the mid-shell configurations, the SPA is dominantly
superior to the CQ and the FD methods.

2. Closed-shell configuration

In the closed shell with N = 16, the minimum-energy
trajectory changes at x = 1 from j = −4 (normal phase) to
the BCS minimum j > −4 and φ = 0 (superfluid phase). At
the transitional point (x = 1), the harmonic approximation is
known to collapse, namely to produce zero excitation energy.
In Fig. 9, this collapsing is avoided in all the calculations
(SPA/FD and CQ). The behaviors of the lowest excitation agree
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FIG. 7. Occupation probability in excited 0+ states as a function
of j for 
 = N = 8 systems. (a) and (b) Results for x = 0.5 and
x = 2, respectively. See also the caption for Fig. 3.

with the exact calculations, while the CQ method substantially
underestimates those for higher states. This is again from
the difference in the zero-point energy in the ground and the
excited states. In the CQ calculation, the first excited state is
bound at x � 2, but the second excited state is unbound for
x � 3.2.

Near the transition point from the open to closed trajectories,
the wave functions calculated with the SPA and CQ methods
somewhat differ from the exact ones. In Fig. 10, the wave
functions at x = 0.5 and 2 are presented. They agree with exact
calculation at x = 0.5. In contrast, we find some deviations
for the first excited state (k = 1) at x = 2. This is because the
k = 1 trajectory corresponding to the first excited state changes
its character from open to closed at x ≈ 1.8. Therefore, the
first excited wave function is difficult to reproduce in the SPA,
although the wave functions for the ground and higher excited
states show reasonable agreement. The similar disagreement
is observed for the ground state near x = 1.

Singular behaviors near the transition points also can be ob-
served in the pair-addition transition strengths (N = 14 → 16)
shown in Fig. 11. At x = 1, the intraband B(Pad; 0 → 0) shows
a kink in the SPA, and B(Pad; 1 → 1) shows another kink at
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FIG. 8. The same as Fig. 4 but for N = 6 → 8 with 
 = 8.

x ≈ 1.8. These exactly correspond to the transition points from
open to closed trajectories. Nevertheless, the overall behaviors
are well reproduced and the values at the weak and strong
pairing limit are reasonably reproduced in the SPA. The CQ
calculation also shows smoothed kinklike behaviors near the
transition points. However, it underestimates the intraband
B(Pad; k → k). The FD method does not have a kink for
B(Pad; 0 → 0), because S+(t) is calculated for an N = 14
system. Both intraband and interband transitions in the FD
calculations reasonably agree with the exact results at x � 1.8.
The k = 1 state is not properly reproduced at x � 1.8 with the
open trajectory.

For the closed-shell configurations, the SPA and the FD
methods provide reasonable description for the pair-transfer
transition strengths.

C. Collective model treatment

The collective model was proposed and utilized for the
nuclear pairing dynamics [34–36]. For those studies, the
pairing gap parameter (or equivalent quantities) is assumed
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FIG. 9. The same as Fig. 6 but for N = 2
 = 16.

to be the collective coordinates. This is analogous to the
five-dimensional (5D) collective (Bohr) model, in which the
collective coordinates are assumed to be the quadrupole
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FIG. 11. The same as Fig. 4 but for N = 14 → 16 with 
 = 8.

deformation parameters α2μ. The 5D collective model was
extensively applied to analysis on numerous experimental data.
On the contrary, there have been very few applications of
the pairing collective model in comparison with experimental
data. In this section, we examine the validity of the collective
treatment of the pairing.

Although the global gauge angle 	 is arbitrary, the defor-
mation parameter α ≡ 〈Ŝ−〉 in the gauge space is usually taken
as a real value (	 = 0). The energy minimization with a fixed
value of real α always leads to φ = 0.

α(j,J ) = 〈Z0|Ŝ−|Z0〉 = 


2

(√
1 − q2

1 +
√

1 − q2
2

)
. (4.2)

The parameter α is equivalent to the pairing gap �, because
the relation, � = Gα, guarantees one-to-one correspondence
between α and �. In Sec. III B, we treat φ as a collective coor-
dinate and j as its conjugate momentum. The collective model
treatment is based on the opposite choice, j as a coordinate
and φ as a momentum.

The problem is that there is no one-to-one correspondence
between j and α. The relation between j and α are shown by
dashed lines in Fig. 12 for 
 = 8 mid-shell (a) and closed-shell
(b) configurations. The deformation parameter α is largest at
j = 0 (equal filling in both levels), and smallest at the end
points of j . The constrained minimization with respect to α
cannot produce the states corresponding to j > 0. Apparently,
we cannot map the entire region of j to α.

The collective model treatment requires the collective wave
functions to be well localized in the j < 0 region. The potential
energy, E(j ) = H(φ = 0,j ; J = N/2) of Eq. (2.15), is also
shown in Fig. 12. The restriction becomes more serious for
the stronger pairing cases. For instance, the potential with
x = 3.2 in Fig. 12(a) has only about 1-MeV depth at the
minimum point, relative to the value at the boundary point
(j = 0) corresponding to the maximum value of α (�).

To simulate the result of the collective model, we expand the
Hamiltonian (2.15) up to the second order in φ, then, quantize it

by φ̂ = i∂/∂j with the ordering given by Pauli’s prescription.
The range of the coordinate j is restricted to jmin � j � 0
with the vanishing boundary condition ψ(jmin) = ψ(0) = 0.
Figure 13 shows two examples of the relationship between
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FIG. 12. Energy surfaces as functions of j , Eq. (2.15) with φ =
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 = N = 8)
and (b) closed-shell (2
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FIG. 13. Potential energy surface as functions of α with x = 2.4.
(a) 
 = N = 50, (b) 2
 = N = 16. Horizontal lines indicate energy
spectra. Black lines are obtained from the potential energy surface,
and green lines are obtained with the CQ method (Sec. III B).

excitation energies and the potential energy surface. In
Fig. 13(a), we show the case of large 
 (
 = 50, N = 50,
and x = 2.4), in which the excited 0+ states are bound up to
second excitation. From the collective model, the energies of
the ground and the first excited states are well described, while
the deviation becomes larger for higher excited states. For very
large degeneracy, the pocket of energy surface is deep, hence
the low-lying excited states may be described by α. However, in
the small-
 case (
 = 8, N = 16, and x = 2.4) of Fig. 13(b),
no excited states are bound by the potential as a function of
α. None of the excited 0+ states are properly described in
the collective model. This shallow potential is a consequence
of the improper choice of the collective coordinate α which
represents only the j < 0 region. Therefore, the collective
model treatment assuming α (�) as the collective coordinate
is not applicable to small-
 and strong-pairing cases.

V. CONCLUSION

The different methods of the requantization of the TDHFB
dynamics was studied for the two-level pairing model; the
stationary-phase approximation (SPA) of the path integral, the
canonical quantization (CQ), and the Fourier decomposition

(FD) of the time-dependent observables. In this model, because
the global gauge angle 	 is a cyclic variable, the TDHFB
dynamics can be described by the integrable classical dy-
namics. After the pair-rotation variables (	,J ) are separated,
the remaining degrees of freedom (φ,j ) describe the pair-
vibrational motion.

In systems with large degeneracy 
 and number of particles
N , all the quantization methods reasonably reproduce the
results of the exact calculation for excitation spectra. It is more
difficult to reproduce the two-particle transfer matrix elements.
Nevertheless, for the large 
 and N , we obtain qualitative
agreement with the exact results. These are ideal cases, but
realistic situations may have smaller 
 and N in the valence
space.

In systems with relatively small 
 and N , the agreement is
less quantitative for the CQ and the FD, especially for the two-
particle transfer matrix elements. In contrast, the SPA keeps
its accuracy in the entire range of pairing strengths. One of
the reasons of its success is because of the inclusion of the
off-diagonal parts of the pair-transfer operator, by the explicit
construction of the microscopic wave functions. The CQ and
FD calculate the pair-transfer matrix elements using only the
diagonal part (expectation value) of the operator Ŝ±, based on
Eqs. (3.26) and (3.27). This is a good approximation when
the collectivity is so large that the diagonal parts dominate.
However, the pairing collectivity may be too weak to justify
this treatment.

We also investigated the conventional treatment of the
collective model which assumes that the collective coordinate
is the paring gap parameter. As we mentioned before, the
present two-level pairing Hamiltonian has only one pair of
collective variables (φ,j ), in addition to the pair-rotational
variables (	,J ). Even for such a simple system, we find that it
is difficult to justify the use of � as the collective coordinate,
especially for relatively small-
 cases. Basically, there is no
one-to-one correspondence between � and j . The collective
wave functions are not necessarily bound in the region where
the variable � can represent.

Among the different requantization methods, the SPA is
the most accurate tool for description of the pairing large
amplitude collective motion in realistic nuclear systems. The
weak point of this approach is that it is applicable only to the
integrable TDHFB system. To solve this problem, we plan
to first extract the integrable collective submanifold in the
many-dimensional TDHFB phase space. For this purpose, the
adiabatic self-consistent collective coordinate (ASCC) method
[8] is a promising tool. The combined study of the ASCC
and the SPA for multilevel systems is our next target under
progress.
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APPENDIX: DERIVATION OF SEMICLASSICAL WAVE FUNCTION

We give a derivation of the semiclassical wave function of Eq. (3.16). The explicit form of coherent state is

|Z〉 =
2∏

l=1

(1 + |Zl|2)−
l/2eZlS
+
l |0〉 =

2∏
l=1

(
1 + tan2 θl

2

)−
l/2 ∑
k

1

k!

k∑
m=0

(
k

m

)(
tan

θ1

2
e−iφ1S+

1

)m(
tan

θ2

2
e−iφ2S+

2

)k−m

|0〉

=
2∏

l=1

(
1 + tan2 θl

2

)−
l/2 ∑
k

1

k!

k∑
m=0

(
k

m

)
tanm θ1

2
tank−m θ2

2
e−ik	e−i(k/2−m)φ(S+

1 )m(S+
2 )k−m |0〉 . (A1)

Inserting (A1) into (3.15) under fixed N and Ek , it becomes

∣∣ψN
k

〉 ∝
∮

d	

∮
dteiTN,Ek

(	,t) |	,t〉N,Ek
∝

∑
k

1

k!

k∑
m=0

(
k

m

) ∫ 2π

0
d	ei(N/2−k)	

∫ T

0
dtei

∫
π(t ′)φ̇(t ′)dt ′−i(k/2−m)φ

×
{

2∏
l=1

(
1 + tan2 θl

2

)−
l/2
}

tanm θ1

2
tank−m θ2

2
(S+

1 )m(S+
2 )k−m |0〉

∝
N/2∑
m=0

(
N/2

m

) ∫ T

0
dt exp

(
i

∫
π (t ′)φ̇(t ′)dt ′ − i(N/4 − m)φ

)

×
{

2∏
l=1

(
1 + tan2 θl

2

)−
l/2
}

tanm θ1

2
tanN/2−m θ2

2
(S+

1 )m(S+
2 )N/2−m |0〉 . (A2)

We find that the integration over 	 is nothing but the number projection. In SU(2) quasispin representation, the vacuum state is
written as |0〉 = |S1, − S1; S2, − S2〉, which leads to

(S+
1 )m(S+

2 )N/2−m |0〉 =
√

(2S1)!m!

(2S1 − m)!

√
(2S2)!(N/2 − m)!

[2S2 − (N/2 − m)]!
|S1, − S1 + m; S2, − S2 + (N/2 − m)〉 . (A3)

For convenience, we define coefficients,

A(q,S,m) ≡ tanm θ
2(

1 + tan2 θ
2

)−S

√
(2S)!m!

(2S − m)!
=

(
1 − q

2

)m/2(1 + q

2

)S−m/2
√

(2S)!m!

(2S − m)!
, (A4)

where q = cos θ . Inserting Eq. (A4) into Eq. (A2) with N/2 = J , we reach Eq. (3.16).
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