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Collectivization of anti-analog strength above charged particle thresholds
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Ten years ago, highly excited states were found in 9Li and 10Be a few hundred kilovolts above the proton
decay threshold. These physical states are too low in energy to be the isospin-stretched configuration of the decay
channel (the isobaric analog or T>). However, these states can be understood by a continuum cognizant shell
model as strongly mixed states of lower isospin (T<), where the mixing is largely mediated by the open neutron
channels but ushered in energy to be just above the proton threshold.
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I. INTRODUCTION

Some of the most critical steps in the making of the elements
(nucleosynthesis) are enabled by the fortuitous occurrence of
resonances in the composite system very close to the combined
mass of the reactants. Two examples are the Hoyle state in
12C just above the α + 8Be entrance channel [1], where a
decay branch to particle-bound carbon forms the seeds for the
synthesis of heavier elements, and a resonance in 17O within
3 keV of the α + 13C threshold where a neutron-decay branch
enables the slow neutron-capture process. The apparent tuning
of these resonances in synthetic paths is consistent with an an-
thropic argument [2,3]. Here we discuss resonances not on any
synthetic path; i.e., they are divorced from anthropic logic and
a basic science explanation must be found for their existence.

About a decade ago two high-lying resonances were found
by invariant-mass spectroscopy, one in 9Li and the other in
10Be, just above the opening of their respective proton-decay
channels [4]. The energies of these resonances were well above
the respective thresholds for neutron decay. In both cases,
the resonance energies were close to, but below, where one
expected the isospin-stretched (T>) mix of the proton and its
decay partner (8Heg.s. for the 9Li∗ resonance and 9Lig.s. for
the 10Be∗ case). If the energies had been consistent with the
isospin-stretched expectations, claims would have been made
for the discovery of the isobaric analog states (IASs) of 9He and
10Li. As this was not the case, the experimental work concluded
without a satisfactory explanation of these resonances.

One of the most significant advances in nuclear theory
in the past decade has been in constructing structure models
that realistically incorporate the near continuum, such as the
Gamow shell model [5–7], the complex-energy continuum
shell model (CSM) based on the Berggren ensemble [8], and
the real-energy CSM [9,10] based on the projection formalism
[11,12]. It has been shown that the interaction of shell model
(SM) states with the continuum can lead to resonance trapping
[13,14], super-radiance phenomena [15], multichannel cou-
pling of shell occupancies [16], or the generation of states close
to, and with a significant spectroscopic overlap with, a decay

channel [17–19]. The term “collectivization” is used to refer to
the latter case, i.e., continuum-mediated configuration mixing
that generates physical states with spectroscopic properties
similar to—and close to the energy of—a particle-decay
channel, and it is this type of phenomenon that explains the
resonances observed a decade ago in 9Li and 10Be. These cases
are interesting for two reasons. First, while the states are close
to the charged-particle threshold, it is the neutron continuum
that generates the width of the states and is a significant factor
in the mixing and in the ushering of the resonance energy
toward the charged-particle threshold. The second reason the
near-threshold resonances in 9Li and 10Be are interesting is
that they have the same spin and parity as the IAS but are
T<. Therefore, in these cases, the continuum-mediated mixing
(or collectivization) occurs within the fractured anti-analog
strength. The unfractured antianalog state (AAS) has the same
component structure of the IAS but with an isospin antiparallel
configuration of its clustered components [20,21].

Although these resonances were presented previously [4],
this work presents an improved experimental analysis. We then
explain these resonances with SM calculations that incorporate
both the open proton and neutron channels.

II. EXPERIMENTAL METHODS

The resonances were reconstructed from high-resolution
measurements of the relative energy between the decay frag-
ments: 9Li∗ → p + 8He and 10Be∗ → p + 9Li. Because this
experiment was fully described previously [4], it is only
briefly described here. A secondary 12Be beam (intensity of
1 × 105 s−1 and purity of 87%) was generated by the Coupled
Cyclotron Facility at the National Superconducting Cyclotron
Laboratory at Michigan State University using a primary 18O
beam of E/A = 120 MeV and a Be target. Reactions of the sec-
ondary beam on polyethylene and carbon targets (thicknesses
of 1.0 and 0.4 mm, respectively) were studied with the charged-
particle detection array HiRA [22] and composite spectra from
both targets are presented. In this experiment, HiRA consisted
of 16 Si-CsI(Tl) telescopes located 60 cm downstream of the
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TABLE I. Resonance data (left) and shell model embedded in the continuum complex eigenenergies (right) for 9Li J π
n = 1/2+

n (3 � n � 6)
and 10Be J π

n = 2−
n (10 � n � 14) and J π

n = 1−
n (n = 9,10) states. Both total and proton calculated decay widths are provided. For the former

all decay channels indicated in Fig. 2 are coherently included.

Data Calculations
E∗ (MeV) Ep (MeV) � (keV) J π n E∗ (MeV) Ep (MeV) � (keV) �p (keV)

9Li
1
2

+
3 11.04 −2.90 60 0

1
2

+
4 12.35 −1.59 61 0

14.104(17) 0.160(17) 75(10) 1
2

+
5 14.09 0.15 75a 1.9

1
2

+
6 14.62 0.68 47 0.7

10Be
2− 10 19.85 0.21 155 0.1
2− 11 20.16 0.52 142 1.9

20.38(3)b 0.74(3) 358(30) 2− 12 20.38 0.74 181 14
1− 9 20.82 1.18 278 3.1
2− 13 21.13 1.50 185 7.6

21.18(3)c 1.54(3) 272(90) 2− 14 21.30 1.66 102 18
1− 10 21.36 1.72 328 0.8

aFixed by choice of V0.
bHas a weak low-energy shoulder.
cMember of a multiplet.

target. The telescopes were arranged in four towers of four
telescopes each, with two towers on each side of the beam. The
array subtended the angular region 2.7◦ < θ < 24.8◦. Each
telescope consisted of a 1.5-mm-thick, double-sided Si-strip
(�E) detector (each side with 32 strips) followed by four 4-
cm-thick CsI(Tl) stopping (E) detectors arranged in quadrants.
Signals produced in the 1024 Si strips were processed with
HINP16C chip electronics [23]. The silicon detectors were
calibrated using α sources and the CsI(Tl) detectors calibrated
using cocktail beams. Simulations of the device response
incorporated each element’s energy and position resolution,
the beam spot size, and multiple scattering in the target.

The present investigation prompted an improved analysis
as compared to that performed in Ref. [4]. While an upgraded
CsI(Tl) energy calibration improved the resolution of the total
invariant-mass spectra, here we have chosen to examine events
whose decay axis is approximately perpendicular to the beam
axis as these events have better detector resolution. The line
shapes of the resonances were first fit using the R-matrix
formalism for a single proton channel (no competing neutron
channels) [24]. However, if the proton branching ratio is small
(as is the case), a more appropriate form is a Breit-Wigner
line shape times the proton penetration factor. The fitted
centroids and widths obtained from both approaches are similar
and the reported results (Table I) represent averages with an
error encompassing the statistical uncertainties of both. The
invariant-mass reconstructions for 9Li∗ and 10Be∗ are shown
in Figs. 1(a) and 1(b), respectively.

III. EXPERIMENTAL RESULTS

A. 9Li∗

9Li has a narrow resonance at E∗
1 = 14.104(17) MeV,

160 keV above the p + 8He threshold, with a width of

�1 = 75(10) keV. The p-8He angular correlation (decay axis
relative to the beam direction) is consistent with s-wave
emission, but due to the marginal statistics for an angular
distribution of the resonance data, p-wave emission cannot
be excluded. This experimental difficulty does not lead to an
ambiguity as the calculations indicate that there are no states
of the opposite parity near the proton-decay threshold. The
energy of this resonance is lower than that expected for the
IAS T = 5/2. No narrow resonances are observed at higher
energies; however, there is broad strength near E∗

2 ∼ 16 MeV,
for which its width is not well constrained due to uncertainty in
the background. This strength could be one or more T = 3/2
states (of which there should be many) or the IAS, the analog
of 9He (T = 5/2). The latter interpretation is consistent with
recent p + 8He scattering results [25]; however, we favor the
former explanation for reasons to be mentioned later.

B. 10Be∗

The reconstruction of 10Be presents several features: a peak
at E∗

1 = 20.38(3) MeV with �1 = 358(30) keV that requires
a weak low-energy shoulder for a good fit, and broad strength
near 21.5 MeV for which a multiplet is required to obtain
an acceptable fit of which only the lowest-energy member,
at E∗

2 = 21.18(3) MeV and �2 = 272(90) keV, is constrained
by these data. Although three states are shown to contribute to
this multiplet in Fig. 1(b), reasonable fits can be obtained with
two or more states.

A resonance at 21.2 MeV was observed previously and was
tentatively assigned as the IAS (T = 2) [26]. This (tentative)
assignment preceded any information on the analogs. We
now know that the ground state of 10Li is essentially at the
neutron threshold (� (10Li) ∼ 33.0 MeV) [27] and recent
work has also placed the ground state of 10N unbound by
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FIG. 1. Invariant-mass reconstructions of (a) 9Li∗ and (b) 10Be∗

from the indicated decay channels. The vertical lines are the proton-
decay thresholds (13.944 and 19.636 MeV) and the dotted (dashed)
curves indicate the fitted states (backgrounds).

1.9–2.2 MeV (�(10N) = 38.1–38.4 MeV) [28]. The A = 10,
T = 1, and Jπ = 0+ states and a sharp-sphere uniform-charge
model provide estimates of the linear (b) and quadratic (c)
isobaric multiplet mass equation parameters [29,30]. If the
T = 1 values for b and c are retained for the T = 2 levels and
the offset parameter, a, is adjusted to reproduce the ground
states of the |Tz| = 2 states (mentioned above), the excitation
energy of the IAS in 10Be is between 23.4 and 24.5 MeV.
(Reference [31] provides an application of this logic.) The
limits come from extrapolations from 10N (Jπ = 2−) and 10Li,
respectively. (The lower value drops to 23.1 MeV if the ground
state for 10N is Jπ = 1−; see Ref. [28].) While the isobaric
multiplet mass equation can have deviations and the method
of parameter determination is simplistic, the employment of
information on both (isospin projection) sides suggests that
all the peaks in 10Be below 22 MeV [all structures shown in
Fig. 1(b)] result from T = 1 states.

IV. CONTINUUM-SHELL-MODEL FORMALISM

The calculations are performed using the shell model
embedded in the continuum (SMEC) [9,32,33]. The theory has
been presented in full [9,17,18] and here we only repeat the fea-
tures relevant for understanding the nature of the collectiviza-
tion of the near-resonance states. The Hilbert space is divided
into two orthogonal subspaces Q0 and Q1 containing zero

particles and one particle in the scattering continuum, re-
spectively. An open quantum system description of Q0

space includes couplings to the environment of decay chan-
nels through the energy-dependent effective Hamiltonian:
H(E) = HQ0Q0 + WQ0Q0 (E). HQ0Q0 denotes the standard
SM Hamiltonian describing the internal dynamics in the
closed quantum system approximation, and WQ0Q0 (E) =
HQ0Q1G

(+)
Q1

(E)HQ1Q0 is the energy-dependent continuum-

coupling term, where G
(+)
Q1

(E) is the one-nucleon Green’s
function and HQ0,Q1 and HQ1Q0 are the coupling terms between
the orthogonal subspaces Q0 and Q1. E in the above equations
stands for a scattering energy. The energy-dependent coupling
term can also be written WQ0Q0 (E) = V 2

0 h(E), where V0 is
the continuum-coupling strength and h(E) is the coupling
term between localized states in Q0 and the environment of
one-nucleon decay channels in Q1. In this work, the parameter
V0 is adjusted to reproduce the width of the near-threshold
resonance in 9Li∗; all other parameters in the interaction were
left at the literature values. The zero of the energy scale for each
particle type is fixed at the lowest corresponding one-nucleon
emission threshold and the decay channels of nucleus A are
defined by the coupling of one nucleon (proton or neutron) in
the continuum to nucleus A − 1 in a given SM state.

SMEC solutions in Q0 are found by solving the eigenprob-
lem for the non-Hermitian effective Hamiltonian H(E) [9,18].
The complex eigenvalues of H(E) at energies Ej (E) = E
determine the energies and widths of resonance states. In a
bound system (E < 0), the eigenvalues of H(E) are real. In
the continuum, Ej (E) correspond to the poles of the scattering
matrix. Eigenstates |�j 〉 of H(E) are linear combinations
of SM eigenstates |ψi〉 generated by the orthogonal trans-
formation matrix [bji(E)], where squared matrix elements
b2

ji(E) are weights of the SM eigenstate i in the SMEC
eigenstate j at the energyE. Continuum-induced mixing of SM
eigenstates is particularly strong if several avoided crossings
of SMEC eigenstates appear [9,17,18]. These crossings can be
studied by calculating either energy trajectories of the double
poles of the scattering matrix for H(E) with the complex-
extended continuum-coupling strength [34], or the continuum-
coupling correlation energy, E

(j )
corr(E) = 〈�j |WQ0Q0 (E)|�j 〉,

for the SMEC eigenstate �j , i.e., the expectation value of the
continuum-coupling term in the SMEC eigenstate �j . Above
the particle emission threshold (E > 0), 〈�j |WQ0Q0 (E)|�j 〉 is
complex and, hence, E

(j )
corr = Re[〈�j |WQ0Q0 (E)|�j 〉].

Making an analogy to BCS theory, the continuum-coupling
energy is analogous to the expectation value of the pairing
interaction term in the BCS Hamiltonian, or �2/G, where G
is the pairing strength. These are not the change in the total
energy due to the included physics. In the BCS case this energy
shift can be calculated by the difference between the BCS
and Hartree-Fock ground-state energies. There is no obvious
analogy for this energy shift for the present continuum problem
as the induced correlations affect all SM states.

The scattering energy for which the continuum-induced
mixing of the SM eigenstates is the strongest generates a
minimum in E(i)

corr(E) [17,18]. A state near this minimum not
only benefits from the continuum-mediated mixing, but also
carries many features of the nearby decay channel. The energy
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where this effect (which we call collectivization) is strongest
is determined by a subtle interplay between the competing
forces of repulsion (Coulomb and centrifugal interaction) and
attraction (the continuum coupling), and only for the coupling
to the l = 0 neutron-decay channel is it precisely at the
threshold [34]. Detailed discussion of the continuum-coupling-
induced collectivity in near-threshold states is given elsewhere
[17,18].

The SM Hamiltonian uses the recently developed
monopole-based interaction for the full psd model space that
includes (0–3)h̄ω excitations [35]. We refer to this interaction
as YSOX and it has been quite successful in reproducing
ground-state properties of psd nuclei from drip line to drip
line. YSOX is supplemented by the Wigner-Bartlett contact
interaction for the coupling between the SM states and the de-
cay channels. The standard value of spin-exchange parameter
(β = 0.37) is used.

The radial single-particle wave functions in Q0 and the
scattering wave functions in Q1 are generated using a Woods-
Saxon (WS) potential which includes spin-orbit and Coulomb
parts. The radius and diffuseness of the WS potential are
R0 = 1.27A1/3 fm and a = 0.67 fm, respectively. The spin-
orbit potential is VSO = 6.4 MeV, and the Coulomb part is
calculated for a uniformly charged sphere with radius R0. The
depth of the central part for protons (neutrons) in 9Li and 10Be
is adjusted to yield the energy of the p3/2 proton (neutron)
single-particle state equal to the one-proton (one-neutron) sep-
aration energy in the ground state of 9Li and 10Be. Two-body
Coulomb interaction is absent in YSOX interaction; hence,
the SM eigenstates have good isospin. However, one-nucleon
decay channels do not have good isospin so the coupling to
decay channels induces isospin nonconservation in the SMEC
eigenstates. Our state notation is Jπ

n and T for the spin, parity
(superscript), the ordinal label for that spin (subscript), and
isospin of the largest SM component of the SMEC eigenstate.
The calculated level diagrams, only including the states of
relevance for the present study, are shown in Fig. 2.

V. CONTINUUM-SHELL-MODEL RESULTS

A. 9Li∗

The YSOX interaction predicts two Jπ
n = 1/2+ (n = 5,6),

T = 3/2, states just above the proton-emission threshold at
13.94 MeV [see Fig. 2(a)]. The second of these is predicted
to have a tiny proton partial decay width. The Jπ

n = 1/2+
5

resonance has the energy of the observed resonance and if
the strength of the continuum-coupling interaction is fixed at
V0 = −208(±14) MeV fm3 (and all decay channels shown in
Fig. 2 are included), the experimental width is reproduced.
The parametric uncertainty comes from the experimental
uncertainty of the resonance width. The partial proton width
is only �p = 1.9 (±0.4), (±0.5) keV, where the uncertainties
come from those of V0 and the resonance position, respectively.
With the SMEC energy scale origin as the experimental proton-
emission threshold, the ground-state energy of 9Li is –13.86
MeV, 0.08 MeV less bound than reality (by 0.6%).

The proton s1/2 spectroscopic factor for the Jπ
n = 1/2+

5 state
is 0.14. This is the second largest spectroscopic factor among

FIG. 2. Continuum-shell-model level diagrams for relevant (a)
9Li∗ and (b)10Be∗ resonances. All shown levels are coherently coupled
in the SMEC calculations. The black (red) lines indicate T< (T>)
levels, lines with end points are experimental levels, and those with
arrows indicate the lowest-lying levels with a significant proton-decay
branch. The 9Li levels of J π = 1/2+, 10Be levels with J π = 2−

(solid lines) and 1− (dashed lines), the ground-state proton decay
channel, and the relevant n-decay channels are all indicated. The
wave-function compositions are provided in the supplementary tables
that are organized by the indices n and k [36].

all Jπ = 1/2+, T = 3/2 states. Large spectroscopic factors are
the hallmark of the continuum-induced collectivization. (The
wave-function components of all relevant states can be found
in the tables provided in the Supplemental Material [36].)
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FIG. 3. The continuum-coupling correlation energy as a function
of proton energy Ep for (a) J π = 1/2+, T = 3/2 SM states with an
excitation energy E∗ < 15 MeV coupled in s wave to the (lowest)
one-proton decay channel and (b) with the additional coupling to all
one-neutron decay channels, and (c) 10Be∗ for the J π

n = 2−
12, T = 1

state considering all J π = 2−, T = 1 SM states with an excitation
energyE∗ < 22 MeV s wave coupled to the (lowest) one-proton decay
channel and (d) with the addition of coupling to nine neutron-decay
channels.

As mentioned above, a metric for the degree of mixing of
SM states, due to the continuum, is the continuum-coupling
correlation energy Ecorr. Figure 3(a) shows the collectivization
for Jπ = 1/2+, T = 3/2 SM eigenstates due to coupling to the
p + 8He decay channel. Convergence is achieved when all SM
states with the excitation energy E∗ � 16.1 MeV are taken
into account. With only this single decay channel included,
the centroid of the opportunity energy window for a collective
near-threshold state is above the observed energy of the reso-
nance. Figure 3(b) shows what happens to Ecorr when coherent
couplings to all the open neutron-decay channels shown in
Fig. 2 are also included. The optimal energy for collectivization
shifts down to Ep ∼ 0.24 MeV, in this case very close to
coinciding with the position of the physical resonance.

While not the subject of the present work, these calculations
do indicate that the ground state of 9He is Jπ = 1/2+ and the
first excited state is Jπ = 1/2−. The IAS in 9Li (Jπ = 1/2+,
T = 5/2) is found at 20.4 MeV in the SM calculation and,
as expected, the neutron s1/2 and proton s1/2 wave-function
components are in the expected isospin Clebsch-Gordan ratio
of 4:1. (That is the square of 〈2,1; 1

2 , 1
2 | 5

2 , 3
2 〉/〈2,2; 1

2 , − 1
2 | 5

2 , 3
2 〉,

for a neutron coupled to the IAS of 8Li relative to a proton
coupled to 8He.) This state is close to the inelastic one-proton
emission channel [p + 8He(E∗

expt = 6.03 MeV)] in 9Li. The
coupling of the IAS state to the lowest one-proton emis-
sion channel, its isobaric analog in 8Li, and inelastic proton
emission channels (the known Jπ

n = 2+
1 and 1−

1 states in 8He
and even an unknown Jπ

n = 2−
1 ) do not significantly change

the energy and yield the total width of less than 50 keV;
interestingly this is primarily from the proton partial width.
While the partition between neutron and proton widths is
sensitive to the ratio of the continuum-coupling constants
for like and dissimilar nucleons, the total width is largely
unaffected by this ratio. While a measurement of then/p-decay

branching ratio would help fix this ratio, we conclude (unless an
important ingredient is missing in our effective Hamiltonian)
that the wide structure attributed to the 9Li IAS [25] is unlikely
to be solely T = 5/2.

Returning to the near-threshold state, Jπ
n = 1/2+

5 (and for
that matter the subthreshold Jπ

n = 1/2+
3 ), its wave function has

the neutron-to-proton s-component strengths swapped relative
to the IAS; i.e., the proton s component exceeds the neutron s
component. This is expected from the isospin Clebsch-Gordan
coefficients for an anti-analog T< state. (Here one is coupling
the nucleon and residual to T = 3

2 with the same projection.)

B. 10Be∗

Near the 10Be proton-decay threshold (19.6 MeV), five
Jπ

n = 2−, T = 1 (10 � n � 14) states and two Jπ
n = 1−,

T = 1 (n = 9,10) states are predicted [see Table I and
Fig. 2(b)]. These SM states are mixed strongly through the
coupling to the proton-emission channel and all but one have
proton partial decay widths which are sufficiently large to
be seen experimentally. The energy of the Jπ

n = 2−
12, T = 1

state coincides with the observed resonance [see Table I and
Fig. 1(b)]. The proton-partial-decay width for this state is the
second largest among all Jπ

n = 1−,2− states within 2 MeV
of the proton-emission threshold and its s1/2 spectroscopic
factor is the largest (0.11) among all considered Jπ = 1−,2−
states. Both Jπ

n = 1−
9 and 1−

10 states are broad and have small
proton-partial-decay widths but should contribute to the tails
of observed peaks.

The continuum-coupling correlation energies for the Jπ
n =

2−
12 eigenstate obtained by considering coupling to proton, and

proton- and neutron-decay channels are shown are Figs. 3(c)
and 3(d), respectively. The proton energy where Ecorr is opti-
mal, i.e., where the collectivization of the SM wave function
is the strongest, coincides with the energy of the observed
low-lying state when the proton channel is considered. With
the inclusion of neutron channels, the overall collectivization
increases and the centroid of the opportunity energy window
for collectivization moves even closer to the proton-emission
threshold. The ground-state energy of 10Be is calculated to
be at –18.74 MeV, again under bound, this time by 0.9 MeV
(4.6%).

This collection of states provides a remarkable reproduction
of what is observed: a narrow low-energy peak with a higher-
energy broad structure that is clearly a multiplet. Even the
requirement of a weak component on the low-energy side of
the prominent structure nearest threshold finds an explanation
(see Table I). The fact that the individual calculated widths are
smaller than the extracted widths is to be expected due to the
multiplicity of eigenstates (with the same quantum numbers)
in the energy region just above the proton threshold.

The IAS (T = 2) in 10Be is either Jπ = 2− or 1− and these
states are predicted to be at 23.6 and 23.9 MeV, respectively.
Their energies are close to the threshold of an inelastic one-
proton emission channel [p + 9Li(E∗

expt = 4.3 MeV)]. Both
states, when coupled to the lowest-lying Jπ = 3/2−, 1/2−,
and 5/2− one-proton emission channels and their isobaric
analogs (T = 3/2) in 9Be, shift to higher energies, 24.7 and
25 MeV, and acquire total (proton partial) widths of 99 (53)
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and 85 (62) keV, respectively. These energies are close to where
they are expected to be based on the now known energies of
other members of the isobaric multiplet. The most important
channels for IAS decay are to the first Jπ = 3/2−, T = 3/2
levels in 9Li and 9Be.

VI. SUMMARY

In the case of 9Li∗ the continuum-induced mixing of SM
states, which we have been calling “collectivization,” for Jπ =
1/2+, T = 3/2 becomes stronger when neutron channels are
considered and optimal just above the proton threshold where
the resonance is observed. While the predicted spectrum is
complex for the 10Be∗ case, its similarity to the measured one
is striking. In both cases, the calculations explain the observed
resonances nearest threshold as T<. For the 10Be∗ case, the
model predicts overlapping T> states where we know they must
be.

We therefore conclude that the states in question have the
spin and parity of the IAS but are the isospin antiparallel
configurations (T<). Unlike the isobaric analog state (T>),
the anti-analog state concept has not provided much insight.
Owing to its highly fractured nature, it can even be considered
a naive concept. However, in the context of understanding
the nature of states just above proton thresholds—states with
an outsized importance in the study of the interplay between
structure and reactions—this concept has turned out to be
useful. The uncollectivized splinters of the AAS in the shell
model provide multiple opportunities (a veritable comb of SM
states), of which one or more can be ushered by continuum-
mediated mixing of SM states into true physical states very

close to the proton threshold. In the cases studied here, this
mixing is enhanced by open neutron channels. The observable
effect of the open neutron channels is to greatly increase the
width of the resonances. In the calculations, the quantifiable
effect of the neutron channels is to pull the energy window for
collectivization down closer to the charged-particle threshold.

The importance of near-threshold, ‘fortuitously” placed
resonances in nucleosynthesis is well known. However, it has
been the recent study of resonances off of synthetic paths, in
fact often in truly exotic nuclei (examples being 11Li, 15F,
and 26O [17,37,38]), that has generated considerable insight
into the effects which generate near-threshold resonances.
Specifically, continuum-cognizant shell models have illus-
trated how the coupling to the continuum generates states with
an imprint of the decay channel [17]. The present work adds
to, but also complicates, our understanding of this process by
which resonances are ushered to decay thresholds by providing
examples where the imprinting of a charged-particle channel
is aided by open neutron channels.
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