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Different versions of the effective-range function method for charged particle collisions are studied and
compared. In addition, a novel derivation of the standard effective-range function is presented from the analysis
of Coulomb wave functions in the complex plane of the energy. The recently proposed effective-range function
denoted as �� [Ramírez Suárez and Sparenberg, Phys. Rev. C 96, 034601 (2017)] and an earlier variant [Hamilton
et al., Nucl. Phys. B 60, 443 (1973)] are related to the standard function. The potential interest of �� for the
study of low-energy cross sections and weakly bound states is discussed in the framework of the proton-proton
1S0 collision. The resonant state of the proton-proton collision is successfully computed from the extrapolation of
�� instead of the standard function. It is shown that interpolating �� can lead to useful extrapolation to negative
energies, provided scattering data are known below one nuclear Rydberg energy (12.5 keV for the proton-proton
system). This property is due to the connection between �� and the effective-range function by Hamilton et al.
that is discussed in detail. Nevertheless, such extrapolations to negative energies should be used with caution
because �� is not analytic at zero energy. The expected analytic properties of the main functions are verified in
the complex energy plane by graphical color-based representations.
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I. INTRODUCTION

In quantum collision theory, the effective-range function
(ERF) method is a powerful model-independent fitting tech-
nique of low-energy phase shifts [1–8]. It is very useful in
nuclear collision physics when the shape of the interaction po-
tentials is not known accurately. This method merely consists
in expanding a function of the phase shift, namely the ERF,
that is analytic at zero energy and behaves as a constant at
this point [1]. The expansion of the ERF, also referred to as
the effective-range expansion, can be either a power series of
the energy or a Padé approximant, i.e., a rational function. In
general, Padé approximants are valid on a larger domain than
Taylor series [9–11].

The ERF method was mainly developed in the 1940s by
Schwinger, Bethe [1], Landau [2], and others in the framework
of nucleon-nucleon collisions. In these works, it is shown that
the ERF specifically dedicated to charged particle scattering
is very different from the one of neutral particle scattering
because of the Coulomb interaction. In particular, the Coulomb
interaction modifies the low-energy behavior of the phase
shift, involving a special analytical structure described by
the digamma function (ψ) [1,12,13]. Since then, the ERF
for charged particle scattering has been the subject of many
developments [10,14–24]. Moreover, the method has been
applied to experimental data of numerous two-body systems,
such as: proton-proton [1–5,9,25–28], proton-deuteron [29–
31], or 12C + α [20–24,32–34].
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However, this ERF also raises technical issues related to
the relative magnitude of its ψ function term versus the
phase-shift-dependent term. According to recent works [20–
22], it would be less appropriate to model the phase shift for
heavier nuclei than protons. In Ref. [20], it is suggested to
use a reduced variant of the ERF, which is denoted as ��,
as a potential alternative to the standard Coulomb-modified
ERF for studying the weakly bound states by extrapolation of
scattering data to negative energies. This reduced ERF method
is also inspired by earlier works [16,18] about the mathematical
properties of the standard ERF.

The main purpose of this paper is to study the reduced
ERF method [20] and to clarify its connection to the standard
ERF method. In addition, we propose a novel derivation of
the standard ERF as well as the relations between the different
historical formulations.

We show that the reduced ERF method allows us to obtain
information on resonances and weakly bound states, using the
properties of the ψ function appearing in the standard ERF.
These properties are graphically verified in the complex plane
of the energy E. Indeed, complex plots have the advantage of
revealing the analytic structures that are concealed from the
real E axis. This leads to predictions on the singularities of the
Coulomb phase shift.

Finally, we apply the reduced ERF method to the proton-
proton 1S0 collision to check the predictions of the effective-
range theory. We show that the singular nature of �� at negative
energy prevents Padé approximants from converging below
E = 0. However, depending on the energy range covered by
experimental data, it seems possible with �� to extrapolate
to negative energy up to about minus one nuclear Rydberg,
using the connection between the reduced ERF and the ERF
by Hamilton et al. [16], that we denote as �+

� .
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This paper is organized as follows. Section II provides the
derivation of the analytic structure of the Coulomb wave func-
tions in the complex E plane. Thereafter, the calculation of the
ERFs and the study of their properties in the complex E plane
are presented in Sec. III. This analysis is performed by explicit
calculation and is aided by graphics in the complex plane. We
focus on the properties of �� and �+

� . Section IV describes
the theoretical properties of the ERFs in the framework of the
proton-proton 1S0 collision. We also study the ability of the
reduced ERF �� to extrapolate data to negative energies.

Throughout the text, we use the reduced Planck constant
h̄c, the fine-structure constant α and the rest mass energy of
the proton mpc

2 provided by the 2014 CODATA recommended
values [35].

II. PURE COULOMB POTENTIAL

This section deals with the theoretical aspects of the nonrel-
ativistic scattering of two charged particles, especially in the
low-energy limit. The Coulomb wave functions are analyzed
in the complex plane of the energy.

A. Scattering wave functions in Coulomb potential

The effective-range theory of the Coulomb scattering is
largely based on the analytic expression of the solutions of the
Schrödinger equation in a 1/r potential. Indeed, the Coulomb
wave functions are involved in the very definition of the phase
shift [1–8,10,18,36–38].

We consider two spinless particles of negligible radius,
respective masses m1 and m2, and charges Z1e and Z2e.
If r denotes the relative position between the particles and
E = h̄2k2/2m the energy in the center-of-mass frame, the
Schrödinger equation writes [37,38]

− h̄2

2m
∇2�(r) + Z1Z2e

2

4πε0 r
�(r) = h̄2k2

2m
�(r), (1)

where m = m1m2/(m1 + m2) is the reduced mass of the two-
body system. Since the Coulomb potential is isotropic—it only
depends on r = ‖r‖—, the angular momentum commutes with
the Hamiltonian. If, in addition, we focus on a partial wave of
specific angular momentum, the wave function �(r) splits into
an angular part given by spherical harmonics Y�m(θ,φ) and a
radial part uk�(r) to be determined [6,37],

�k�m(r) = uk�(r)

r
Y�m(θ,φ). (2)

Replacing (2) in (1) and using the reduced radial coordinate
x = kr , the Schrödinger equation (1) for u = uk�(r) becomes

− d2u

dx2
+

[
�(� + 1)

x2
+ 2η

x
− 1

]
u = 0, (3)

also known as the Coulomb wave equation [12,13,39]. The
strength of the Coulomb interaction is determined by the
dimensionless Sommerfeld parameter η defined as

η = αZ1Z2mc2

h̄c k
= 1

aBk
, (4)

where aB stands for the nuclear Bohr radius (in unit length)

aB = h̄c

αZ1Z2mc2
. (5)

The nuclear Bohr radius of a two-proton system is aB =
57.64 fm, which is significantly larger than the one-
femtometer charge radius of the proton. Such a large Bohr
radius is due to the relatively small charge and mass of the
proton compared to heavier ions. For instance, the nuclear
Bohr radius of a 12C + α system is barely 0.806 fm, i.e., nearly
a hundred times smaller. This disparity for proton-proton
scattering will play a key role in Sec. IV [1].

We also define the nuclear Rydberg energy as

1 Ry = h̄2

2ma2
B

= 1

2
(αZ1Z2)2mc2, (6)

which equals 12.49 keV for a two-proton system and
10.72 MeV for 12C + α.

It is well known in the literature that Eq. (3) is solved by the
Coulomb wave functions [1–8,12,13,36–41]. In this paper, we
focus on two useful couples of linearly independent solutions
of Eq. (3): {Fη�(x),Gη�(x)} and {H+

η�(x),H−
η�(x)}. The first

couple consists of the regular Coulomb function Fη�(x) and
the irregular Coulomb function Gη�(x). These functions are
so called because of their behavior near the origin (x = 0): the
former goes like x�+1 and the latter like x−� for x → 0 [12,13].

The regular Coulomb function Fη�(x) is defined from the
confluent hypergeometric function 1F1(a,b,z), also known as
the Kummer function M(a,b,z) [12,13,42]

M(a,b,z) = 1 + a

b

z

1!
+ a(a + 1)

b(b + 1)

z2

2!
+ . . .

=
∞∑

n=0

(a)n
(b)n

zn

n!
, (7)

where (a)n = a(a + 1) · · · (a + n−1) = �(a + n)/�(a) de-
notes the Pochammer symbol. The regular Coulomb function
reads [12,13]

Fη�(x) = Cη� x�+1 eixM(� + 1 + iη,2� + 2, − 2ix). (8)

It should be noted that, since k appears inη = 1/aBk in addition
to x = kr , the wave number k does not only act on the radial
scale of the Coulomb wave functions through x, but it also
affects the wave oscillations through η, especially for x � 1.

In the definition (8), the normalization coefficient Cη�

ensures the far-field behavior

Fη�(x)
x→∞−−−→ sin

(
x − �

π

2
− η ln(2x) + ση�

)
, (9)

where ση� is the pure Coulomb phase shift [12,13,40,41]

ση� = arg �(� + 1 + iη). (10)

The coefficient Cη� turns out to be energy dependent [12,13],

Cη� = 2�|�(� + 1 + iη)|
(2� + 1)! eηπ/2

for η ∈ R. (11)

Here, we have to highlight that Eq. (11) is not analytic
anywhere in the complex k plane because of the absolute

044003-2



EFFECTIVE-RANGE FUNCTION METHODS FOR CHARGED … PHYSICAL REVIEW C 97, 044003 (2018)

value. The analytic continuation of Cη� to the complex k
plane is obtained by replacing |�(� + 1 + iη)| by [�(� +
1 + iη)�(� + 1 − iη)]1/2 as shown in Refs. [15,40] and then
rewriting the product by means of Euler’s reflection formula
[12,13]

�(1 − z) �(1 + z) = πz

sin(πz)
. (12)

The resulting expression

Cη� = (2η)�

(2� + 1)!

√
2ηπwη�

e2ηπ − 1
(13)

is analytic in the complex k plane—except for poles and branch
cuts—and reduces to Eq. (11) at positive energy. In Eq. (13),
wη� is a polynomial of (aBk)2 defined by

wη� =
�∏

j=0

(
1 + j 2

η2

)
, (14)

which equals 1 in the zero-energy limit, as well as for � = 0.
The procedure is required to make the Coulomb wave functions
analytic in the energy plane. This is an important ingredient of
the derivation of the Coulomb-modified ERF.

Before talking about the irregular Coulomb function
Gη�(x), we have to introduce the incoming and outgoing
Coulomb wave functions, respectively denoted as H−

η�(x) and
H+

η�(x). They are defined in a very similar way to Eq. (8) by

H±
η�(x) = D±

η� x�+1 e±ixU (� + 1 ± iη,2� + 2, ∓ 2ix), (15)

where U (a,b,z) is the confluent hypergeometric function of
the second kind, also known as Tricomi’s function, which
is linearly independent of M(a,b,z) [12,13,39]. The Tricomi
function in Eq. (15) is defined by a peculiar series represen-
tation. Because b is an integer, U (a,b,z) splits into two parts
[13] that we call P (a,b,z) and L(a,b,z)

U (a,b,z) = P (a,b,z) + L(a,b,z) for b ∈ Z+. (16)

In the following, we occasionally use the symbols a = � +
1 + iη, b = 2� + 2 and z = −2ikr borrowed from confluent
hypergeometric functions [13] to shorten the notations of
the Coulomb wave functions. In Eq. (16), the first term is a
polynomial of negative powers of z [13]

P (a,b,z) = (2�)!

�(� + 1 + iη)

2�∑
n=0

(−� + iη)n
(−2�)n

zn−2�−1

n!
, (17)

and the second one is a generalized series involving logarithmic
terms in z [13]

L(a,b,z) = (−1)2�+2

(2� + 1)! �(−� + iη)

∞∑
n=0

(a)n
(b)n

zn

n!

× [ln z+ψ(a + n)−ψ(b + n) − ψ(n + 1)], (18)

where ψ(z) is the digamma function, also known as the psi
function, defined as the logarithmic derivative of the gamma
function

ψ(z) = �′(z)/�(z). (19)

−1
−0

.5
0

0
.5

1

Im
z

(a)

−3 −2 −1 0 1 2 3

−4
−2

0
2

4

z

ψ
(z

)

(b)

1.4616 . . .

FIG. 1. Representations of the function ψ (a) in the complex z

plane and (b) along the real z axis. Crosses and circles represent poles
and zeros respectively. The color legend is described in Appendix A.
The poles occur when z reaches a negative integer or zero. The unique
zero on the positive real axis lies at z = 1.4616 . . . [13].

The function ψ(z) is shown in the complex z plane in Fig. 1(a).
One notices the array of poles and zeros on the negative real z
axis; they play an important role in the following.

The normalization coefficients D±
η� in Eq. (15), that we

define as

D±
η� = ∓2i(−1)� eηπ (2� + 1)! Cη�

�(� + 1 ∓ iη)
, (20)

are intended to ensure the asymptotic behavior

H±
η�(x)

x→∞−−−→ exp

{
± i

[
x − �

π

2
− η ln(2x) + ση�

]}
. (21)

There are other ways to define D±
η� in the literature

[12,13,40,41], but Eq. (20) has the advantage of being pro-
portional to Cη�. It will play an important role in Sec. II B.

Although D+
η� and D−

η�, as well as H+
η�(x) and H−

η�(x), are
related to each other by complex conjugation at real k, this no
longer holds when k is complex valued. This is because the
complex conjugation is not an analytic operation: z cannot be
expanded in power series of z for z ∈ C. However, one can
resort to complex conjugation (in the sense of Ref. [43]) to
relate them for complex-valued k

D−
η� = D+

η�, H−
η�(kr) = H+

η�(kr), (22)

where η = 1/aBk. The relations (22) are practically obtained
by replacing everywhere +i by −i, and conversely.

Contrary to Fη�(x), the functions H±
η�(x) are complex valued

and irregular at x = 0 like x−�. However, the regular Coulomb
function can be retrieved by subtracting H−

η�(x) from H+
η�(x)

Fη�(x) = H+
η�(x) − H−

η�(x)

2i
, (23)
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which reduces for real k to Im H+
η�(x) and to the sine wave of

Eq. (9) consistently with Eq. (21).
Finally, the irregular Coulomb function Gη�(x) is defined

as [13,37,40,41]

Gη�(x) = H+
η�(x) + H−

η�(x)

2
. (24)

This definition has to be understood as the real part Re H±
η�(x)

only on the real k axis. Otherwise, when k is complex, at
negative energies for instance, Eq. (24) should be preferred,
being the analytic continuation of Re H±

η�(x).
From Eq. (21), one easily shows that the irregular function

Gη�(x) behaves asymptotically like

Gη�(x)
x→∞−−−→ cos

(
x − �

π

2
− η ln(2x) + ση�

)
. (25)

It should be noted that the s wave (� = 0) of Gη�(x)
shows a peculiarity in the low-range limit r → 0. Instead of
behaving like O(1) as predicted by O(x−�), the irregular wave
function Gη0(x) is exceptionally dominated by a logarithmic
term O(x ln x) emanating from the series (18) in U (a,b,z). As
will be seen later in Sec. II B, such logarithmic terms affect the
properties of the irregular Coulomb function in the complex k
plane, and in this way the effective-range function.

B. Analytic structure of Coulomb wave functions

In this section, we propose a new derivation of the analytic
structure of the Coulomb wave functions in the complex
plane of the energy E, especially in the low-energy limit.
We show in Sec. III A how the structure of the irregular
Coulomb functions H±

η�(x) and Gη�(x) leads to the standard
effective-range function. To this end, it is crucial to study the
analytic properties of the Coulomb wave functions, since they
are involved in the very definition of the phase shift δ�(E).

For simplicity, we focus our analysis on Coulomb wave
functions divided by the normalization factor Cη� of Eq. (13).
Indeed, this factor will disappear from the calculation of the
phase shift because the wave function uk�(r) is defined within
a (possibly complex) factor.

Let us begin with the regular Coulomb function Fη�(x).
From the definition (8) and the power series (7), one has

Fη�(kr)

Cη�(kr)�+1 eikr
=

∞∑
n=0

(� + 1 + iη)n
(2� + 2)n

(−2ikr)n

n!
. (26)

When the wave number k vanishes, η = 1/aBk tends to
infinity. Fortunately, the Pochammer symbol (� + 1 + iη)n
is asymptotic to (iη)n. The numerator in the right-hand side
of Eq. (26) becomes (2ηkr)n = (2r/aB)n, which no longer
depends on k. Therefore, the series is well defined at zero
energy and behaves as a constant in the neighborhood of k = 0.

The analytic structure of the irregular Coulomb functions
H±

η�(x) and Gη�(x) is less obvious than for Fη�(x) but it has
important consequences on the ERF. For convenience, we
begin the study with the outgoing Coulomb wave function
H+

η�(x) instead of Gη�(x). Given Eqs. (22) and (24), all the
equations below for H+

η�(x) will impact those for Gη�(x).

Let us begin the analysis of H+
η�(x) in the k plane with

U (a,b,z) from Eq. (16). The two functions P (a,b,z) and
L(a,b,z) from Eqs. (17) and (18) are singular in the neigh-
borhood of k = 0, and one needs to regularize both of them in
the limit k → 0.

First, we consider the finite sum P (a,b,z) from Eq. (17).
This function is singular at zero energy on the one hand because
of the essential singularity at k = 0 in �(� + 1 + iη)−1 and on
the other hand because each term in the series behaves like
k−(2�+1) as k → 0. One way to circumvent this issue is to define
the regularized function

P +
η�(x) = (2� + 1)!

(iη)2�+1
�(� + 1 + iη) P (a,b,z), (27)

which is holomorphic for k ∈ C due to the compensation of
all the singularities.

Regarding the series L(a,b,z) of Eq. (18), three kinds of
singularities have to be considered while regularizing [14,15]:

(i) the essential singularity of �(−� + iη)−1 at k = 0;
(ii) the branch cut of the principal-valued logarithm ln z

in the series; and
(iii) the array of poles of ψ(a + n) when a + n ∈

{0, − 1, − 2, . . .} leading to an accumulation point at
k = 0.

First, the gamma function �(−� + iη)−1 can be compen-
sated in the same way as with P (a,b,z). Secondly, the energy
dependence of ln z can be separated from the radial part as

ln(z) = ln(−2ikr) = ln(2r/aB) − ln(iη). (28)

It should be noted that the above decomposition assumes that
the two particles are repelling each other (aB > 0). When it is
not true, one can choose ln(−2ikr) = ln(−2r/aB) − ln(−iη)
instead without other significant difference in the calculation.

Finally, the most difficult part of the regularization of H+
η�(x)

involves the function ψ(a + n) in the series (18). The function
ψ(a + n) has infinitely many poles on the imaginary k axis
with an accumulation point at zero energy (k = 0)

k ∈
{ −i

(� + n + 1)aB
,

−i

(� + n + 2)aB
, . . . , → −0 i

}
. (29)

Such a structure is not compensated by the zeros from (a)n.
Therefore, one has to separate the function ψ(a + n) from the
series (18). For this purpose, one uses the property [12,13]

ψ(a + n) = ψ(a) +
n−1∑
s=0

1

a + s
, (30)

to extract from ψ(a + n) the function ψ(a) independent of the
summation index n, but still with the k dependence.

From this point on, we exploit the close similarity between
the series (18) and the Kummer function (7). Indeed, we guess
that the index-independent part will contribute to a Kummer
function M(a,b,z), that is holomorphic for k ∈ C as shown
before in (26). Using Eqs. (28) and (30), one gets the analytic
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decomposition

L(a,b,z) =
g+

� (η) M(a,b,z) + ∑∞
n=0 cn

(a)n
(b)n

zn

n!

(2� + 1)! �(−� + iη)
, (31)

where g+
� (η) is given by

g±
� (η) = ψ(� + 1 ± iη) − ln(±iη). (32)

The coefficients cn of the series in Eq. (31) contain the terms

cn = ln

(
2r

aB

)
+

n−1∑
s=0

1

a + s
− ψ(b + n) − ψ(n + 1), (33)

which remain after the decomposition. Other equivalent de-
compositions may lead to different functions g±

� (η) and coeffi-
cients cn. The key point is to realize that the hypergeometriclike
series in Eq. (31),

∞∑
n=0

cn

(a)n
(b)n

zn

n!
, (34)

is holomorphic in the k plane due to compensation between
the zeros of (a)nz

n and the poles of

n−1∑
s=0

1

a + s
, (35)

in the coefficients cn of Eq. (33). Similarly to what has been
done before for P (a,b,z), we define a new k-holomorphic
function

L+
η�(x) = �(� + 1 + iη)

(iη)2�+1�(−� + iη)

∞∑
n=0

cn

(a)n
(b)n

zn

n!
. (36)

The prefactor in Eq. (36) is obtained by multiplying (31) by
the same coefficient as P (a,b,z) of Eq. (27). The idea behind
this renormalization is to keep L+

η�(x) on the same footing as
P +

η�(x). The resulting prefactor in Eq. (36) is also holomorphic
in k as evidenced by the corollary of the recurrence property
of the gamma function [40]

�(� + 1 + iη)

(iη)2�+1�(−� + iη)
= wη�, (37)

with the polynomial wη� given by Eq. (14).
From now on, one can rewrite the outgoing Coulomb

function H+
η�(x) of Eq. (15) in term of the k-holomorphic

functions P +
η�(x) and L+

η�(x) using Eqs. (16), (27), (31), and
(36). One gets the analytic decomposition

H+
η�(x) = D+

η� x�+1 eix

(2� + 1)! �(−� + iη)
g+

� (η) M(a,b,z)

+ (iη)2�+1D+
η� x�+1 eix

(2� + 1)! �(� + 1 + iη)

[
P +

η�(x) + L+
η�(x)

]
. (38)

The coefficients above can be further simplified using the
relation (20) between the normalization factors D±

η� and Cη�.
In addition, we introduce the regularized Coulomb wave
functions

I±
η�(x) = Cη� x�+1 e±ix[P ±

η�(x) + L±
η�(x)], (39)

0 5 10 15 20

−0
.1

0
0
.1

x
ip

=
2
.0

x
ip

=
2
.6

x
ip

=
3
.6

η = 1.0

η = 1.3

η = 1.8

x

I
(x

)
fo

r
=

0

FIG. 2. Plots of the regularized Coulomb wave function Iη�(x) for
the s wave (� = 0) and different values of η. The inflection points xip

are marked with a black dot. They lie at the same abscissa as for the
usual Coulomb functions Fη�(x) and Gη�(x).

such that I±
η�(x)/Cη�k

�+1 behaves as a constant when k tends
to zero. Then, we end up with the analytic decomposition

H+
η�(x) = e2ηπ − 1

π

[
g+

� (η)Fη�(x) + 1

wη�

I+
η�(x)

]
. (40)

All the singularities of H+
η�(x)/Cη� in the k plane originate from

e2ηπ , g+
� (η), and 1/wη�. Therefore, Eq. (40) can be understood

as a kind of factorization of the singular k dependence ofH+
η�(x)

from the functions Fη�(x) and I+
η�(x) that are regular in k except

for their common normalization coefficient Cη� [10].
Finally, the analytic decomposition of the irregular

Coulomb function Gη�(x) can be derived from Eq. (40) and
the definition (24). Indeed, the decomposition of H−

η�(x) is
obtained by changing the signs of g+

� (η) and I+
η�(x) in Eq. (40).

It is more convenient to define a new function

g�(η) = g+
� (η) + g−

� (η)

2
, (41)

in the same way as Gη�(x). In this paper, we refer to g�(η) as
“Bethe’s function” [1] although it was concurrently found by
Landau [2]. This singular function g�(η) is discussed in detail
in Sec. III B. Besides, we define the real-valued regularized
Coulomb function Iη�(x) accordingly

Iη�(x) = I+
η�(x) + I−

η�(x)

2
, (42)

which is related within a factor to similar functions found in
the literature: uS [14], θ� [15], �� [18], or �� [36,40,41].

It should be noted that the functions I±
η�(x) as well as Iη�(x)

are also solutions of the Schrödinger equation (3), because
they are linear combinations of the regular and the irregular
Coulomb functions.

However, the functions I±
η�(x) and Iη�(x) are not asymp-

totically normalized in the same way as the usual Coulomb
functions, as shown in Fig. 2. Their wave amplitude is affected
by η and thus by the energy. The larger η, the wider the
plateau below the inflection point, as with the regular Coulomb
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function Fη�(x). It is interesting that Iη�(x) combines some
features of Gη�(x) and Fη�(x) near the origin. As shown in
Fig. 2, Iη�(x) shows the same singularity as Gη�(x) at x = 0.

The final analytic structure of Gη�(x) can be ob-
tained by averaging the decompositions of H+

η�(x) and
H−

η�(x) from Eq. (40). One gets the analytic decomposition
[10,12,14,15,36,40,41]

Gη�(x) = e2ηπ − 1

π

[
g�(η)Fη�(x) + 1

wη�

Iη�(x)

]
, (43)

where Iη�(x) is the modified Coulomb function given by
Eq. (42).

Our definition of Iη�(x) has the advantage of being on a
par with Fη�(x) regarding the k dependence. Indeed, Eqs. (26)
and (39) show that both Fη�/Cη�k

�+1 and Iη�/Cη�k
�+1 are

holomorphic in the k plane and behave as a constant around the
zero-energy point. This result has very important consequences
in the framework of effective-range functions, as will be seen
below. Moreover, Eq. (43) provides a clear identification of the
singularities of the irregular Coulomb function Gη�(x).

III. EFFECTIVE-RANGE FUNCTIONS

The standard ERF is derived from the analysis of the
Coulomb wave functions in the complex plane of the energy,
when a short-range potential is added to the Coulomb potential.
At the end of the section, the possible alternatives to the
standard ERF are presented from the theoretical point of view.

A. Standard effective-range function

In this section, we show that the analytic decomposition (43)
is responsible for the expression of the standard effective-range
function. First, we assume that the potential V (r) describing
the interaction between the charged particles is modified by a
short-range contribution of nuclear origin. Therefore, the wave
function uk�(r), which is equal to Fη�(kr) for a pure Coulomb
field, is altered in the nuclear region, whereas it merely acquires
the phase shift δ�(k) in the far-field region. The phase shift δ�(k)
is defined by the asymptotic behavior of the wave function
uk�(r) up to a global normalization factor by [1–8,18,36–38]

uk�(r)
r→∞−−−→ Fη�(kr) cos δ�(k) + Gη�(kr) sin δ�(k). (44)

The phase shift follows from the continuity of the logarithmic
derivative between the complete wave function uk�(r) and
Eq. (44)

∂ruk�(R)

uk�(R)
= ∂rFη�(kR) cos δ� + ∂rGη�(kR) sin δ�

Fη�(kR) cos δ� + Gη�(kR) sin δ�

. (45)

The matching point r = R is chosen far enough for the phase
shift to converge to an R-independent value. From Eq. (45),
one gets the phase shift expressed as a ratio of Wronskians
involving the complete wave function uk�(r) and the Coulomb
functions

cot δ�(k) = W[Gη�(kr),uk�(r)]R
W[uk�(r),Fη�(kr)]R

, (46)

where the notation of the Wronskian determinant is defined as

W[f (x),g(x)] = f (x)
dg

dx
(x) − df

dx
(x) g(x). (47)

Using the analytic decomposition (43) of Gη�(kr) the Wron-
skian in the numerator of Eq. (46) splits into two terms

cot δ�(k) = e2ηπ − 1

π

×
[

1

wη�

W[Iη�(kr),uk�(r)]R
W[uk�(r),Fη�(kr)]R

− g�(η)

]
. (48)

The ratio of Wronskians in Eq. (48) involves Iη�(kr) and
Fη�(kr), which both behave as Cη�k

�+1 in the neighborhood
of k = 0 as shown in Sec. II B. Therefore, the ratio

W[Iη�(kr),uk�(r)]R
W[uk�(r),Fη�(kr)]R

= wη�

[
π cot δ�(k)

e2ηπ − 1
+ g�(η)

]
(49)

is analytic at zero energy and behaves as a constant near
k = 0, due to the cancellation of Cη�k

�+1 from Iη�(kr) and
Fη�(kr). Indeed, all the possible poles of uk�(r) in the k plane
will simplify in the ratio. Consequently, one can define the
Coulomb-modified effective-range function based on Eq. (49)
[1–7,14,15,18] as

��(k) = 2wη�

�!2a2�+1
B

[��(k) + g�(η)], (50)

where ��(k) is the reduced effective-range function defined by

��(k) = π cot δ�(k)

e2ηπ − 1
, (51)

which is discussed in further detail in Sec. III D. The function
��(k) has been originally defined in Ref. [20] with an addi-
tional factor 2/aB, but we omit it in this paper for convenience.
The coefficient in Eq. (50) ensures that it reduces to the
effective-range function of the neutral case

��(k) = k2�+1 cot δ�(k), (52)

for vanishing charges (a−1
B → 0) [1,2,15,16].

The function ��(k) in Eq. (50) being analytic at E = 0, it
has a useful series expansion in powers of the energy at this
point [1–8,15,16,26], i.e., the effective-range expansion, which
is usually written as

��(k) = − 1

α�

+ r�

2
k2 + O(k4), (53)

where α� is the scattering length and r� is the effec-
tive range. Higher-order terms in Eq. (53) also exist, see
Refs. [10,11,25,26], but they are not discussed in this paper.

B. Properties of Bethe’s g function

Bethe’s function g�(η) is undoubtedly one of the most
important functions of the effective-range theory of charged
particles, as evidenced by its presence in Eq. (50). Indeed, the
analyticity of the traditional ERF ��(k) in Eq. (50) implies that
any singular structure in g�(η) is reflected on the reduced ERF
��(k) [20]. This is why it is so important to begin the study of
��(k) with that of g�(η).
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FIG. 3. Representations of the principal branch of g�(η) for � = 0
(a) in the complex plane of the energy E and (b) along the real E

axis. In (a), the conventional branch cut lies along the negative real E
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gray) and the imaginary part in dashed blue. In (b), the imaginary part
is either +iπ/2 (if arg E = +π ) or −iπ/2 (if arg E = −π ).

As a reminder, the function g�(η) is defined by Eqs. (32)
and (41) as

g�(η) = ψ(�+1+iη)− ln(iη)+ψ(� + 1 − iη) − ln(−iη)

2
.

(54)
It is worth noting that Eq. (54) is not the usual function g�(η)
that is defined in the literature, especially regarding the �
dependence. In Refs. [1,14–16,18], it is often denoted as h(η)
or g(η) and does not depend on �

g(η) = ψ(1 + iη) + ψ(1 − iη)

2
− ln η. (55)

As will be seen below, the additional dependence on � in
Eq. (54) makes no difference in the ERF from the analytic point
of view, except on the effective-range parameters, of course.

Besides, the function g�(η) given by Eq. (54) reduces to
Eq. (55) for the s wave when � = 0. Our formulation (54)
has the advantage of being closer to the definition (24) of the
function Gη�(kr) from which g�(η) originates.

The function g�(η) is shown in Fig. 3 for � = 0. It is a real
function at positive energy but complex valued everywhere
else, especially on the negative real E axis.

One of the most noticeable structures is the array of poles
at negative energies due to the functions ψ(� + 1 ± iη). In the
energy plane, they are located at

kC,n = ±i

(n + � + 1)aB
and EC,n = h̄2

2m
k2

C,n, (56)

for n ∈ {0,1, . . .}, so that E = 0 is an accumulation point of
poles and thus an essential singularity of g�(η). Remarkably,
the poles of Eq. (56) lie at the same energies as the hydrogenlike
levels due to the � dependence of g�(η). These poles are not

related to bound states since the corresponding poles of the
reduced ERF ��(k) have no such interpretation.

In addition to the poles, the function g�(η) also shows
infinitely many zeros near the poles accumulating at E = 0,
as shown in Fig. 3(a). The pole-zero screening explains why
the function becomes suddenly smooth at positive energy.

Such a smoothness of g�(η) at positive energy may suggest
that it is analytic at E = 0 and can be expanded in series
at this point. If such an expansion was found, the function
g�(η) could be merely omitted from the Coulomb-modified
ERF (50) as proposed in Ref. [20], since ��(k) would also
be analytic. However, because of the essential singularity at
E = 0, the function g�(η) is not analytic at this point, meaning
that no Taylor expansion is expected to converge in a finite
neighborhood of E = 0.

On the other hand, according to Refs. [12,13], the function
ψ(z) has an asymptotic Stirling expansion at |z| → ∞ in
all directions except the poles | arg z| < π − ε (ε > 0). The
corresponding asymptotic low-energy behavior of g�(η) reads

g�(η) ∼ −
∞∑

n=1

B2n

2n
(iaBk)2n +

�∑
s=0

(aBk)2s

1 + (aBks)2
, (57)

for |E| 
 1 Ry and | arg E| < π − ε. The coefficients B2n

in Eq. (57) are the Bernoulli numbers. They are known to
dramatically increase with n [12,13]

B2n

2n
∼ (−1)n+1 2 �(2n)

(2π )2n
for n → ∞. (58)

Such an increase reduces to zero the radius of convergence of
(57).

Regarding the other kinds of rational expansion, the loga-
rithmic branch cut seen in Fig. 3(a) along the negative real E
axis will prevent the approximants from converging to g�(η).
The logarithmic component in g�(η) is also evidenced by its
high-energy behavior

g�(η) = ψ(� + 1) − ln(η) + O(η), (59)

for |E| � 1 Ry. The behavior (59) also means that g�(η) is a
flat function at significantly higher energies than the nuclear
Rydberg.

Besides the function g�(η), there are other important func-
tions defined in the literature (see Refs. [8,14,16,26,40]):
namely the functions h±

� (η). As for g�(η), they are typically
encountered in their �-independent version. We define it with
a dependence in �

h±
� (η) = ψ(±iη) + 1

±2iη
− ln(±iη) +

�∑
s=0

s

s2 + η2
, (60)

so that they are on an equal footing with g�(η). This function
is discussed further in Sec. III C.

The important properties of h±
� (η) are [14,16]

h+
� (η) + h−

� (η)

2
= g�(η),

h+
� (η) − h−

� (η)

2i
= π

e2ηπ − 1
.

(61)

In other words, g�(η) can be looked upon as the real part of
either h+

� (η) or h−
� (η) at positive energy, since they are complex

044003-7



DAVID GASPARD AND JEAN-MARC SPARENBERG PHYSICAL REVIEW C 97, 044003 (2018)

conjugated to each other [43]. In addition, the imaginary part of
h+

� (η) at E > 0 is nothing but the Coulomb factor π/( e2ηπ −
1), as it appears in Eq. (43).

Finally, it is possible to express the far-field behavior of
Iη�(kr) substituting the asymptotic formulas of Fη�(x) and
Gη�(x) into Eq. (43) and using the properties (61) to get for
positive energies

Iη�(x)
x→∞−−−→ −wη�|h+

� (η)|

× sin

(
x − �

π

2
− η ln(2x) + ση� − arg h+

� (η)

)
. (62)

C. Effective-range function by Hamilton et al.

Before studying further the function ��(k), it is useful
to take a look at other functions envisioned as potential
alternatives to the traditional ERF ��(k). One of the drawbacks
of ��(k) is the presence of expected Coulomb poles at negative
energy predicted by the analysis of g�(η) in Sec. III B. These
poles symmetrically occur in both the physical (Im k > 0) and
the unphysical sheet (Im k < 0), possibly impairing the study
of negative energies with ��(k).

However, there is a way to partially overcome the issue
by removing the poles of g�(η) from the physical sheet. One
idea is to apply the reflection formula of the digamma function
[12,13] to ψ(� + 1 − iη) in Eq. (54), which is responsible for
the poles on the positive imaginary k axis. For this purpose,
we use the property

ψ(� + 1 − iη) = ψ(iη) − iπ − 2iπ

e2ηπ − 1
+

�∑
s=1

1

s − iη
,

(63)

where the remaining function ψ(iη) only has poles in the
unphysical sheet. Inserting Eq. (63) into the expression (54)
of g�(η) provides the relation

g�(η) = h+
� (η) − iπ

e2ηπ − 1
, (64)

where one notices the appearance of the function h+
� (η) defined

in Eq. (60). Indeed, the relation (64) directly follows from
Eq. (61).

Furthermore, the decomposition (64) leads to new formu-
lation of the usual ERF ��(k) due to Cornille and Martin [14]
and Hamilton et al. [16]

��(k) = 2wη�

�!2a2�+1
B

⎡
⎢⎢⎢⎣π [cot δ�(k) − i]

e2ηπ − 1︸ ︷︷ ︸
�+

� (k)

+h+
� (η)

⎤
⎥⎥⎥⎦, (65)

where �+
� (k) embeds the remaining exponential term in

Eq. (64) [16]. The calculation being symmetric for h+
� (η) and

h−
� (η), one defines the two notations accordingly

�±
� (k) = ��(k) ∓ iπ

e2ηπ − 1
= π [cot δ�(k) ∓ i]

e2ηπ − 1
. (66)
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FIG. 4. Plots of the principal branch of h+
� (η) for � = 0 (b) in

the complex E plane, (a) along the real E axis in the physical sheet
(arg E = 0, + π ) and (c) along the real axis in the unphysical sheet
(arg E = 0, − π ). The function is complex valued for arg E = 0 but
real for arg E = +π . In (c), h+

0 (η) is complex valued and shows the
Coulomb poles.

The function �+
� (k) is denoted as F−1

0 in Ref. [16] up to the
factor 2/aB, and has been applied more recently to the 2H + α
elastic scattering process by Blokhintsev et al. [21,22].

Similarly tog�(η) and��(k), the functionh+
� (η) is indicative

of the behavior of �+
� (k) in the k plane. As shown in Fig. 4,

h+
� (η)—and thus �+

� (k)—is complex valued at positive energy,
but real on the positive imaginary k axis, that is to say at
negative energy above the branch cut (arg E = +π ). This
property is due to the compensation between the constant
imaginary part −iπ/2 of iπ/( e2ηπ − 1) and the imaginary part
+iπ/2 of g�(η) at arg E = +π , as shown in Fig. 3(b). Below
the branch cut (arg E = −π ), the function h+

� (η) is complex
valued and has the same Coulomb poles as g�(η), but not the
same zeros. Therefore, although it is smooth near E = 0 in
Fig. 4(a), the function �+

� (k) is still not analytic at E = 0. In
this respect, the use of �+

� (k) as a potential substitute for the
traditional ERF ��(k) is very debatable. This topic has never
been pursued in the literature until now [20–22].

It should be noted that �+
� (k) has the great advantage of

mimicking the denominator of the Coulomb-modified scatter-
ing matrix element [6,7,38]

S�(k) = e2iση�
cot δ�(k) + i

cot δ�(k) − i
= e2iση�

�−
� (k)

�+
� (k)

. (67)

Therefore, the poles of S�(k) are merely given by the zeros of
�+

� (k) [21].
Using a two-term approximation of the effective-range

expansion given by Eq. (53) and the ERF of Eq. (65), the
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equation of bound and resonant states �+
� (k) = 0 can also be

written as

wη� h+
� (η) = �!2a2�+1

B

2

(
− 1

α�

+ r�

2
k2

)
, (68)

to be solved for the unknowns k and η using Eq. (4).
When searching for bound states numerically, it is more

appropriate to solve Eq. (68) in the k plane than in the E plane.
As shown in Fig. 4(b), the branch cut of the principal-valued
function h+

� (η) along the negative E axis will prevent most
iterative root-finding methods from converging to the bound
state. The practical advantage of the k representation of h+

� (η)
is the absence of any singularity in the physical sheet.

If, in addition, we consider the s wave at energies low
enough that the effective-range term r0k

2/2 is negligible, the
equation (68) for bound and resonant states takes the form

h+
0 (η) = ψ(iη) + 1

2iη
− ln(iη) = −aB

2α0
. (69)

This equation is encountered with Dirac-delta-plus-Coulomb
potentials, since the effective-range r0 is zero as well as any
higher-order coefficient [44].

The solutions of Eq. (69) can be found graphically in
Fig. 4(a) based on the scattering length α0. When α0 is positive
then the solution can be interpreted as a bound state because
h+

0 (η) can match −aB/2α0 at negative energy. Otherwise, if
α0 < 0, the solution is interpreted as a resonance. In the latter
case, the zero of �+

� (k) deviates from the real E axis toward
the unphysical sheet so as to follow the level curve defined
by Im h+

� (η) = 0 in Fig. 4(b). This curve is referred to as
“universal” in Ref. [26], although it is only valid at zeroth-order
approximation of the effective-range theory, as in Eq. (69).

D. Reduced effective-range function

We are now focusing on the properties of the reduced ERF
��(k) and its potential interest in low-energy scattering. As
recently highlighted in Ref. [20], a major drawback of the
usual ERF ��(k) is the overwhelming dominance of g�(η)
upon the phase-shift-dependent part ��(k), which occurs
especially with heavy and moderately heavy nuclei. This im-
balance comes from the smallness of the exponential prefactor
π/( e2ηπ − 1) at typical energies encountered in low-energy
nuclear scattering experiments (<10 Ry)

π

e2ηπ − 1

 g0(η) for η � 1. (70)

For instance, at E = 0.1 Ry, the Sommerfeld parameter is η =√
10 and the factor π/( e2ηπ − 1) is about 106 times smaller

than the function g0(η). The greatness of g�(η) is a potential
problem while interpolating ��(k) because it may conceal
the structures in ��(k) due to the phase shift. Therefore,
the addition of g�(η) could lead to an underfitting of the
phase-shift-dependent part ��(k) of the usual ERF, as done
in Refs. [23,24].

One easy way to avoid this drawback is to directly approach
the experiment-based function ��(k) by an expansion of the

form

��(k) = −g�(η) + �!2a2�+1
B

2wη�

[−1

α�

+ r�

2
k2 + O(k4)

]
. (71)

It has the advantage of being perfectly consistent with the usual
effective-range method (50). However, now there is no more
risk of superposition between large and small quantities.

The peculiar properties of the functions h±
� (η) and g�(η)

allow us to go a little further. As shown in Eq. (64), the only
difference between h+

� (η) and g�(η) is the exponential term
behaving like

iπ

e2ηπ − 1
∼ iπ e−2π/aBk asE

>−→ 0. (72)

Accordingly, the asymptotic expansion of iπ/( e2ηπ − 1) is
zero at E = 0 (for E > 0) due to the essential singularity at this
point. Therefore, the function h+

� (η) has the same asymptotic
expansion (57) as g�(η)

h+
� (η) ∼ −

nmax∑
n=1

B2n

2n
(iaBk)2n +

�∑
s=0

(aBk)2s

1 + (aBks)2
, (73)

forE → 0 but in the physical sheet (Im k � 0) as the ordernmax

tends to infinity. This shows that h+
� (η) and g�(η) come together

smoothly at the origin in the physical sheet, as evidenced by
Fig. 4(a). Since the two functions h+

� (η) and g�(η) are similar to
�+

� (k) and ��(k), respectively, the above statement also means
that �+

� (k) and ��(k) smoothly join at E = 0 in the physical
sheet.

To some extent, this property can be exploited to extrapolate
low-energy data to negative energies using ��(k) instead of the
traditional ERF, as done in Refs. [20–22]. Indeed, it is possible
that the direct interpolation �fit

� (k) of the experiment-based
function ��(k) locally provides a reasonable estimate of �+

� (k)
at negative energies in the physical sheet

�fit
� (k) ∼

{
��(k) for arg E = 0,

�+
� (k) for arg E = +π.

(74)

Therefore, the negative-energy zeros of �fit
� (k) can be inter-

preted as bound states, as long as they are located in a region
of low energy (typically |E| 
 1 Ry).

However, it should be noted that such a method is not
guaranteed to provide reliable results, because ��(k) and
�+

� (k) are not analytic at E = 0. The smoothness of �+
� (k)

at E = 0 in the physical sheet is not enough to consider it as
analytic, because of the essential singularity at E = 0 [see the
accumulation of poles in Fig. 4(c)]. Attempting to interpolate
��(k) by a meromorphic function such as a Padé approximant
is likely to lead to undetermined behaviors, without possible
convergence to �+

� (k).
In addition, the analytic continuation of the function ��(k)

is multivalued due to its logarithmic component discussed in
Sec. III B. Such a feature cannot be interpolated by a Padé
approximant. If, though, it is done, the fitted Padé approximant
would attempt to accumulate spurious poles on the negative E
axis to come closer to the branch cut. This will be discussed
further in Sec. IV.
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On the other hand, it is possible to quantify the accuracy of
the asymptotic expansion (73). This should help to estimate
the minimum error made when approaching ��(k) with a
polynomial in E. Indeed, despite the convergence of �fit

� (k)
is not expected as the order increases, it may provide useful
interpolation in a low enough energy range.

For this purpose, we compute the energy intervals where
the relative error in the truncated Stirling series (73) does not
exceed 1% to 5% as a function of the order nmax. The result is
shown in Fig. 5.

The expansion obviously diverges since the region of valid-
ity, represented by vertical bars, continues to decrease. At high
orders, an approximate calculation involving Eq. (58) shows
that the energy interval roughly decreases like [ eπ/(nmax +
1)]2 Ry as nmax → ∞, independently of the bound on the
relative error.

Beyond about 1 Ry, the error is larger than 5% whatever the
order nmax in Eq. (73). This suggests that, as long as no data
point is known in the interval [−1,1] Ry, the interpolation of
��(k) will not be of practical interest at E < 0.

However, it is possible to get relatively accurate results if
data points are known at energies below 1 Ry. This case is typ-
ically encountered for heavy and moderately heavy particles.
In addition, the intervals in Fig. 5 allow us to roughly estimate
the maximum order nmax before a polynomial interpolation of
��(k) will stray too much from �+

� (k) depending on the energy
range considered.

Moreover, there is an optimum order that minimizes the
error of the asymptotic series in Eq. (73). It also corresponds
to the smallest term of this series. To get it for the s wave, one
cancels the logarithmic derivative of the nth term in Eq. (73)
using the asymptotic behavior (58)

d

dn
[ln �(2n) − 2n ln |2ηπ |] = 0. (75)

This is a suitable approximation provided that the sought index
n is larger than 1. The approximate solution of Eq. (75),

rounded to the closest integer, is

nopt  π |η| = π

√
Ry

|E| . (76)

The curve of the optimum order nopt is shown in Fig. 5. Above
nopt, the Stirling series in Eq. (73) starts diverging.

IV. APPLICATION TO PROTON-PROTON COLLISION

In this section, we propose to apply the effective-range
theory to the 1S0 elastic scattering of two protons. Indeed,
this two-body system is of historical importance and is greatly
documented in the literature, especially in Refs. [1–5,25–
28,36]. This section is divided into two parts: the first one is
about the graphical representation of the previously discussed
effective-range functions ��(k), �+

� (k), and ��(k) at real and
complex energies, and the second one is about the practical use
of the reduced ERF ��(k) [20] in the framework of proton-
proton collision. As a reminder, the orders of magnitude for
the proton-proton system are mainly governed by the nuclear
Rydberg energy: 1 Ry = 12.49 keV [1].

A. Effective-range functions in the E plane

In order to reproduce the phase shift δ�(k) and the related
quantities for the proton-proton scattering, we resort to the
square-well model. We assume the total potential V (r) to be
constant in the short-range region r � R

V (r) =
{

V0 if r � R,
αh̄c
r

if r > R,
(77)

with typically negative V0. This simple model should be
sufficient to describe the functions of interest at relatively low
energy, i.e., below about 5 MeV for proton-proton.

Such an approach is similar to what has recently been
done by Blokhintsev et al. in Ref. [21]. However, we assume
the additional potential compensates for Coulomb interaction
in the nuclear region r � R. This provides a total potential
V (r) that is both simple and practical. This choice has no
consequences at low energy, but it modifies the high-energy
limit of the effective-range functions.

The square-well model has the advantage of being exactly
solvable. This will be quite useful in the following to perform
the analytic continuation of the functions to the complex E
plane. In the short-range region, the wave function uk�(r) is
described by the spherical Bessel functions j�(z) [6,7,37,38]

uk�(r) = qr j�(qr) for r � R, (78)

where q is the local wave number given by

q =
√

k2 − 2m

h̄2 V0. (79)

Then, we compute cot δ�(k) from Eq. (46) using the recur-
rence properties of the Coulomb wave functions to compute
their derivatives [13]. The computation is done in the Mathe-
matica software [45] using the implementation of the confluent
hypergeometric functions M(a,b,z) and U (a,b,z) defined for
complex arguments.
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FIG. 6. Function �0(E) for the proton-proton 1S0 scattering (a)
in the complex E plane and (b) on the real E axis. The function is
real and positive at E > 0 but complex-valued at E < 0. In (a), the
branch cut along the negative E axis is depicted by a black line. The
imaginary part around the cut is either −iπ/2 (if arg E = +π ) or
+iπ/2 (if arg E = −π ).

Finally, the parameters R and V0 of the potential well are
fitted to reproduce the effective-range parameters α0 and r0 for
the proton-proton 1S0 channel as given by Refs. [25,27]

α0 = −7.81 fm,

r0 = 2.79 fm.
(80)

We obtain the parameters

R = 2.8 fm,

V0 = −10.66 MeV.
(81)

In the following sections, all the phase-shift-related quantities
have been computed for the square-well model with the
parameters of Eq. (81).

1. Proton-proton reduced effective-range function

The reduced ERF �0(E) of the proton-proton s wave is
represented in the complex plane of the energy in Figs. 6
and 7.

The function �0(E) is shown at two different scales because
of the large disparity of the orders of magnitude for this
system. Indeed, �0(E) is almost linear beyond roughly 2 MeV
in Fig. 7(b), but also has poles below 1 Ry = 12.49 keV
accumulating at E = 0 on the negative real E axis in Fig. 6.

It should be noted that these poles exactly correspond to
the Coulomb poles of g0(η) given by Eq. (56). The Coulombic
nature of the poles of �0(E) can be checked by observing that
they are independent of the nuclear potential depth V0. Besides,
the function �0(E) also shows an accumulation of zeros at
E = 0 that are compensating for the poles, hence the smooth
behavior at E > 0. The two high-energy zeros of �0(E) in
Fig. 7(a) are located at about E = (−1.75 ± 1.33 i) MeV,
and correspond to points where the scattering matrix from
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E
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−2
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+iπ
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−iπ
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Energy E (MeV)

Δ
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FIG. 7. Same as Fig. 6 but at higher energies. At this scale, the
Coulomb poles look merged at E = 0. The two zeros are located at
about E = (−1.75 ± 1.33 i) MeV.

Eq. (67) amounts to −1 up to a pure Coulomb phase. Unlike
the Coulomb poles, all these zeros depend on the parameters
of the nuclear potential.

In addition, �0(E) possesses a branch cut clearly visible in
Fig. 7(a) and highlighted by a black line in Fig. 6(a). The cut
stops at E = 0 and the function is smooth at positive energy.

Furthermore, the function �0(E) shows two very different
structures for positive and negative real energies in Fig. 6(b)
due to the essential singularity at this point. This could suggest
that �0(E) is piecewise defined. However, Fig. 6(a) shows that
there is no such thing, because these two pieces belong to the
same Riemann surface through analytic continuation. Finally,
all these low-energy structures confirm that �0(E) behaves as
predicted by the expansion (71) of the effective-range theory.

2. Proton-proton effective-range function by Hamilton et al.

The ERF �+
0 (E) by Hamilton et al. [16] for the two-proton

system is shown in Fig. 8 at relatively high energies with respect
to the nuclear Rydberg energy of 12.49 keV. The plot of�+

0 (E)
at low energies (|E| < 1 Ry) is very similar to Fig. 6(a), but
without poles or zeros in the physical sheet (Im k > 0). Of
course, �+

0 (E) has Coulomb poles and zeros in the unphysical
sheet, as well as the function h+

0 (η).
As discussed in Sec. III C, the function�+

0 (E) features zeros
corresponding to poles of the S0 matrix element. Indeed, one
notices a zero in Fig. 8(b) located at

Eres,pp  (−142 − 467 i) keV, (82)

which coincides with the proton-proton broad resonance re-
ferred to in literature [26,28]. Other nontrivial zeros exist in
the unphysical sheet at low negative energies (|E| < 1 Ry),
but, being very close to the negative E axis, they are interpreted
in Ref. [26] as antibound states.

Furthermore, �+
0 (E) is smooth in the physical sheet near

E = 0, although it might be unclear in Fig. 8(a). In fact,
the function has a inflection point at about E = 1.1 Ry =
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FIG. 8. Proton-proton function �+
0 (E) (b) in the complex E

plane, (a) on the real E axis in the physical sheet and (c) in the
unphysical sheet. The function is real for arg E = +π . Its real part
reduces to �0(E) at E > 0. In (c), the Coulomb poles at arg E = −π

are indistinguishable at this scale.

13.9 keV very close to the origin at this scale, hence the
impression of an angular point at E = 0.

The potential interest of �+
0 (E) to extrapolate experimental

data to negative energies in the physical sheet is obvious in
Fig. 8(a). Even though the essential singularity at E = 0 pre-
vents the interpolation functions from converging everywhere
in the E plane.

3. Proton-proton usual effective-range function

The last function to show for the proton-proton 1S0 wave is
the traditional ERF �0(E). It is plotted in the complex E plane
in Fig. 9.

The function �0(E) is real valued at both positive and
negative energy, and it is analytic at E = 0. Remarkably,
in the two-proton scattering, �0(E) is a nearly straight line
because the experimentally observed O(E2) term is very small
[1–5,26].

The negative-energy zero of �0(E) shown in Fig. 9 is located
at about

E = h̄2

2m

2

α0r0
 −3.8 MeV, (83)

using the linear approximation of the usual ERF, and the
parameters from Eq. (80).

All these features justify the method based on the traditional
ERF expansion, especially for light particles such as protons.
Indeed, the low-energy behavior of the proton-proton 1S0 phase
shift is accurately given over a few MeVs by merely two
parameters α0 and r0.
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(7.81 fm)−1

FIG. 9. Standard ERF �0(E) for the proton-proton 1S0 collision
(a) in the complex E plane and (b) on the real E axis. The zero is
located at about E  −3.8 MeV.

B. Use of the reduced effective-range function

In this section, we consider using the reduced ERF �0(E)
directly to obtain information on negative energies, as proposed
in Ref. [20]. The proton-proton 1S0 scattering is still used as a
practical example.

The following results can still be compared to other scat-
tering systems provided that we refer to the nuclear Rydberg
energy. Indeed, this quantity governs most of the orders of
magnitude of energy in the charged particle scattering. This is
why energies are expressed in Ry hereafter.

1. Extraction of resonances

First, we focus on the determination of the proton-proton
resonance from experimental data using the function �0(E).
For this purpose, we interpolate directly �0(E) with Padé
approximants of different orders, as done in Ref. [20].

To compute the fitting, 120 data points sampled logarith-
mically are taken from the square-well model in the range
[10,103] Ry  [0.125,12.5] MeV. This range has been chosen
because it is the closest to the experimental framework of
proton-proton collision. The resulting Padé approximants of
orders [2/1], [4/3], and [6/5] are shown in Fig. 10(a). Our
choice of the orders [(n + 1)/n] builds on the Refs. [9,11], but
different orders do not affect our results.

To get the resonance, one has to find the root of the equation
cot δfit

0 (E) = i, that is to say in terms of �0(E)

�fit
0 (E) = iπ

e2ηπ − 1
. (84)

Solving Eq. (84) numerically with the Padé approximant [6/5]
provides a broad resonance at

Eres,pp  (−141 − 467 i) keV, (85)

very close to (82) that we have found in the square-well model,
and previously reported in Refs. [26,28]. Such an agreement
can be explained by the remoteness of the resonance pole from
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FIG. 10. Interpolations of �0(E) at E > 0 for the proton-proton
1S0 wave with Padé approximants of orders [2/1], [4/3], and
[6/5]. �0(E) is sampled logarithmically in 120 points (not shown)
on different ranges (a) [10,103] Ry, (b) [10−2,103] Ry, and (c)
[10−2,10−1] Ry. The Coulomb range [−1,1] Ry is surrounded by
vertical dashed lines. The real part of �+

0 (E) (for arg E = +π ) is
shown in solid black.

the nuclear Rydberg energy (1 Ry  12.5 keV) below which
the essential singularity of �0(E) hinders the convergence
of the interpolations, as shown in Fig. 10(a). In addition, being
of modulus |Epp,res| = 0.488 MeV, the pole lies in a ring cen-
tered at E = 0 that covers the data points in [0.125,12.5] MeV.
Therefore, the fitting successfully provides the resonance pole,
although no convergence of the Padé approximant is observed
because of the logarithmic branch cut of �0(E). Heuristically,
the region of the complex E plane where the fitting is reliable
turns out to be the sector | arg E| � 3π/4 and |E| � 1 Ry.
Closer to the negative E axis, spurious poles makes the fitting
unusable.

Finally, we conclude that it is possible to extract narrow or
broad resonances from the reduced ERF �0(E), provided that
the corresponding sought poles are not too close to the negative
E axis with respect to the nuclear Rydberg energy.

2. Extrapolation to negative energies

Now, we consider using the function �0(E) to extract infor-
mation on the bound states. Although the two-proton system
has no bound state, it is useful to study how the interpolation
of �0(E) may extend to negative energies, especially, in which
circumstances it approaches the function �+

0 (E), as predicted
in Eq. (74).

As previously, we take 120 sample points of �0(E)
computed in the square-well model to fit the Padé approxi-
mants. Three sampling intervals are envisioned to reproduce

different experimental situations. Case (a) is the typical situa-
tion encountered for proton-proton collision: no experimental
data is known below about 10 Ry  0.125MeV. Case (c) is
more likely encountered with heavy or moderately heavy nu-
clei, for which the Rydberg energy is relatively high compared
to nuclear energies. Case (b) is intermediate because involving
both low- and high-energy data with respect to the Rydberg
energy.

In case (a), 120 data points are sampled in the interval
[10,1000] Ry  [0.125,12.5] MeV. One notices in Fig. 10(a)
that none of the Padé approximants is reliable in the Coulomb
range, i.e., below 1 Ry. The high-order Padé approximants
[4/3] and [6/5] diverge near the inflection point located at
about 1.1 Ry. Beyond that point, spurious poles appear at
negative energy (not visible in Fig. 10). This means that
the �0-based extrapolation is not indicated for light particle
systems such as protons.

In case (b), we consider a fictitious situation with 120
data points in the interval [0.01,1000] Ry. Although the Padé
approximants are closer to �+

0 (E), they still diverge at negative
energy. In addition, the Padé approximant [4/3] shows a spuri-
ous pole very close to E = 0 in the negative-energy Coulomb
range. Such spurious poles are likely due to the negative-energy
branch cut of �0(E), which prevents the approximants from
converging. From this point of view, additional data are not
helpful and create more constraints that the Padé approximants
cannot follow anyway.

Finally, in case (c), 120 data points are sampled in
[0.01,0.1] Ry  [0.125,1.25] keV. Interestingly, the fitted
Padé approximants are significantly closer to �+

0 (E) up to
about −2 Ry.

Spurious poles at positive energy in case (c) make the Padé
approximants unusable for E � 1 Ry. This seems to show that,
in general, one has to choose between fitting at higher or lower
energies than about 1 Ry.

The Padé approximants in Fig. 10(c) are also consistent
with each other although they do not seem to converge. Such
an adequacy can be interpreted as the consequence of the
asymptotic expansion (73) of h+

0 (η). Furthermore, Fig. 10(c)
shows that the �0-based extrapolation provides reliable results
as long as enough experimental points are known in the
Coulomb range. Since this condition is generally satisfied with
heavy and moderately heavy nuclei, the direct fitting of �0(E)
is useful for the analysis of weakly bound states. For instance,
in case (c), bound states would correspond to negative-energy
zeros of �fit

0 (E).

V. CONCLUSIONS

In this paper, the effective-range function method for
charged particles has been studied as well as recently proposed
variants [20–22]. The usual ERF method, due to Landau [2]
and Bethe [1], allows us to interpolate the experimental phase
shifts at low energy with a minimum of fitting parameters.
In this way, positive energy data can be extrapolated to
the complex E plane to determine resonances and bound
states.

We have given a detailed proof of the expression of the usual
ERF by a novel approach solely involving the properties of the
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Coulomb wave functions in the E plane. We have established
the connection between the original writing (50) of the ERF and
the alternate formulation (65) due to Cornille and Martin [14]
and Hamilton et al. [16] based on the function h+

� (η). We have
also shown that the reduced ERF �� [20] has special structures
at negative energy: an accumulation point of poles and zeros
as well as a branch cut emanating from the principal-valued
logarithm. These structures, also seen in the complementary
function g�(η), make the reduced ERF �� singular at E = 0.
We have graphically verified the expected properties of the
functions �� and �+

� in the E plane for the well-known proton-
proton 1S0 collision.

As pointed out in Ref. [20], the function �� is in practice
much smaller than g�(η) for heavy and moderately heavy
nuclei at low energy, because of the prefactor π/( e2ηπ − 1).
Therefore, the addition of g�(η) could bias the heuristic
interpolation of the usual ERF ��, leading to an underfitting
of the phase-shift-dependent part �� [23,24]. To avoid this,
we propose to interpolate �� by means of Eq. (71) considering
−g�(η) as the first term of the expansion, in accordance with
the usual ERF theory.

A potential alternative proposed in Ref. [20] is to di-
rectly interpolate �� by Padé approximants, being closer
to the phase shift. Caution should be exercised when us-
ing this method because the Padé approximants are not ex-
pected to faithfully converge to the function ��, given its
singularities.

However, this approach turns out to be heuristically useful
in two different cases: either to determine resonances, or to
study weakly bound states (� 1 Ry), as long as data are known
in appropriate energy ranges. With bound states, the method
exploits the noticeable property that �� and �+

� join smoothly
together at E = 0 in the physical sheet, due to the common
asymptotic Stirling expansion of g�(η) and h+

� (η) at this point.
This property allows us to reliably extrapolate data below
1 Ry to negative energy in |E| � 1 Ry in the physical sheet
with expansions of relatively low order. In practice, obtaining
a reliable interpolation on the two ranges E 
 1 Ry and
E � 1 Ry turns out to be difficult, likely because of the sharp
inflection point of �� at E  1.1 Ry. For this reason, it seems
preferable to restrict the data points to specific energy ranges
when fitting the Padé approximants.

Finally, the present study theoretically justifies in which
situations the low-energy scattering of charged particles can be
directly parametrized in terms of a Taylor or Padé expansion
of the �� function, as was empirically found for the 12C + α
system [20–22]. For other systems, such as proton-proton,
the use of the standard ERF is still required, at least to
compensate for the lack of experimental data at energies around
and below the nuclear Rydberg energy, where the mathemat-
ical singularities of the Coulomb functions play an crucial
role. With these guidelines in mind, other systems can be
tackled.

In the future, we plan to further study the interest of Padé
approximants, for either the reduced or the standard effective-
range functions, to extend the parametrization studied here for
low-energy data up to high energies. We also plan to expand
the present results to other reaction channels and to coupled-
channel situations.

ACKNOWLEDGMENTS

The work presented in this paper was supported in part by
the IAP program P7/12 of the Belgian Federal Science Policy
Office. It also received funding from the European Union’s
Horizon 2020 research and innovation program under Grant
Agreement No. 654002.

APPENDIX: GRAPHING COMPLEX FUNCTIONS

Graphical representation of complex-valued functions of
one complex variable (f : C → C) are quite challenging.
Although there are many ways to proceed, we have chosen
in this paper to use color-coded phase plots, as recommended
in Ref. [46]. This method is more straightforward to implement
and provides less ambiguous graphics than three-dimensional
plots [46], with the functions that we consider. However, for
convenience, the complementary 2D plots along the real axis
are shown throughout this paper.

This graphical method consists in representing the complex
argument with a hue on the color wheel. Indeed, the argument
turns out to be more useful than the complex modulus to iden-
tify the analytic structure of a function, especially the poles,
zeros, and branch cuts. In practice, poles can be graphically
distinguished from zeros using Cauchy’s argument principle
[46].

The color map used in this paper is shown in Fig. 11 for
the identity function z �→ z. The analytic structures are also
highlighted by an array of contour lines in phase and in modulus
forming a logarithmic polar grid. This logarithmic polar grid
allows us to directly visualize the conformality of the mapping
z �→ f (z)—and therefore the analyticity of f (z)—through the
preservation of right angles of the tiles [46]. In practice, the
polar grid is obtained by modulation of the color value v(z)
according to the formula

v(z) = v0 + (1 − v0)
frac

(
N
2π

ln |z|) + frac
(

N
2π

arg z
)

2
, (A1)

Re z

Im z

0◦

90◦

180◦

−90◦

FIG. 11. Identity function in the complex plane with the color
code used in this paper. The complex argument is represented with a
hue: red color at 0◦ (for R+), chartreuse green at 90◦, cyan at 180◦

(for R−), and violet at −90◦. The log-polar grid highlights both the
modulus and the argument.
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where frac x denotes the fractional part, also known as the
sawtooth function, defined by frac x = x − �x� with the floor
function x �→ �x�. We have chosen to set the minimum color
value v0 to 60% and the number of angular divisions N to 32.

Many other color codes can produce such a polar grid, but
Eq. (A1) has the advantage of not requiring too much extra
computing effort, and ensuring for all N that the sides of the
tiles look as equal as possible, independently of the modulus.
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