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Statistical analysis of excitation energies in actinide and rare-earth nuclei
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Statistical analysis of distributions of the collective states in actinide and rare-earth nuclei is performed in terms
of the nearest-neighbor spacing distribution (NNSD). Several approximations, such as the linear approach to the
level repulsion density and that suggested by Brody to the NNSDs were applied for the analysis. We found an
intermediate character of the experimental spectra between the order and the chaos for a number of rare-earth
and actinide nuclei. The spectra are closer to the Wigner distribution for energies limited by 3 MeV, and to the
Poisson distribution for data including higher excitation energies and higher spins. The latter result is in agreement
with the theoretical calculations. These features are confirmed by the cumulative distributions, where the Wigner
contribution dominates at smaller spacings while the Poisson one is more important at larger spacings, and our
linear approach improves the comparison with experimental data at all desired spacings.
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I. INTRODUCTION

The microscopic many-body interaction of particles in
systems such as heavy deformed nuclei is rather complicated.
Therefore, theoretical approaches to the description of nuclear
excitations are helpful for understanding the properties of
the collective motion in such nuclei. As the simplest ap-
proaches, one can mention calculations within the phenomeno-
logical interacting-boson model [1] and a more microscopic
quasiparticle-phonon model [2]. Toward the microscopic pic-
ture, other approaches are described in Refs. [3–5]. However,
one can significantly simplify the realistic many-body problem
and enrich its understanding by using nuclear models which
are based on the statistical properties of the distributions of
discrete levels.

Different statistical methods have been proposed to obtain
information on the chaoticity versus regularity in quantum
spectra of a nuclear many-body system [6–9]; see also the well
known work by Bohigas, Giannoni, and Schmit [10]. The short-
range fluctuation properties in experimental spectra can be
analyzed in terms of the nearest-neighbor spacing distribution
(NNSD) statistics. The uncorrelated sequence of energy levels
is described by the Poisson distribution. In a completely corre-
lated case, the energy intervals between levels follow mainly
the distribution of the Gaussian orthogonal ensemble (GOE).
An intermediate degree of chaos in energy spectra is usually
obtained through a comparison of the experimental NNSDs
with known distributions [11–14] based on the fundamental
works [10,15–17]. This comparison is carried out [18–22] by
using the least-squares-fit technique. The estimated values of
parameters of these distributions shed light on the statistical
situation with the considered spectra. Berry and Robnik [13]
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derived the NNSD starting from the microscopic expression
for the level density through the Hamiltonian for a classical
system. The Brody NNSD [12] is based on the expression
for the level repulsion density that interpolates between the
Poisson and the Wigner distributions using only one parameter.

For a quantitative measure of the degree of chaoticity of the
many-body dynamics, the statistical probability distribution
p(s) as function of spacings s between the nearest neighboring
levels can be derived within the general Wigner-Dyson (WD)
approach based on the level repulsion density g(s) (the units
will be specified later) [6,7,15,17]:

p(s) ∝ g(s) exp

(
−

∫ s

0
g(s ′) ds ′

)
. (1)

This approach can be applied in the random matrix theory,
see for instance Refs. [8,17], and also for systems with
deterministic Hamiltonians [6,7]. In any case, the order in
such systems is approximately associated with the Poisson
dependence of g(s) in Eq. (1) on the spacing s variable, that
is obviously related to a constant g(s), independent of s. Full
chaoticity can be equated to the Wigner distribution [11], as
clearly follows from Eq. (1) for g(s) ∝ s. This distribution is
based on a more general approach associated with the GOE
[6,7].

For a further study of the order-chaos properties of nuclear
systems, it might be worthwhile to apply a simple analytical
approximation to the WD NNSD (1), keeping the link with a
level repulsion density g(s) [6,7,17]. For analysis of the statisti-
cal properties in terms of the Poisson and Wigner distributions,
one can use the linear WD (LWD) approximation to the level
repulsion density g(s) [23]. It is a two-parameter approach, in
contrast, e.g., to the one-parameter Brody approach. However,
the LWD approximation, based on a smooth analytical (linear)
function g(s) of s, can be obtained within the WD theory (see
Refs. [7,23] and the Appendix). Moreover, it gives proper
information on the separate Poisson order-like and Wigner
chaos-like contributions.
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In the present work, the two different approaches—the
LWD approximation to the NNSD (1) of the WD theory
and the traditional Brody method—are used for the statistical
description of the collective-excitation energies in deformed
actinide and rare-earth nuclei. This is an alternative problem
to that of the nuclear states of another nature; see, e.g.,
Refs. [22,24]. The statistical properties of the nuclear collective
states are discussed in relation to the degree of chaoticity in
terms of the Poisson and Wigner distribution contributions.
The main purpose is to describe these excitations in deformed
nuclei by using the NNSDs, in contrast to the states which can
be considered as statistically excited ones in a heated system. In
addition, the cumulative NNSDs show the statistical properties
of these collective states as functions of the spacing variable
in relation to the same limits.

This article is organized in the following way. Section II
is devoted to the description of experimental data, their
completeness, and the unfolding procedure for calculations
of the NNSD. In Sec. III, we present several analytical
approximations to the NNSD within the Wigner-Dyson the-
ory. The NNSD using the linear approximation to the level
repulsion density, the Brody approach, as well as the cumu-
lative distribution method (Sec. III) are compared with the
experimental data in Sec. IV. Our results are summarized
in Sec. V. Some details of our derivations are given in the
Appendix.

II. EXPERIMENTAL NNSD

A. Experimental data

To perform statistical analysis of the energy spacings,
one needs the complete and pure sequences of levels. The
completeness means no missing and no misassigned levels in
the desired energy interval of the level sequence. The problem
of missing levels in spectral statistics was considered for the
first time by Bohigas and Pato [25] and reviewed by Gomez
et al. [24]. For nuclear physics, the requirement of purity is that
levels with the same angular-momentum and parity quantum
numbers should be considered in a given interval. Additional
quantum numbers can be taken into account in some cases.
Shriner et al. [18–20] achieved these purposes by limiting the
energy interval to have well-defined, at that time, spins and
parities. As a consequence, the number of selected levels with
a particular spin and parity in each nucleus was usually limited
to 5–8. As shown in Table I, much longer sequences of levels
[26–35] are analyzed in the present study, which is important
for the statistical accuracy of their fitting procedure.

TABLE I. Number of levels included in the analysis.

Nuclei 0+ 2+ 4+ 6+ Total

228Th 16 32 21 9 78
230Th 20 68 46 19 153
232U 13 46 33 19 111
240Pu 17 37 30 11 95
Rare earths � 3 MeV 128 128
158Gd168Er � 4 MeV 58 58
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FIG. 1. The location and the (p,t) strength of 0+ states in 228Th,
230Th, 232U, and 240Pu. Horizontal lines indicate limitations in the
investigation energy.

Such sequences are available via excitations of nuclei in
two-neutron transfer reactions. Most of the studies using these
(p,t) reactions are devoted to the investigation of the nature
of 0+ states. In such reactions, one can indeed observe long
sequences of the collective 0+ states. The first observation of
multiple excitations with zero angular-momentum transfer was
realized for the (p,t) reaction in the odd nucleus 229Pa [36].
Such studies were undertaken later by many collaborations,
e.g., in the deformed even-even actinide [26–29] and rare-earth
[30–33] nuclei. Typical spectra of 0+ states are shown in Fig. 1.
However, the use of the (p,t) reaction is not limited only to
the observation of 0+ states. Long sequences of the states with
higher angular momenta 2+, 4+, and even 6+, along with the
0+ states, were identified for nuclei in the actinide region [26–
28,34,35]. They can be used in the statistical analysis, too. As
emphasized above, the purity of all these sequences of states
is maintained by the fact that all these states are collective
by their nature. This follows from an analysis within, e.g., the
framework of the interacting boson model and the quasiparticle
phonon model [26–28,31,37].

Excitations of the 0+ states have an advantage over those
of other states. Even the weakly excited 0+ states, even in
complicated and dense excitation spectra, are easily identified
via angular distributions of the cross section in (p,t) reactions.
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Shapes of these angular distributions are mainly independent
of specific structures of the individual states as well as of the
transfer configurations. A few levels included in the analysis
are assigned tentatively: 4 of 78 levels of actinide and 18 of 128
levels for rare-earth nuclei in the energy region below 3 MeV.
However, all 58 levels in the 158Gd and 168Er nuclei for the
interval 0–4 MeV are firmly assigned. Therefore, the spectra
of 0+ states measured in the (p,t) reaction can be considered as
complete ones in the energy intervals mentioned above, which
allows one to perform properly the statistical analysis.

Concerning higher spin measurements, one can view the
situation with a sequence of the 2+ levels in the nucleus
230Th as a typical example. Before the excitation spectra in
230Th were studied by means of the (p,t) reaction, firm 2+
assignments were known only for 6 levels and there were
tentative assignments for 21 levels, mainly as states with 1
or 2+ spin values, which are denoted by (1,2+) [38,39]. In
Ref. [26], 66 levels with spin 2+ were identified in the (p,t)
experiment. The energies of 5 of 66 levels, within the limit of
errors, coincide with those of (1,2+) known earlier. Moreover,
five of the previously known level assignments have been
changed [26] with other quantum numbers. The remaining
eleven levels with a tentative assignment of (1,2+) were not
observed in the (p,t) reaction because, probably, they have the
spin 1. Such states are not observed, practically, in the (p,t)
reaction. Another reason is that these states are not collective.
We emphasize once more that collectivity is the additional
condition for selections of the level sequences. Therefore, the
66 levels were analyzed in the present work. Nevertheless, let
us assume that, for completeness, some of the eleven levels
should be included in the sequence. Then, one finds a shift of
the NNSD to the Poisson distribution, which is additional to
that discussed in Sec. IV.

In the case of spin 4+, 30% of levels are assigned as tentative
results. Their angular distributions exclude the reliable assign-
ments of 0+ and 2+ spins. In addition, the (p,t) cross section
for higher spins decreases by almost one order of magnitude.
Therefore, for these levels, one can accept the 4+ spin value.
Thus, all the 66 levels with spin 4+ were included into our
analysis.

Notice that many of the 6+ levels are missing because of
a sharp decrease of the (p,t) cross sections for such a large
angular momentum. This is particularly true for the states that
correspond to small values of s: Weak peaks in a very complex
and dense spectrum can be hidden in the tails of stronger
neighbors. As a result, the sequence of 6+ levels occurs to
be incomplete. The effect of missing levels in the case of 6+
levels is properly discussed in Sec. IV.

B. Unfolding procedure

To compare properly the statistical properties of different
sequences to each other, one should convert any set of energy
levels into a set of the normalized spacing, which can be
done through the so-called unfolding procedure [40]. In this
procedure, an original set of the level energies Ei, i = 1,2, . . . ,
is transformed into a new set εi as a mapping

εi = Ñ (Ei), (2)
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FIG. 2. Histogram of the cumulative number of states, N (E), for
the 0+ energy spacings in 230Th and its fitting by two smooth poly-
nomials, Eq. (5), present the method of extraction of the normalized
effective NNSD from the experimental data.

where Ñ (E) is a smooth part of the cumulative level density,
N (E) = ∫ E

0 dE′(dN/dE′), where dN/dE is the level density.
The cumulative density N (E) is a staircase function that counts
the number of states with energies E that are less than or equal
to a given value of E. The decomposition of this density (or
the level density itself) into a smooth and fluctuating part is
not obvious. Usually, one can use polynomial fits to a smooth
part.

In what follows, the spectra will be analyzed in terms of the
spacings between the unfolded energy levels (2),

si = εi+1 − εi . (3)

By Taylor expansion of Ñ (Ei) in Eq. (2) up to linear terms in
Ei+1 − Ei , one writes

εi+1 − εi ≈ (Ei+1 − Ei)
dÑ (Ei)

dEi

= Ei+1 − Ei

Di

, (4)

where Di = 1/[dÑ (Ei)/dEi] is the average level spacing
locally in a small vicinity of Ei . For the approximation (4), one
assumes that the average dimensionless spacing between the
unfolded levels (2) is 1, provided that the smooth level density
dÑ (Ei)/dEi is a slowly varying function of the energy Ei .

Thus, for each observed level, the value of the fit function
Ñ (E) can be used for the generation of a spacing distribution,
as illustrated in Fig. 2. As one can see, a small (large)
energy spacing corresponds to a small (large) spacing in
Ñ (E), according to the monotonic mapping [Eqs. (3) and (2)].
The distribution Ñ (E) was then used for building the final
NNSDs. Since the experimental data for a particular sequence
is statistically limited, we compiled the distribution for all
sequences to get the entire unified set of the nearest-neighbor
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spacing distribution with relatively a small sampling interval
γs (see Sec. IV and Appendix).

As shown in Fig. 1, the spectrum of states is sparse and
widely spread. Therefore, the polynomial fitting appears to
be a difficult problem. Indeed, using different polynomials
to fit the full spectrum of states, one obtains a different
fit at the beginning of the spectrum. As a result, one finds
somewhat a different NNSD. It is caused by a specific property
of the energy spectra: The spacing between the two lowest
levels is much larger than that between all other levels. In
the statistical analysis, the first energy interval contributes
to the NNSD in the region of too large s. Therefore, this
level can be discarded without any completeness violation.
Then, the remaining smooth-state trend is well reproduced
by any low-order polynomial, and various polynomials lead
to very close NNSDs. In the analysis we used the following
polynomials:

Ñ = a0 + a1E + a2E
2, Ñ = a0 + a1E

2 + a2E
4, (5)

where ai are fitting parameters. Absolute values of si for each
level, obtained with different polynomials, are distinguished
somehow. But the final result for spacing distributions differs
only by the part with a low statistics. Therefore, the NNSD
results based on both polynomials are stable and compiled
well in our calculations.

Note that another unfolding procedure [41] using an em-
pirical formula Ñ (E) = exp[(E − E0)/T ] + N0, where T ,
E0, and N0 are the fitting parameters, was applied [18]
for the statistical analysis. As was shown [22] for excited
states in the spherical nucleus 208Pb, both procedures yield
approximately similar results for NNSDs. We found that the
polynomial empiric functions Ñ (E) [Eq. (5)] are more suitable
for the statistical analysis of the collective excitations in cold
deformed nuclei. In addition, we point out that, according to
discussions in Ref. [24], the choice of an unfolding procedure
does not influence much the short-range spectral statistics in
terms of the NNSDs calculated here.

The NNSDs obtained in such a way are normalized to 1.
Then, they are fitted by simple theoretical distributions.

III. WIGNER-DYSON NNSD

A. General ingredients

Following the review [17], one obtains the probability p(s)
of finding the spacing s between the nearest neighboring levels
(Eq. (1) and Refs. [6,7,11,15]),

p(s) = ℵ−1g(s) exp

(
−

∫ s

0
g(s ′) ds ′

)
. (6)

As mentioned in the Introduction, the key quantity g(s) is
the level repulsion density, g(s) = dN/ds, where dN is the
number of states in the interval ds from s to s + ds (see the
Appendix). It is convenient to consider s in units of the average
D of distances between levels, s = S/D, where S is the energy
spacing, i.e., the distance between the neighbor levels in the
usual energy units. Thus, D is locally a mean distance between
neighboring levels in energy units.

Practically, the normalization factor ℵ of the probability
distribution (6) can be found with any accuracy for a large

maximal value of s, smax:

ℵ =
∫ smax

0
ds g(s) exp

(
−

∫ s

0
g(s ′)ds ′

)
. (7)

This normalization factor is relatively obtained from the
normalization condition at smax going to ∞:∫ smax

0
p(s) ds = 1. (8)

Another normalization condition is written as∫ smax

0
s p(s) ds = 1. (9)

It is convenient to keep formally the upper integration limit
smax as a large finite number for reasons explained below.
Notice that, also for convenience, we introduced dimensionless
quantities such as the probability distribution p(s) and the
level repulsion density g(s) as functions of the dimensionless
spacing variable s [in Ref. [17], the probability density is
denoted by P (S), where S = sD, and the level repulsion
density is denoted by r10(S)].

With the definition of the dimensionless density g(s), for
the uniform case one has g(s) = 1. This corresponds, in the
usual energy units, to the energy density 1/D. Substituting this
constant level density g(s) into Eq. (6), one has the Poisson law

pP(s) = exp (−s). (10)

The Wigner law follows from the assumption of the level
repulsion density that is proportional to s. In this case, from
Eq. (6) one finds

pW(s) = (πs/2) exp(−πs2/4). (11)

Both distributions are normalized to 1 for a large maximal
value of s in order to satisfy Eqs. (8) and (9) at large smax and,
precisely, at smax → ∞.

The density g(s) in fact is not a constant or simply propor-
tional to s. A simple distribution based on the two-parameter
linear approximation to the level repulsion density g(s), that
bridges the both Poisson (10) and Wigner (11) limits, will be
considered first in the next section.

B. A linear level-repulsion density approximation

Keeping a link with the analytical properties of the level
repulsion density g(s) (see the Appendix), it is convenient
to define the probability p(s) [Eq. (6)] for a general smooth
density g(s) as a polynomial of not too large a power. As
shown in the Appendix, it is important to consider this density
smoothness. For the simplest statistical analysis in terms of
the Poisson- and Wigner-like distribution contributions, one
can use the linear approximation of g(s) in terms of the two
free parameters a and b:

g(s) = a + bs. (12)

Substituting Eq. (12) into the general Wigner-Dyson formula
(6) and using the normalization condition (8) with a large but
finite upper limit smax (larger than the experimental data), one
obtains explicitly the analytically simple LWD approximation
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[23]

p(s) = a + bs

ℵ exp

(
−b

2
s2 − as

)
, (13)

where

ℵ = aℵ0 + bℵ1, (14)

ℵ0 =
∫ c

0
ds exp

(
−b

2
s2 − as

)

=
√

π

2b
exp

(
a2

2b2

)[
erf

(
a + bc√

2b

)
− erf

(
a√
2b

)]
,

ℵ1 =
∫ c

0
ds s exp

(
−b

2
s2 − as

)

= 1

b

[
1 − exp

(
−b

2
c2 − ac

)
− a ℵ0

]
, (15)

with c = smax = Smax/D being the maximal value of s. Then,
we should check the second normalization condition (9) by
choosing the parameter c larger than all of the experimental
NNSD spacings s. In practice, it is convenient to perform
a three-parameter fitting over parameters a, b, and c to the
experimental NNSD provided that the normalization condition
(9) is satisfied, and then check that c is sufficiently large with
a good accuracy. In the limit c → ∞, one has simply

ℵ0 →
√

π

2b
exp

(
a2

2b2

)
,

ℵ1 → 1

b

[
1 − a

√
π

2b
exp

(
a2

2b2

)]
. (16)

Taking the limits a → 1, b → 0 and a → 0, b → π/2 in
Eq. (13), one simply arrives relatively at the standard Poisson
gP (s), Eq. (10), and Wigner gW (s), Eq. (11), distributions. In
this way, a linear approximation (12) unifies analytically these
two limit cases through a smooth level-repulsion density g(s).
Its parameters a and b in Eq. (12) (after their normalization to
1 for convenience) measure the probability to have separately
the Poisson and Wigner distribution contributions. Note that
in the limit c → ∞, for the normalization constant ℵ [Eqs. (7)
and (14)] with the help of Eq. (16), one indeed finds ℵ → 1.

C. The Brody distribution

The Brody distribution can be derived analytically from
Eq. (6) by assuming the following expression for the level
repulsion density:

g(s) = α sq. (17)

With the normalization condition (8), another condition (9) is
satisfied identically. Finally, one finds [12,17,24]

pB(s) = α(q)sq exp

[
− α(q)

q + 1
sq+1

]
, (18)

where

α = (1 + q)

[
�

(
q + 2

q + 1

)]q+1

. (19)

Here, �(x) is the standard gamma function and q is a free
parameter. The values q = 0 (s > 0) and q = 1 (s � 0) in
Eq. (18) correspond to the same Poisson [Eq. (10)] and Wigner
[Eq. (11)] distributions.

Having only one parameter is an advantage of the popular
distribution gB(s) [Eq. (18)], suggested by Brody, over the
approximation (13) based on the linear level-repulsion density
g(s). Compared to the Brody approach, the two-parameter
LWD approximation (13) is, to some extent, more general
and better founded within the WD analysis in terms of the
ordered Poisson and chaotized Wigner distributions. As a
linear approximation, (13) for g(s) has a clearer meaning
of the intermediate values of the parameters, found from
the least-squares fitting to the experimental NNSD. In this
way, one obtains the separate Poisson and Wigner distribution
contributions. This is in addition to the Brody distribution (18)
based on the power density (17). Such a density [Eq. (17)]
does not satisfy the smoothness property of the level repulsion
densities g(s), in spite of using it in derivations of the NNSD
within the WD theory (see the Appendix). However, as shown
below, the results obtained by the LWD and the Brody approach
largely agree well with each other.

Thus, the probability density (13) is a simple analytical
continuation from the Poisson gP (s) to Wigner gW (s) limit
distributions through a smooth linear level-repulsion density
g(s). For a comparison and completeness, the statistical anal-
yses of the experimentally obtained excitation-energy distri-
butions are performed below within both the LWD and Brody
approximations.

D. Cumulative NNSD

To complement our NNSD analysis of nuclear spectra, one
can use the cumulative NNSDs. The cumulative NNSD is used
as an alternative method to study the statistical properties of
the experimental cumulative NNSD depending on the spacing
variable s, in addition to the NNSD [18,24]. In this subsection,
we restrict ourselves to the additional information about the
nuclear level statistics, depending on the spacing variable s,
from the cumulative spacing distributions to support our NNSD
results. A more proper quantitative study of these statistical
properties of nuclear excitations will be in forthcoming work.

Let us consider the cumulative nearest-neighbor spacing
distribution

F (s) =
∫ s

0
p(s ′)ds ′. (20)

This integral distribution is the probability of finding the
spacing s ′ between the two-neighbor energy levels smaller
than or equal to a given value of s. For the cumulative Poisson
distribution, one can explicitly obtain from Eqs. (20) and (10)

FP(s) = 1 − exp (−s). (21)

For the corresponding Wigner distribution limit of F (s), one
finds

FW(s) = 1 − exp(−πs2/4). (22)

Substituting Eqs. (13) for the LWD and (18) for the Brody
approach into Eq. (20), for the corresponding cumulative
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TABLE II. Parameters a and b of the LWD and q of the Brody approximation for the collective excited states in several nuclei. The first
column refers to the corresponding Figs. 3–5. The Poisson and Wigner contributions are given also as a and b normalized to 100% in parentheses
in the fourth and fifth columns, respectively. The normalization integral of Eq. (9) at these a, b, and c � 10 is given too in the sixth column.
The accuracies (χ 2) of the least-squares fitting (in percent) are shown, respectively, in the seventh and ninth columns for the LWD and Brody
calculations.

Fig. Nuclei State a (%) b (%)
∫
sp(s)ds Accuracy q Accuracy

3(a) Rare earths 0+ expt. 0.43 (39) 0.69 (61) 1.04 8.1 0.48 6.7
3(b) 158Gd, 168Er 0+ expt. 0.83 (76) 0.26 (24) 0.96 11.3 0.20 10.0
4(a) Actinides 0+ expt. 0.27 (21) 1.01 (79) 1.02 9.2 0.58 8.3
4(b) 2+ expt. 0.52 (41) 0.75 (59) 0.95 10.2 0.38 8.2
4(c) 4+ expt. 0.67 (62) 0.41 (38) 1.00 8.5 0.28 7.3
4(d) 6+ expt. 0.52 (50) 0.52 (50) 1.06 14.9 0.42 13.7
5(a) 228,230Th, 232U 0+ expt. 0.38 (32) 0.80 (68) 1.03 10.5 0.54 10.1
5(b) 0+ theor. 0.45 (33) 0.91 (67) 0.94 9.7 0.44 9.5
5(c) 0+ theor. 0.68 (56) 0.54 (44) 0.93 8.7 0.25 8.9

distributions one obtains

FLWD(s) = ℵ−1[1 − exp(−bs2/2 − sa)], (23)

where ℵ is the normalization constant (14) and

FB(s) = 1 − exp

[
− α(q)

q + 1
sq+1

]
, (24)

with α(q) given by Eq. (19).

IV. DISCUSSIONS OF THE RESULTS

Experimental nearest-neighbor spacing distributions fitted
by the LWD approximation [Eq. (13)] and the Brody approach
[Eq. (18)] are presented in Figs. 3–5. Parameters of fittings
are given in Table II. The sampling interval γs = 0.2, used
for building the experimental NNSD (Sec. II), is taken from
the condition of the stable smoothed NNSD values without
sharp jumps between the neighbor data. This is similar to the
so-called plateau condition in the smoothing procedure for
calculations of the averaged level density [42,43]. The plateau

condition means the independence of averaging parameters.
As follows from Table II, the normalization condition (9) is
satisfied in our calculations with good accuracy at c � 10,
which is significantly larger than any of the energy intervals
found from experimental data.

To build the NNSD for the rare-earth nuclei (Sec. II),
the experimental 0+ state energies limited by the 3 MeV
excitation are used for 158Gd [30], 168Er [31], 152,154Gd, 162Dy,
168Er, 176Hf, 180,184W, and 190Os [32], and 170Yb [33] nuclei
[Fig. 3(a)]. The experimental NNSD for nuclei 158Gd [31]
and 168Er [34] [Fig. 3(b)] is a special case since only for
these two nuclei were the measurements carried out for larger
excitation energies up to 4.2 MeV. The results of the fitting are
the following. The rare-earth nuclear spectrum is described
by 39% of the Poisson- and 61% of the Wigner-distribution
contribution. They correspond approximately to the parameter
q = 0.48 in the Brody approach. Simultaneously, for the
158Gd and 168Er couple, these parameters are given by 76%
and 24%, respectively, in the LWD approximation. This can
be tentatively related to the value q = 0.20 for the Brody
distribution. This means that the experimental 0+ spectra in the
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FIG. 3. Nearest neighbor spacing distributions p(s) as functions of a dimensionless spacing variable s for 0+ states in the rare-earth
nuclei and fits by the LWD approximation (red solid lines) and the Brody approach (blue dashed lines): (a) for a number of rare-earth
nuclei up to the energy 3 MeV (see the text); (b) for the 158Gd and 168Er nuclei up to about 4 MeV. A sampling interval of γs = 0.2 was
used.
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energy interval 0–3 MeV are intermediate between an ordered
and a little more pronounced chaos structure, while the ordered
nature is dominant for the experimental spectra in the energy
interval of about 0–4 MeV.

As was pointed above (Sec. II A), the experimental NNSDs
for actinide nuclei are available also for 2+, 4+, and 6+
collective states, along with 0+ excitations. Long sequences
of 2+, 4+, and even 6+ states, as well as 0+ states, all
identified in 228Th [27], 230Th [26], 232U [28], and 242Pu
[29,35], are used in our analysis. As seen from Table II, the
picture is similar to the rare-earth behavior. All spectra in the
same energy interval 0–3 MeV demonstrate an intermediate
structure between an ordered and a chaos structure with varying
dominance of the Wigner over the Poisson contribution for

increasing angular momentum up to 4+. If for 0+ states the
Wigner contribution dominates with 79% (q = 0.58), for the
states with higher angular momenta, namely, for the 2+ and
4+ states, the Wigner contribution is somehow decreasing.
For example, one can conclude that the fluctuation properties
for the 2+ states are closer to the Poisson distribution than
those for the 0+ states. See Sec. II A for discussions of the
level sequence completeness. For the 4+ states the Poisson
contribution becomes dominant with 62 % (q = 0.28).

The results for 6+ states seem to be different from this trend.
The 6+ NNSDs are also closer to the Poisson distribution
than the 0+ ones, while the opposite tendency takes place
with respect to the 4+ states: The Poisson contribution for
6+ states is found to be less than that for 4+ states. As was
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interval up to 3 MeV in the 228,230Th and 232U actinide nuclei, and those (c) up to 4 MeV. Other notations are the same as in Figs. 3 and 4.
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already pointed out in Sec. II A, the sequence for the 6+ levels
cannot be reliably completed because of a sharp drop in the
cross-section value with increasing angular momentum. This
can be a reason for missing levels and, therefore, of their NNSD
deflection from a general trend (see Sec. II A for more details).
The feature of the NNSD for 6+ states consists of a sharp
decrease of p(s) with decreasing spacing at small s. This can
be understood if the missing levels are close in energy to other
levels with the same spin. In this case nonobserved levels
can be considered as distributed in an ordered way (unlike
the random distribution of the missed levels [25,44]). This
results in moving of the NNSD to the Wigner limit [45], i.e., it
looks like the property of a chaotic system. Further progress in
experimental studies of the high-spin collective states can be
apparently helpful to clarify more the situation for 6+ states: Is
it a reality or it is an effect of low statistics which is not excluded
(see Table I)?

Among the considered data, only the sequences for 0+ states
are really pure; all the states with the angular momentum I = 0
have its projection to the symmetry axis K = 0. Sequences for
other angular momenta are of mixed symmetries, including
subsets of states with different K values. For such sequences,
the NNSD tends toward the Poisson distribution. This trend
is stronger with increasing number of subsets which are
contained in the analyzed sequence [13,24,46]. Indeed, this
is observed in the analysis of the sequences for states with
spins from 0+ to 4+. As mentioned above, an exception can
be found for the sequence of 6+ states, although such a trend
should be the strongest in this case since the number of subsets

for 6+ states is the largest. If the mixed symmetry is the single
reason for the NNSD shifts for the 2+ and 4+ states or the
structure of spectra also contributes, the available data need
further attention. The division of spectra into subsets with
a definite K and their analysis would be helpful (see, e.g.,
Ref. [23] for a similar discussion of such a symmetry breaking
in the case of single-particle levels). This problem is a subject
of the next work.

An increase of the Poisson distribution contribution with
the nuclear spin value can be considered, to some extent,
like that with the growth of the energy: The array of the
states with higher angular momenta is shifted to larger energy
excitations too, as compared to the 0+ case. This behavior of
the statistical distribution would look strange when accepting
that increasing the excitation energy means an increase of
the temperature, or of the thermodynamic entropy. Such an
entropy production could be interpreted as growing chaos.
This would mean that the Wigner distribution contribution
should be greater for higher energies. However, as emphasized
above, one can conclude about the collective nature of states
excited in the (p,t) reaction; see Refs. [26,37]. Collective
excitations under consideration in deformed nuclei cannot be
associated with an increase of temperature. Our results are
certainly different from those obtained [22] for the complete
sets of noncollective states in the nucleus 208Pb. For such
states, the chaoticity dominates both in the experimental
spectrum and that calculated within the shell model. Our
calculations are in accordance with the results of Shriner et al.
[18] and discussions in Ref. [24]. In any case, our statistical
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analysis provides another view on developments of a more
microscopic model for theoretical calculations of the collective
modes.

Following the ideas of Refs. [18,22] we tested the validity
and completeness of the level sequences by comparing the
experimental data with the collective state spectra calculated
within the quasiparticle phonon model [31,37]. Figure 5
presents the distributions for 0+ states in three actinides,
228,230Th and 232U. The experimental NNSDs in the region
of 0–3 MeV (a) are compared with the two theoretical distri-
butions. One of them is given in the same energy region (b)
and another distribution is given in the extended energy interval
0–4 MeV (c). The parameters for the distributions shown on the
panels (a) and (b) are approximately the same within the error
limit accuracy. This agreement between the experimental and
theoretical results confirms the collective nature of the 0+ states
and, finally, the completeness of the level sequences. At the
same time, the theoretical distribution for the energy interval
0–4 MeV [Fig. 5(c)] is shifted to the Poisson law as compared
to the experimental and theoretical distributions in the interval
0–3 MeV. It is in agreement with the results obtained for the
158Gd and 168Er nuclei [see Fig. 3(b)].

Figure 6 shows the cumulative distributions F (s) [Eq. (20)]
for the 0+ (a), (e), 2+ (b), (f), 4+ (c), (g), and 6+ (d), (h) states
excited in the same actinide nuclei as in Fig. 4. In this figure,
the first row (a)–(d) presents the comparison of the Poisson
[Eq. (21)] and Wigner [Eq. (22)] cumulative distributions with
the experimental data while the second row (e)–(h) is the same
but for the LWD [Eq. (23)] and Brody [Eq. (24)] cumulative
ones. As seen from Figs. 6(a)–6(d), for all 0+, 2+, 4+, and 6+
states the Wigner cumulative distribution (22) well reproduces
the behavior of empirical distributions F (s) [Eq. (20)] at small
and intermediate spacings s. On the other hand, at larger spac-
ings, F (s) approaches basically the Poisson cumulative-NNSD
limit (21). Such a peculiarity of a cumulative distribution
implies chaotic arrangements of close-lying levels and regular
ones of the significantly separated levels. The LWD [Eq. (23)]
and Brody [Eq. (24)] cumulative distributions corresponding to
the intermediate statistics improve agreement with the data for
both small and large spacings. These cumulative distributions
are in agreement with our results for the NNSDs plotted in
Figs. 3–5. As in the case of using the NNSD (see Fig. 4), the
cumulative distribution analysis of Fig. 6 shows that the relative
Poisson contribution (21) grows with the increase of the spin
of nuclear states.

V. CONCLUSIONS

We provide a statistical analysis of collective excitations
with several spins: 0+ in a number of the rare-earth nuclei
and 0+, 2+, 4+, and 6+ in a few actinide nuclei by us-
ing simple approximations to the Wigner-Dyson probability
distribution. These approximations to the nearest-neighbor
spacing distribution are based on different properties of the
level repulsion density. For the linear approximation to this
density, one obtains clear information on the quantitative
measure of the Poisson order and Wigner chaos contributions
in the experimental data, separately, in contrast to the heuristic
Brody approach. However, one finds in our calculations that

the Brody formula [Eq. (18)] largely agrees with the LWD
probability-distribution results [Eq. (13)].

We found the intermediate structure between the Poisson
and Wigner statistical peculiarities of the experimental spectra
by evaluating their separate contributions. The NNSD for a
smaller excitation-energy region can be described better by
the Wigner distribution. The NNSD for an extended inter-
val of the collective excitations, including higher energies,
becomes closer to the Poisson distribution. Also, one finds
that the Wigner contribution dominates in the NNSD for 0+
states and the Poisson contribution is larger with increasing
angular momentum. This looks in line with the adiabatic
picture for different collective-excitation modes in deformed
nuclei.

The experimental NNSDs are in agreement with the the-
oretical calculations for the same energy interval within the
quasiparticle phonon model, which confirms the collectiv-
ity and completeness of the used spectra. The comparison
of these results with the theoretical ones for larger energy
intervals supports the same conclusion about a shift from
the Wigner to the Poisson contribution dominance. As em-
phasized in Ref. [24], for the collective states in deformed
nuclei the statistical distributions are closer to the Pois-
son distribution, and in other cases the situation is inter-
mediate (see also Ref. [18]). This picture appears to be
in agreement with our statistical results for the collective
states.

With the help of the cumulative distributions, for the 0+, 2+,
4+, and 6+ states in actinide nuclei we show that the chaotic
cumulative Wigner limit well reproduces the behavior of
empirical cumulative distributions F (s) at small and interme-
diate spacings s. At larger spacings they approach the regular
Poisson cumulative-distribution limit. The cumulative LWD
distributions are in better agreement with the experimental
data for different values of s. In line with the nearest-neighbor
spacing distribution calculations, the cumulative distribution
analysis shows also that the relative Poisson contribution grows
with the increase of the spin of nuclear states.

For perspective, we are also going to study more the
Wigner-Dyson probability-density approach within simple
approximations and apply them more systematically to learn
the statistical properties of experimental data. In this way, it
will be worthwhile to calculate the nearest-neighbor spacing
distributions for a nonlinear level-repulsion density to describe
other statistically observable spectra of collective nature be-
yond the Wigner and Poisson contributions. We also seek to
understand the influence of the symmetry breaking phenomena
on these distributions of the collective states in deformed
nuclei.
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APPENDIX: THE DERIVATION OF THE NNSD

We introduce first the level repulsion density, g(s), as the
number of the levels dN in the dimensionless energy interval
[e + s,e + s + ds], divided by the energy interval length ds,
g(s) = dN/ds [17]. With the help of this quantity, one can
derive the NNSD p(s) as the probability density that is a
function of the spacing s between the nearest neighboring
levels in dimensionless units e = E/D and s = S/D, where
D is locally the averaged distance between neighbor levels.
Specifying p(s) for a problem with known spectra of the
many-body (or single-particle) Hamiltonian, one can split
relatively a small energy interval �e under investigation into
many small (equivalent for simplicity) parts γs 	 �e. Each
γs nevertheless contains many energy levels. Then, we find
the number of levels which occur inside the relatively small
interval γs . Normalizing these numbers by the total number of
the levels inside the total energy interval �e, one obtains the
distribution that we shall call the probability density p(s).

Notice that the result of this calculation depends on the
spacing length of the selected γs . In our calculations, we select
γs by the condition of a sufficient smoothness of the distribution
p(s). We have to study p(s) as a function of γs at a given s for
several values of the parameters of this distribution to find a
so called “plateau” in γs , i.e., a region of γs values where p(s)
can be approximately considered as a constant independent of
γs and the above-mentioned parameters (see Refs. [42,43]).
Such a procedure is often used for the statistical treatment
of the experimentally obtained spectrum with fixed quantum
numbers such as the angular momentum, parity, and so on [17]
(Sec. II).

Following mainly Ref. [7], let us calculate first the in-
termediate quantity f (s) as the probability that there is no
energy level in the energy interval [e,e + s]. According to
a general definition of the level repulsion density mentioned
above, g(s)ds can be considered as the probability that there is
one energy level in the interval [e + s,e + s + ds]. Then, one

has

f (s + ds) = f (s)[1 − g(s)ds]. (A1)

Assuming that f (s) is a smooth function of s, one can expand
f (s + ds) with respect to ds. Thus, the relationship (A1) leads
to the differential equation for f (s),

df = −g(s)ds f (s). (A2)

Solving this equation, one gets

f (s) = C exp

(
−

∫ s

0
g(s ′)ds ′

)
, (A3)

where C is an arbitrary unknown constant. Note that the
assumption that f (s) is a smooth function of s can be satisfied
if g(s) is also a smooth function of s, i.e., the density g(s) can
be approximated by a polynomial in powers of s of not too
a high power. Notice also that a constant density, g(s) = a,
and linear, g(s) = bs, functions of s, in which a and b are
constants, obey this smoothness condition. They are related
to the limit cases of the linear density g(s) = a + bs, namely,
the Poisson (zero-order polynomial, b = 0) and the Wigner
(first-order polynomial with a = 0) distribution functions. Let
p(s)ds denote the probability that the next energy level occurs
in the interval [e + s,e + s + ds]:

p(s)ds = f (s)g(s)ds. (A4)

Then, substituting Eq. (A3) into Eq. (A4), one finally arrives
at the general distribution:

p(s) = Cg(s) exp

(
−

∫ s

0
g(s ′)ds ′

)
. (A5)

The boundary conditions used in solving the differential
equation (A2) account for the meaning of the NNSD p(s) and
its argument as the spacing between the nearest neighbor levels,
as shown in the integration limit in Eq. (A5). The constant C
is determined by the normalization condition (8) [see Eq. (7)].
We also have to consider another normalization condition, (9),
to use the correct D units.
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