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Systematic few-body analysis of ηd, η 3He, and η 4He interaction at low energies
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The Alt-Grassberger-Sandhas N -body theory is used to study interaction of η mesons with d , 3He, and 4He.
Separable expansion of the subamplitudes is adopted to convert the integral equations into the quasi-two-body
form. The resulting formalism is applied to fit the existing data for low-energy η production of few-nucleon
targets. On the basis of this fitting procedure the scattering lengths aηd , aη 3He, aη 4He as well as the subthreshold
behavior of the elementary ηN scattering amplitude are obtained.
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I. INTRODUCTION

Although interaction of low-energy η mesons with few-
body nuclei has been studied for quite a long time, the main
question of whether bound η-nuclear states exist still has no
definite answer, and the search for these objects continues
[1–3]. Various models have been developed to understand η-
nuclear interaction in the low-energy regime. Most of them use
in one form or another the concept of the optical potential [4–7]
or the finite-rank approximation [8,9]. Another calculation was
reported in Ref. [10], where the authors summed the multiple
scattering series for the η-nuclear scattering matrix, including
several important corrections to the simple optical model.

On the experimental side, we mention two main groups of
experiments aimed at identification of η-nuclear interaction
effects. In the first case [1–3,11,12], πN pairs are detected
in the back-to-back kinematics (in the overall center-of-mass
system). η-nuclear bound states are expected to manifest
themselves via kinematic peaks in the πN spectrum. Since the
binding energy of the lightest η-nuclei is predicted to be rather
small, the corresponding peaks should be located close to the η
production threshold. This can make it difficult to distinguish
these states from virtual bound states, and in the general case
rather good statistic as well as sufficiently high resolution of
the detectors are needed for a conclusive answer [13,14].

In the second group of experiments [15–24] one detects
the η-nucleus system with low relative kinetic energy EηA.
Here the key point is that attractive forces between the meson
and the nucleus tend to hold them in the region where the
primary “photoproduction interaction” acts. Since the rate of
the reaction is proportional to the probability of finding the
produced particles in this region, this results in a general
increase of the cross section. In particular, in η production,
where the attractive forces act primarily in the s-wave state,
one observes rather rapid increase of the η yield in the region
EηA → 0.
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Today, rather extensive information is available from the
second group of experiments for the reactions in which the
ηd, η 3He, and η 4He systems are produced (an overview can
be found, e.g., in Refs. [25,26]). All measured cross sections
demonstrate more or less pronounced enhancement close to
zero energy, thus confirming the presence of strong attraction
in these systems. However, since the effect looks similar
for real and for virtual bound states, analysis of individual
reactions can hardly help determine to which of these states
the enhancement should be assigned. At the same time, a more
or less definite answer can be found if a combined analysis of all
reactions is performed within the same microscopic η-nuclear
model. The general strategy might be to find the ηN scattering
amplitude fηN such that the calculated η-nuclear interaction
reproduces the observed enhancement effect simultaneously
for all three systems ηd, η 3He, and η 4He. Here we come
from the conventional assumption that the initial interaction
which leads to production of η is of short-range nature. This
means that the shape of the ηA spectrum at EηA → 0 is mainly
governed by the energy dependence of the η-nuclear scattering
amplitude squared, |fηA|2, and that this effect is independent
of the production mechanism.

It is clear that the η-nuclear model, used to solve the task set
above, should incorporate the driving ηN interaction without
employing drastic and uncontrollable approximations. Ideally,
an exact solution of the corresponding few-body Schrödinger
equation is desirable. Today one finds in the literature at least
two types of such models, which were applied to all three
systems, ηNN , η-3N , and η-4N . In the first one [27–29] the
calculations are based on the variational formulation of the
problem. In particular, the ηNN interaction was calculated
using the hyperphysical harmonics method [27], and for η-3N
and η-4N the stochastic variational method developed for few-
body problems (see, e.g., [30]) was adopted [28,29]. Another,
more “traditional” technique based on the separable expansion
of the subamplitudes in the Faddeev-Yakubovsky or the Alt-
Grassberger-Sandhas (AGS) equations was applied in [31–33].

It should be noted that the previously cited works are
mainly focused on the theoretical aspects of the η-nuclear
problem, rather than on description of the existing data. In the
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present paper attention is centered on an attempt to describe
the final state interaction (FSI) effects observed in η production
on few-body nuclei, and thus to solve the task formulated
above. Namely, using a phenomenological ansatz for the ηN
scattering amplitude fηN , we first solve the corresponding
three-, four-, and the five-body AGS equations for the systems
ηd, η 3He, and η 4He. Then, the parameters of fηN are fitted in
such a way that the calculated η-nuclear amplitudes squared,
|fηA|2, reproduce on the quantitative level the FSI effects
observed in the reactions in which these systems are produced:
np → ηd, dp → η 3He, dd → η 4He, etc.

The few-body formalism based on the separable pole
expansion is described in the next section. Before going to the
main point, in Sec. IV we study an impact of the subthreshold
behavior of the ηN amplitude fηN on the resulting η-nuclear
interaction. Then, in Sec. V we present our main results, the
parameters of the ηN amplitude and the ηN scattering length,
coming out of the fit.

II. FORMALISM

A general procedure leading to N -body integral equations
with connected kernels which are equivalent to the Faddeev-
Yakubovsky equations [34] was developed in [35,36]. To
reduce the problem to effective two-body scattering theory
in one dimension (after partial wave decomposition), the
authors of [35] used the quasiparticle (Schmidt) method, based
on splitting the amplitudes into separable and nonseparable
parts. The resulting formalism is very well suited for practical
applications [37] especially if the separable part is chosen
in such a way that the nonseparable remainder becomes
insignificant. In the region where the kernels are continuous
(for instance, below the lowest threshold of theN -body system)
this condition can always be fulfilled. At the same time, as far
as we know, this technique has been used so far only for N � 4.
Here we adopt the separable pole expansion method to N = 5,
considering a pseudoscalar meson and four nucleons. Taking
an approach of Ref. [35] we apply the separable expansion at
each step of the reduction scheme. The two-, three-, and four-
particle amplitudes obtained in this way serve as input for the
five-body calculation. Furthermore, they are used to evaluate
the amplitudes for ηd and η 3He scattering. The main formulas
needed for numerical calculations were already given in [33].
Here we present a brief derivation of the formalism, which,
apart from the question of mathematical rigor, serves to present
the formulas which were used in numerical calculations.

Following the work of [34] we use the concept of partitions.
Each partition is denoted by αn, having the meaning that the
five-body system is divided into n groups. Writing αn+1 ⊂ αn

means that the partition αn+1 is obtained from αn via further
division of the group (or one of the groups of particles) entering
the partition αn into two fragments α + β. The reduced mass
of these fragments, that is MαMβ/(Mα + Mβ), will be denoted
by μαnαn+1 . For the limiting cases n = 1 and n = 4, one of the
indices becomes superfluous, and the corresponding masses
are denoted by μα2 and μα4 , respectively. Here we do not
introduce unified notations for relative momenta in different
subsystems. Instead, we illustrate the generalized potentials by
diagrams where the meaning of these momenta is explained.

TABLE I. Enumeration of the partitions of the η-4N system.

αn n = 4 n = 3 n = 2

1 (NN )+N+N+η (NNN )+N+η η+(NNNN )
2 (ηN )+N+N+N (ηNN )+N+N (ηN )+(NNN )
3 (ηN )+(NN )+N (ηNN )+(NN )
4 (NN )+(NN )+η (ηNNN )+N

Since we have identical fermions (the nucleons), our am-
plitudes have to be properly symmetrized. As a rule, as long
as the algebraic manipulations are performed, the nucleons
are numbered and are treated as they were distinguishable.
Only after the soluble equations are obtained does one include
the fact that the nucleons are identical fermions and go to
antisymmetrized states. The procedure of antisymmetrization
is described, e.g., in Refs. [32,38,39]. It is important that after
identity of the nucleons is taken into account the generalized
potentials become indistinguishable. This leads to reduction of
the total number of equations, which naturally do not contain
the nucleon numbers. Therefore, we present our formalism in
a compact form without numbering the nucleons. All possible
partitions of the system η-4N are listed in Table I.

Following the standard approach, we restrict our calculation
to s waves only. This is justified by strong dominance of the
s-wave part both in the NN and the ηN amplitudes as well as
by low energies to which our calculation is restricted. Then the
total spin s of the nucleons in the three-, four-, and five-body
sector becomes a good quantum number. Furthermore, one
can readily see that since we have only s = 0 state of the four
nucleons (ground state of 4He) it is sufficient to consider the
three-nucleon subsystem only in the s = 1/2 state, whereas
the s = 3/2 configuration does not appear.

We start from the Faddeev-like equations for the AGS
transition operators [35]:

Uα4β4 = (1 − δα4β4 ) G−1
0 +

∑
γ4

(1 − δα4γ4 )tγ4G0Uγ4β4 . (1)

Here G0(z) = (z − H0)−1 is the resolvent of the free five-body
Hamiltonian, α4 and β4 are the two-particle clusters, and tγ4 is
the two-particle transition matrix embedded into the five-body
space. The first step consists in replacing tγ4 by a series of
separable terms

tγ4 =
∑
kl

|γ4k〉�γ4
kl 〈γ4l|. (2)

Inserting (2) into Eq. (1) and taking the latter between 〈α4m|G0

and G0|β4n〉, we obtain the set of equations

Xα4m,β4n = Zα4m,β4n +
∑
γ4,kl

Zα4m,γ4k�
γ4
kl Xγ4l,β4n (3)

with

Xα4m,β4n ≡ 〈α4m|G0Uα4β4G0|β4n〉,
Zα4m,β4n ≡ (1 − δα4β4 )〈α4m|G0|β4n〉. (4)

Equations (3) are formally the effective four-body equations
in which two of the five particles form a two-body cluster.
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FIG. 1. The nonzero potentialsZ
α3
α4,β4

. The potentialsZ2
1,2 andZ3

1,2

may be obtained from Z2
2,1 and Z3

2,1 via mirror rotation. The dashed
and the solid lines represent, respectively, η mesons and nucleons.

Introducing the matrices

{T}α4m,β4n = Xα4m,β4n,

{V}α4m,β4n = Zα4m,β4n,

{G0}α4m,β4n = δα4β4�
α4
mn (5)

we can rewrite (3) in the Lippman-Schwinger form

T = V + VG0T. (6)

As is emphasized in Ref. [35], the formulation (6) is of strong
heuristic importance in the sense that the AGS procedure can be
applied to this equation in the same manner as it was applied to
the original five-body Lippmann-Schwinger equation, leading
to (1). To do this one introduces the decomposition of the
generalized potential

V =
∑
α3

Vα3 , (7)

which is obviously equivalent to the decomposition of the
matrix elements,

Zα4m,β4n =
∑
α3

Z
α3
α4m,β4n

. (8)

Here Z
α3
α4m,β4n

differs from zero only if α4 ⊂ α3 and β4 ⊂ α3.
The nonzero potentials Z

α3
α4m,β4n

are presented diagrammati-
cally in Fig. 1. The amplitudes X

α3
α4m,β4n

driven by Z
α3
α4m,β4n

fulfill the equations

X
α3
α4m,β4n

= Z
α3
α4m,β4n

+
∑
γ4,kl

Z
α3
α4m,γ4k

�
γ4
kl X

α3
γ4l,β4n

(9)

and describe scattering of the particles only in the subsystem
α3, whereas other particles propagate freely. In the momentum
space representation, Eqs. (9) are integral equations. Omitting
the momentum conservation δ functions and the factors coming
from the spin-isospin recoupling, we can write (after partial

wave decomposition)

X
α3
α4m,β4n

(E; p,p′)

= Z
α3
α4m,β4n

(E; p,p′) +
∑
γ4,kl

∫ ∞

0

p′′ 2dp′′

2π2
Z

α3
α4m,γ4k

(E; p,p′′)

×�
γ4
kl

(
E − p′′ 2

2μα3γ4

)
X

α3
γ4l,β4m

(E; p′′,p′). (10)

Here the energy E is the internal energy of the three-particle
subsystem α3 if α3 = 1,2, or the sum of the internal energies of
the two two-particle fragments if α3 = 3,4. The spin-isospin
recoupling coefficients can easily be calculated directly or
using the general expressions obtained, e.g., in Ref. [40].

For α3 = 1,2, Eqs. (10) are the genuine quasi-two-body
equations for the NNN and ηNN systems. For α3 = 3,4 we
have two noninteracting two-particle clusters (NN ) + (ηN )
and (NN ) + (NN ).

The s-wave components of the effective potentials read

Z
α3
α4m,β4n

(E; p,p′) = 1

2

∫ +1

−1

gα4m(ω,	q ) gβ4n(ω′,	q ′)

E − p2

2μα3α4
− q2

2μα4

dx

ω = E − p2

2μα3α4

, ω′ = E − p′ 2

2μα3β4

,

x = (p̂ · p̂ ′) (11)

for α3 = 1,2, and

Z
α3
α4m,β4n

(E; p,p′) = gα4m(ω′,p′) gβ4n(ω,p)

E − p2

2μβ4
− p′ 2

2μα4

,

ω = E − p′ 2

2μα4

, ω′ = E − p2

2μβ4

(12)

for α3 = 3,4. The vertex functions

gα4m(ω,	q ) = 〈α4m; ω|	q 〉 (13)

depend in the general case both on the internal energy ω and
on the relative momentum q of the cluster α4. The mass μα4

is the NN or ηN reduced mass for α4 = 1,2, respectively. In
Fig. 2 we show as an example the potentials Z2

2,1 and Z3
2,1 to

illustrate the general structure of (11) and (12).
After the decomposition (7) is introduced, we define the

channel Hamiltonians Hα3 via

Hα3 = H0 + Vα3 , (14)

FIG. 2. The generalized potentials Z2
2,1 and Z3

2,1 as defined in
Eqs. (11) and (12). Notations as in Fig. 1.
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where the free Hamiltonian H0 is determined through the
resolvent G0 in (5) as

H0 = z − G−1
0 (z). (15)

The total Hamiltonian H reads

H = H0 + V = H0 +
∑
α3

Vα3 . (16)

The second resolvent equation for G(z) = (z − H)−1 gives
equations for the transition operators, which are structurally
equivalent to (1):

Uα3β3 = (1 − δα3β3 )G−1
0 +

∑
γ3

(1 − δα3γ3 )Tγ3 G0Uγ3β3 .

(17)

Here Tγ3 is composed of the elements X
γ3
α4m,β4n

satisfying
Eq. (9). The operator-valued matrices Uα3β3 are defined as

Uα3β3 = (
1 − δα3β3

)
G−1

0 + Vβ3 + (
1 − δα3β3

)
Vα3 + Vβ3 GVα3

(18)

with

Vα3 ≡ V − Vα3 . (19)

For the matrix elements we will have correspondingly

U
α3β3
α4m,β4n

= (
1 − δα3β3

)
(G−1

0 )α4m,β4n

+
∑
γ3

∑
γ4,kl

(
1 − δα3γ3

)
X

γ3
α4m,γ4k

�
γ4
kl U

γ3β3
γ4l,β4n

. (20)

Now using the separable expansion

X
α3
α4m,β4n

=
∑
kl

∣∣∣∣α3k
α4m

〉
�

α3
kl

〈
α3l
β4n

∣∣∣∣ (21)

in Eq. (20) and sandwiching the latter between the vectors

(G0|α3m〉)α4k
=

∑
l

�
α4
kl

∣∣∣∣α3m
α4l

〉
, (22)

we obtain

Xα3m,β3n = Zα3m,β3n +
∑
γ3,kl

Zα3m,γ3k�
γ3
kl Xγ3l,β3n, (23)

where

Xα3m,β3n =
∑
α4,kl

∑
β4,l′p

〈
α3m
α4k

∣∣∣∣�α4
kl U

α3β3
α4l,β4l′�

β4
l′p

∣∣∣∣β3n
β4p

〉
,

(24)

Zα3m,β3n = (
1 − δα3β3

) ∑
α4,kl

〈
α3m
α4k

∣∣∣∣�α4
kl

∣∣∣∣β3n
α4l

〉
. (25)

It is important that, as may be seen from (24) and (25), in
contrast to the operators U

α3β3
α4m,β4n

the amplitudes Xα3m,β3n and
the potentials Zα3m,β3n have no matrix structure with respect to
the indices α4m and β4n. This is, of course, a consequence of
using the separable expansion of the amplitudes (21).

In the case of the four-body problem the integral equations
(23) already have connected kernels and therefore can be

FIG. 3. Diagrammatic representation of the potentials Z
α2
α3,β3

.
Notations as in Fig. 1. Other potentials may be obtained from those
shown in the figure via mirror rotation.

solved as Fredholm equations. In our case we have to go one
step further. In complete analogy with the above procedure we
introduce the “channel potentials”

Zα3m,β3n =
∑
α2

Z
α2
α3m,β3n

(26)

generating the amplitudes X which solve the equations

X
α2
α3m,β3n

= Z
α2
α3m,β3n

+
∑
γ3,kl

Z
α2
α3m,γ3k

�
γ3
kl X

α2
γ3l,β3n

. (27)

The structure of Eq. (27) in momentum space is similar to that
of (10). All nonzero potentials Z

α2
α3β3

are depicted in Fig. 3.
Those of the type (4+1) (α2 = 1,4) and the corresponding
equations (27) determining scattering in the 4N and η-3N
systems were already considered in detail in Refs. [32,41],
and we refer the reader to these works. Besides the (4 + 1)
potentials we also have the effective (3 + 2) potentials Z

α2
α3β3

with α2 = 2,3 which describe propagation of two groups of
mutually interacting particles. Of these, Z2

1,3, Z3
2,3, and Z3

2,4 are
structurally analogous to the potentials of type (2 + 2) (see Z3

2,1
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FIG. 4. The potentials Z2
1,3 and Z2

3,3 as defined in Eqs. (28) and
(29). The form factor g3

2(q) determines interaction of two nucleons in
the presence of the ηN interacting pair. It differs from the form factor
g1(q) in Z2

2,1 depicted in Fig. 2.

and Z4
1,1 in Fig. 1) and have the form [compare with Eq. (12)]

Z
α2
α3m,β3n

(E; p,p′)

=
∑
α4,kl

g
α3m
α4k

(ω′,p′) �
α4
kl

(
E− p2

2μα2β3

− p′ 2

2μα2α3

)
g

β3n
α4l

(ω,p),

ω = E − p′ 2

2μα2α3

, ω′ = E − p2

2μα2β3

. (28)

At the same time, the potentials Z2
3,3, Z3

3,3, and Z3
3,4 have more

complicated structure,

Z
α2
α3m,β3n

(E; p,p′)

= 1

2

∑
α4,kl

∫ +1

−1
g

α3m
α4k

(ω,	q )

× �
α4
kl

(
E − p2

2μα2α3

− q2

2μα3α4

)
g

β3n
α4l

(ω′,	q ′) dx,

ω = E − p2

2μα2α3

, ω′ = E − p′ 2

2μα2β3

,

x = (p̂ · p̂ ′) (29)

and, what is important, have no counterparts in the partitions
α3. The structure of the potentials (28) and (29) is illustrated
in Fig. 4 by the example of Z2

1,3 and Z2
3,3. In the expressions

above, E is the sum of the internal energies of the clusters.
Diagrammatic representation of Eqs. (27) for α = 2,3 with

correct symmetrization due to identity of the nucleons is given
in Figs. 3 and 4 of Ref. [33].

Now repeating the procedure which led us from (9) to (23)
and using again the separable expansion of the amplitudes

X
α2
α3m,β3n

=
∑
kl

∣∣∣∣α2k
α3m

〉
�

α2
kl

〈
α2l
β3n

∣∣∣∣, (30)

we finally arrive at the quasi-two-body equations

Xα2m,β2n = Zα2m,β2n +
∑
γ2,kl

Zα2m,γ2k�
γ2
kl Xγ2l,β2n, (31)

where

Zα2m,β2n = (
1 − δα2β2

) ∑
α3,kl

〈
α2m
α3k

∣∣∣∣�α3
kl

∣∣∣∣β2n
α3l

〉
. (32)

FIG. 5. The potentials Zα2,β2 (32). Notations as in Fig. 1.

The nonzero potentials (32) are presented in Fig. 5. In the
momentum space they have the standard form [compare with
Eq. (11)]

Zα2m,β2n(E; p,p′)

= 1

2

∑
α3,kl

∫ +1

−1
g

α2m
α3k

(ω,	q )

× �
α3
kl

(
E − p2

2μα2

− q2

2μα2α3

)
g

β2n
α3l

(ω′,	q ′) dx,

ω = E − p2

2μα2

, ω′ = E − p′ 2

2μβ2

,

x = (p̂ · p̂ ′), (33)

which is schematically illustrated in Fig. 6 by the example of
Z4,2. Here E = E is the energy of the whole five-body system
η-4N .

FIG. 6. Structure of the potential Z4,2 as defined by the general
formula (33).
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Equations (31), with taking into account the identity of the
nucleons, are diagrammatically presented in Fig. 5 of Ref. [33].
Again both the potentials Zα2m,β2n and the amplitudes Xα2m,β2n

have no matrix structure with respect to indices α3m and β3n.
As is shown in [35], if the “form factors” |α2m〉 and |β2n〉
correspond to bound states in the subsystems α2 and β2, then
the on-shell matrix elements Xα2m,β2n determine scattering
from the state |α2m〉 to the state |β2n〉.

The derivation above demonstrates that the separable expan-
sion method allows one to reduce the N -body calculation to a
rather transparent recurrent scheme, in which the amplitudes in
the partition αn−2 are determined by the amplitudes appearing
only in the partitions αn−1 ⊂ αn−2 and αn ⊂ αn−1. In this
scheme the form factors and the propagators in the separable
expansion of the matrix X in the partitions αn and αn−1,

X
αn

αn+1a,βn+1b
=

∑
kl

∣∣∣∣αnk
αn+1a

〉
�

αn

kl

〈
αnl
βn+1b

∣∣∣∣,
(34)

X
αn−1
αna,βnb

=
∑
kl

∣∣∣∣αn−1k
αna

〉
�

αn−1
kl

〈
αn−1l
βnb

∣∣∣∣,
are used to build the effective potentials Z

αn−2
αn−1a,βn−1b

according
to

Z
αn−2
αn−1a,βn−1b

= (1 − δαn−1βn−1 )
∑
γn,kl

〈
αn−1a
γnk

∣∣∣∣�γn

kl

∣∣∣∣βn−1b
γnl

〉
,

γn ⊂ αn−1, γn ⊂ βn−1, αn−1,βn−1 ⊂ αn−2.

(35)

The generalized potentials (35) generate the matrices X in the
partition αn−2:

X
αn−2
αn−1a,βn−1b

= Z
αn−2
αn−1a,βn−1b

+
∑

γn−1,kl

Z
αn−2
αn−1a,γn−1k

�
γn−1
kl X

αn−2
γn−1l,βn−1b

,

αn−1,βn−1,γn−1 ⊂ αn−2. (36)

In fact, Eqs. (36) are solved only to find the amplitudes
Xα2m,β2n. In the partitions αn with n > 2 one uses only their
kernels in order to obtain separable expansion of the amplitude
X

αn−2
αn−1a,βn−1b

. Starting from n = 4 and repeating this scheme
three times, one transforms the five-body equations to the set
of the quasi-two-body Lippman-Schwinger equations.

To calculate the form factors

g
αnm
αn+1k

(ω,p) =
〈

αnm
αn+1k

; ω

∣∣∣∣ 	p
〉

(37)

we employed the energy dependent pole expansion method
of Ref. [42]. According to the results of Ref. [33] this method
provides rather good convergence, so that already the first six to
eight separable terms are sufficient to get satisfactory accuracy.

III. TWO-BODY INGREDIENTS

In our previous work [33], η 4He is calculated with spinless
nucleons and with an oversimplified NN potential. In the
present calculation we fix these defects of the model and use
the separable parametrization of the realistic NN potential

with an exact treatment of its spin dependence. For the 1S0 and
3S1 NN configurations we used a rank-1 separable potential
from Ref. [43],

v
(s)
NN (q,q ′ ) = −g

(s)
1 (q)g(s)

1 (q ′ ), (38)

where the spin index s relates to the total spin s = 0,1 of two
nucleons. The form factors g1(q) are parametrized as

g
(s)
1 (q) =

√
2π

6∑
i=1

C
(s)
i

q2 + β
(s)2
i

. (39)

The parameters C
(s)
i and β

(s)
i are obtained in [43] by fitting the

off-shell behavior of the Paris NN potential at zero kinetic
energy. For three- and four-nucleon binding energies the
potential (38) gives rather reasonable values,

E
3He
b = 8.64 MeV, E

4He
b = 31.17 MeV. (40)

To calculate the ηN amplitude, we assume that the inter-
action of η with nucleons proceeds exclusively via excitation
of the resonance N (1535)1/2−, and we take into account also
its coupling to the πN channel. The corresponding effective
energy-dependent potential is a 2 × 2 matrix:

vαβ(W,q,q ′ ) = g
(α)
2 (q) g

(β)
2 (q ′ )

W − M0
, α,β ∈ {π,η}. (41)

For the form factors g
(α)
2 (q) we use the ansatz

g
(α)
2 (q) = gα

1

1 + q2/β2
α

. (42)

The t matrix has the conventional form

tαβ(W,q,q ′ ) = g
(α)
2 (q) τ (W ) g

(β)
2 (q ′ ),

α,β ∈ {π,η} (43)

with the N (1535)1/2− propagator

τ (W ) = 1

W − M0 − �π − �η + i
2�ππ

. (44)

Here W is the invariant ηN energy and �α is the self-energy
of the resonance associated with the αN decay mode:

�α(W ) = 1

2π2

∫ ∞

0

q2 dq

2ωα(q)

[
g

(α)
2 (q)

]2

W − EN (q) − ωα(q) + iε

(45)

with EN (q) =
√

q2 + M2
N and ωα(q) = √

q2 + m2
α . The two-

pion channel ππN was included phenomenologically as a
pure imaginary term in the self-energy of N (1535)1/2− [see
Eq. (44)] with

�ππ = γππ

W − MN − 2mπ

mπ

. (46)

The off-shell ηN elastic scattering amplitude is determined
by the α = β = η component of the matrix tαβ (43) via the
standard relation

fηN (W,q,q ′ ) = − MN

4πW
tηη(W,q,q ′ ). (47)

The matrix tηη appears in our few-body calculations as the
matrix tγ4 for γ4 = 2 [see Eq. (2) and Table I] with the form
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TABLE II. Parameters of the ηN -πN potential determined by
(41) and (42). The first row lists the parameters which were adjusted
in Ref. [33] to the K-matrix analysis of [44]. The parameters in the
second row are obtained via fitting the cross sections in Fig. 9 as
described in Sec. V. In the last column the corresponding values of
the ηN scattering length are shown.

gη βη gπ βπ M0 γππ aηN

(MeV) (MeV) (MeV) (MeV) (fm)

Set I 1.91 636 0.651 850 1577 4.0 0.93 + i0.25
Set II 1.75 1607 0.966 1126 1628 0.10 0.69 + i0.29

factor g2(ω,q) ≡ g
(η)
2 (q) (42). In the actual calculation we use

two sets of the parameters gπ , gη, βπ , βη, M0, and γππ , which
are listed in Table II. Set I was obtained in Ref. [33] to fit
the ηN elastic scattering amplitude of [44] in the subthreshold
region. The second set is a result of our fit of η production on
nuclei as described in Sec. V.

The point which deserves a comment concerns our treat-
ment of the inelastic channel πN . The most straightforward
way to include this channel would be to supplement the
configurations listed in Table I by the corresponding states
with a pion. However, this would make the four-body and
especially the five-body calculations extremely complicated.
For this reason, we neglect the channels with pions and retain
only the πN self energy �π in the N (1535)1/2− propagator
(44). As was discussed in Ref. [32], this approximation is
justified since close to the ηA threshold the two-step process
ηN → πN → ηN favors large momenta of the intermediate
pion, qπ ≈ 400 MeV/c, and is important only if the short-
range internuclear distances play a role. The latter should not
be important in the low-energy η-nuclear interaction, where
the momentum transfer is generally small and mostly the
long-range distances between the nucleons are significant. The
validity of this assumption was confirmed for the ηd case in
[31] via direct inclusion of the ηNN ↔ πNN transitions into
the three-body calculation (see, e.g., Fig. 2 in Ref. [31]). As
for the two-pion channel, we may safely neglect it because of
insignificance of the ππN decay mode.

IV. SENSITIVITY OF THE LOW-ENERGY η-NUCLEAR
INTERACTION TO THE SUBTHRESHOLD

ηN AMPLITUDE

As already noted in the Introduction, our main purpose is to
fit the ηN amplitude (47) such that the corresponding η-nuclear
amplitudes fηA obtained as solutions of the AGS equations
reproduce the FSI effects in reactions in which the systems ηd,
η 3He, and η 4He are produced. Before we turn to this problem,
we address the following specific question: To which region of
the argument EηN of fηN are our few-body results sensitive?
In other words we would like to find the region of EηN which
provides the major contribution to the η-nuclear amplitude fηA.

As one can see from expressions such as (10), (28), and
(29), the value of the ηN subenergy EηN (as well as of the
internal energies in all possible subsystems) may change only
in the region (−∞, E], where E is the total five-body energy.
At the η-nuclear threshold we have E = −EA

b , where EA
b (> 0)

is the binding energy of the nucleus A. On the other hand, due
to rather rapid decrease of the nuclear form factor at large
momentum arguments, the large negative values of EηN are
expected to give an insignificant contribution. For this reason,
we can expect that there is only a limited region EηN ∈ [a,b]
with −∞ < a < b � −EA

b where variation of the elementary
amplitude fηN (EηN ) may cause visible change of fηA.

The question concerning dependence of the low-energy
properties of the η-nuclear scattering on the subthreshold
behavior of fηN was already addressed rather in detail in
Refs. [5,10]. In these works the authors consider the effective
ηN energy WηN at which η interacts with a nucleon in the
target. According to the estimations made in [5,10] WηN

is about 20–30 MeV below the free ηN threshold. Within
our formalism it is, perhaps, not so easy to determine the
quantity analogous to WηN above. In particular, the argument
EηN = E − p′′ 2/2μα32 of the propagator �2

kl(EηN ) in Eq. (10)
cannot be directly interpreted as the effective internal ηN
energy in a nucleus. This is because this propagator refers
not only to the ηN cluster but to the whole five-body system
(ηN ) + N + N + N in which three nucleons propagate freely.

Below we show that, in support of our assumption above,
there is a limited but rather extended region of EηN in which
the values of fηN (EηN ) have strong impact on the η-nuclear
calculation. To localize this region we applied the following
procedure. The ηN matrix (43) was modified through multi-
plication by one of the smoothed step functions,

FL(E) = (1 + e−(E−dL+r)/a)−1, (48)

FR(E) = (1 + e(E−dR−r)/a)−1, (49)

the shape of which resembles the Woods-Saxon potential, hav-
ing surface thickness parameter a and radius r . Both functions
are depicted in Fig. 7 for a = 2 MeV, r = 5 MeV, dL = dR =
−100 MeV. The modified amplitudes fηN (EηN )FR(EηN ) and
fηN (EηN )FL(EηN ) rapidly decrease to zero as soon as EηN >
dR and EηN < dL, respectively.

The choice of the functions FL/R in the form (48), (49)
obviously violates the unitarity condition for ηN scattering.

FIG. 7. Cutoff functions FL(E) and FR(E) determined by
Eqs. (48) and (49) with a = 2 MeV, r = 5 MeV, dL = dR =
−100 MeV.
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FIG. 8. Left panels: scattering lengths, calculated with the modi-
fied ηN amplitude fηNFL as function of the cutoff parameter d . The
function FL is defined in Eq. (48). Right panels: same as in the left
panels but calculated with fηNFR , where FR is defined by Eq. (49).
Calculations are performed with Set I (Table II) of the ηN parameters.
For FL/R we used the same parameters a and r as in Fig. 7.

Indeed, since F 2
L/R �= FL/R , the optical theorem Im fηN (0) =∑

α=π,η qα |fαN |2 does not hold for the modified amplitudes
fαN → fαNFR/L. In this respect, the more appropriate ansatz
for FR/L(E) is the Heaviside step function θ (±(E − dL/R)).
However, its sharp dependence on the argument causes
undesirable oscillations when the integrals containing the
N (1535)1/2− propagator �2 = τ (W ) (44) are calculated nu-
merically. However, since the modified amplitudes play only a
supplementary role and do not have any physical meaning by
themselves, we do not attach much significance to this point.

In Figs. 8(b), 8(d), and 8(f) we present all three scattering
lengths aηd , aη3He, and aη4He calculated with the modified
amplitude fηN (EηN )FR(EηN ) as functions of the cutoff energy
dR . As one can see, for each nucleus A there is a value dR = dA

R

from which the curve starts to rapidly saturate, so that in
the region dR > dA

R the calculated scattering length becomes
insensitive to variation of fηN . As already noted above, in
all cases we have dA

R < −EA
b , where EA

b (> 0) is the binding
energy of the nucleus. A similar situation is observed if fηN

is cut from the left via multiplication by FL(EηN ). In this case
saturation is achieved for dL < dA

L [see Figs. 8(a), 8(c), and
8(e)]. As may be deduced from the observation above, for each
ηA system there is an interval EηN ∈ [dA

L , dA
R ] which gives

the major contribution to the value of aηA and in which the
properties of fηN have strong impact on the η-nuclear results.

There are two main conclusions which can be drawn from
the calculations presented in Fig. 8.

(i) With increasing binding energy of a nucleus, the inter-
val [dA

L , dA
R ] is systematically shifted to lower energies

on the EηN axes. This means that for heavier nuclei
increasingly smaller values of fηN come into play. As
a consequence, in 4He the effective interaction of η with
bound nucleons may be even weaker than in 3He. This
crucial point was also emphasized in [45].

(ii) Fitting the ηN parameters to the data as described in
the next section, we adjust the elementary amplitude
fηN (EηN ) not in the whole range of EηN but only in
the limited interval from the energies close to the free
ηN threshold to about −150 MeV below the threshold.
Furthermore, since the quality of the available ηd and
η 4He data is relatively poor in comparison to that of
η 3He, a more or less stringent constraint on fηN comes
primarily from the region [−70,−12] MeV.

V. RESULTS

Using the formalism outlined in the preceding sections, we
solved the three-, four-, and five-body AGS equations for the
ηd, η 3He, and η 4He systems. In each case the total N -body
energy E was taken equal to −EA

b , corresponding to the elastic
η-nuclear threshold, and the scattering lengths aηA for all three
systems ηd, η 3He, and η 4He were calculated. To obtain the
elastic scattering amplitudes fηA we made use of the low
energy expansion formula

fηA(q) ≈ aηA

1 − iq aηA

. (50)

The resulting values of |fηA(q)|2 were then adjusted to the
energy dependence of the experimental data through variation
of the ηN parameters gπ , gη, βπ , βη, M0, and γππ [see Eqs. (42)
to (46)]. Only the data from the region restricted by the
condition |aηA|q � 1, that is, where the expansion (50) remains
valid, were chosen for the analysis. It is also worth noting that
during the fitting procedure we kept the imaginary part of aηN

close to 0.25 fm. This was done via artificial inclusion of this
value into the data set and assigning it the error of 0.05 fm. This
additional constraint is justified by the fact that variation of the
imaginary part of aηN is to some extent limited by the optical
theorem for πN scattering, so that its value is determined with
much less uncertainty in comparison to the real part. This can
also be seen from the results of different analyses which predict
Im aηN ≈ 0.25 fm with rather small variation of about 0.05 fm.

The results of our fit are presented in Figs. 9 and 10. The
total cross section for dp → η 3He was calculated using the
amplitude fη3He (50) as

σ (dp → η 3He) = const × pη

pd

|fη 3He|2, (51)
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FIG. 9. The ηA amplitude squared, |fηA|2, for A = d and 4He.
The curve is our fit. Empty and filled circles show the values of |fηA|2
extracted from the data for pn → ηd [15] and pd → ηpd [16] (left
panel) and dd → η 4He [21,22] (right panel). The normalization of
all results is arbitrary.

where pd and pη are the initial and final center-of-mass mo-
menta. As noted in [18], since the cross section σ (dp → η 3He)
rises very rapidly just above the threshold, the measurements
at low excess energies Q are strongly influenced by the finite
width of the deuteron beam momentum. In this connection the
cross section (51) was additionally smeared in Q in the region
near the threshold. For the smearing function we used Gaussian
with the standard deviation σQ = 0.171 MeV, as given in [18].

The ηN parameters coming out of the fit are listed as Set II
in Table II. The resulting value of χ2/Nd.f. (Nd.f. is the number
of degrees of freedom) is 1.17. Since numerical solution of
the five-body problem is rather time-consuming, we have not
calculated the errors, and we present only the central values.

The ηN amplitude given by the fit is plotted in Fig. 11.
Its real part systematically underestimates the real part of the
amplitude obtained in Ref. [46] within the coupled-channel
K-matrix approach, although the scattering length

aηN = 0.70 + i 0.29 fm (52)

is not much different from aηN = 0.75 + i 0.27 fm found in
[46]. One should, however, keep in mind that the value (52)

FIG. 10. The total cross section for dp → η 3He as a function of
the excess energy Q. The data are taken from [17] (squares), [18]
(empty circles), and [19] (filled circles). The curve shows our fit.

FIG. 11. The off-shell ηN scattering amplitude in the S11 partial
wave calculated with the parameters (Set II in Table I) adjusted to the
data in Fig. 9 as described in Sec. V. Solid curve: real part. Dashed
curve: imaginary part. Crosses and circles represent the results of the
K-matrix analysis of Ref. [46].

is only an extrapolation of fηN from the subthreshold region
to zero energy, governed by our isobar-model ansatz (43). As
for the ηN parameters, one can see from Table II (Set II) that
our fit prefers rather a insignificant mode of the ππN decay
of N (1535)1/2−. At the same time, the cutoff momenta βη

and βπ are perhaps much too large as compared to the typical
values of these parameters used in other analyses.

For the η-nuclear scattering lengths we obtained

aηd = 2.16 + i1.25 fm,

aη 3He = 3.73 + i2.89 fm,

aη 4He = 3.37 + i1.46 fm. (53)

As one can see, in all three cases Re aηA > 0, so that no
bound states are generated. If we take the modulus |aηA| as
a measure of the attraction strength in the system, the most
attractive interaction is obtained for η 3He. In a deuteron it
is weaker obviously due to smaller number of nucleons. A
rather unexpected result is that interaction between η and
4He is also less attractive in comparison to the η 3He case.
As already noted at the end of Sec. IV and discussed in our
previous work [33], the main reason for this seems to be a
rapid decrease of the ηN scattering amplitude below the free
nucleon threshold. Namely, since the ηN energy EηN is limited
by the condition EηN < −EA

b , for 3He the value of Re fηN is on
average larger and the effective ηN attraction is stronger than
in the much more tightly bound 4He nucleus. We also note
that our fit gives a relatively large value of Im aη 3He, which is
in disagreement with Im aη 3He = 0.5 ± 0.5 fm deduced from
the analysis presented in Ref. [47]. At the same, it is visibly
smaller than Im aη 3He = 4.89 ± 0.57fm [6] obtained in the
recent analysis of the dp → η 3He data [18,19] with an optical
potential model.

From the discussion above one may expect that if the
binding energy of 4He were close to that of 3He, the attraction
in η 4He would be stronger than in the η 3He system. In
this connection it is instructive to follow the behavior of the
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FIG. 12. Dependence of the η 4He scattering length on the 4He
binding energy. Solid curves: real part. Dashed curves: imaginary
part. The pairs of curves 1 and 2 are obtained with the ηN parameters
I and II (Table II), respectively.

scattering length aη 4He when the binding energy of 4He is
varied. To do this we artificially weakened the NN potential
(38), multiplying it by a real constant α ∈ (0,1]. Then the
scattering length aη4He was recalculated for several chosen
values of α. The so obtained dependence of aη 4He on E

4He
b

is demonstrated in Fig. 12 by the curves 2. As we can see,
when the binding energy per nucleon for 4He is close to
the corresponding value for 3He, E

4He
b /4 ≈ 3 MeV, the η 4He

scattering length visibly exceeds that of η 3He, indicating that
the η 4He attraction is stronger. This comes as no surprise,
since in the former case we have one more additional attraction
center (the fourth nucleon). With set I of theηN parameters (see
Table II) giving aηN = 0.93 + i0.25 fm, we obtain the curves
1. In this case the η 4He system at about the same energies turns
to be even bound (Re aη 4He < 0). Here the real part of aη 4He

is small, whereas the imaginary part reaches its maximum
(curves 1 in Fig. 12). If α is successively increased, the bound
η 4He state turns into the virtual state. At this energy the pole on
the physical sheet of the Riemann surface crosses the two-body
unitary cut [−E

4He
b ,∞) and enters into the nonphysical sheet.

When α → 1 the virtual pole proceeds to move farther from
the zero energy, leading to a general decrease of aη 4He.

VI. COMPARISON WITH OTHER CALCULATIONS

As far as we know, today there is only one few-body
calculation of both the η-3N and η-4N systems, published in
[28,29]. The authors solved the corresponding four- and five-
body Schrödinger equations using the stochastic variational
method. They found that the bound η 4He state may be formed
already with Re aηN ≈ 0.7 MeV, whereas more attractive ηN
interaction is needed to bind the η 3He system. This conclusion
is in contradiction with our results, which as noted above point
to weaker attraction in the η 4He case in comparison to η 3He.
A possible reason of this disagreement was already discussed
in Ref. [33]. In Refs. [28,29] the ηN energy in a nucleus is fixed
at the value δ

√
ssc, which is calculated using a self-consistent

procedure, described in detail in [28]. Therefore, to compare

our calculations with those of [28] we determined in [33] the
energy z0 by the requirement that the η 4He scattering length
obtained with the constant ηN amplitude fηN (z0) is equal or
very close to that obtained when the energy dependence of
fηN is treated exactly. The value z0 derived in this way was
considered in [33] as an analog of δ

√
ssc used in [28,29].

According to the results of [33], for η 4He the energy z0 is
visibly lower than δ

√
ssc. In this connection it was concluded

that the resulting attraction in the ηN system in a nucleus must
be weaker in our case.

Regretfully, in [33] we overlooked the fact that the energy
δ
√

ssc in [28,29] is used as an argument of the ηN potential
vηN (δ

√
s), and not of the t matrix, as in our model. For this

reason, direct comparison of the energy z0 from [33] with
δ
√

ssc is not quite correct. In the present work we make a
comparison in a more correct way and consider potentials.
Since the calculations [28,29] are performed in a position space
with a local ηN potential, we bring our nonlocal potential (41)
to a similar form. For this purpose we first solve a system of
the relativized Schrödinger equations for two coupled channels
ηN -πN :

− d2

dr2
φα(r) + 2ωα

∑
β=η,π

∫ ∞

0
vαβ(EηN,r,r ′ )φβ(r ′ )rr ′ dr ′

= q2
αφα(r), (54)

α = η, π,

where ωα is the total energy of the meson α, and vαβ(r,r ′ ) is a
Fourier transform of the potential (41):

vαβ(EηN,r,r ′ ) = gαgβ

4π

β2
αβ2

β

W − M0

e−βαr

r

e−ββr ′

r ′ ,

W = EηN + MN + mη. (55)

After the solution φα(r), α = η,π of (54) is obtained we
determine the equivalent local ηN potential via the trivial
substitution

vηN (EηN,r) = 1

φη(r)

×
∑

β=η,π

∫ ∞

0
vηβ(EηN,r,r ′ )φβ(r ′ )rr ′ dr ′.

(56)

One can readily see that using (56) in (54) for α = η will give
the Schrödinger equation in the ηN channel with the local
complex potential vηN (EηN,r). Its solution obviously equals
the “nonlocal” wave function φη(r) in the whole region of r .

Finally, to compare our local potential (56) with that used in
Ref. [29], we average them over the nuclear density, taking for
4He a simple harmonic oscillator functionρ(r) ∼ exp(−r2/r2

0 )
with r0 = 1.38fm. The results are presented in Fig. 13 in
the region EηN ∈ [−150,−30] in which, as was found in
the preceding section, the ηN amplitude gives the major
contribution to aη 4He. In Refs. [29], as already noted, the
potential vηN (δ

√
s,r) is taken in a nucleus at fixed energy

argument δ
√

ssc. It is shown in the same figure for two values of
the scale parameters � by the dashed lines. As seen in Fig. 13,
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FIG. 13. Solid lines: Real and imaginary parts of the ηN local
potential vηN (EηN,r) (56) which is equivalent to our separable poten-
tial (41). Dashed lines: the ηN potential vηN (δ

√
s,r) from Ref. [29]

calculated at constant value of its energy argument δ
√

s = δ
√

ssc for
two scale parameters � = 2 fm−1 (δ

√
ssc = 19.48 MeV) and � =

4 fm−1 (δ
√

ssc = 29.75 MeV). All potentials are averaged over the
4He density.

our potential vηN is weaker almost in the whole region of EηN

considered. This difference is probably the main reason why
our results differ fundamentally from those of Refs. [28,29].

VII. CONCLUSION

In this paper we used the few-body AGS formalism of
Ref. [35] to fit the FSI enhancement effect in different reactions
in which an η meson is produced. As a result of our analysis, we
present the values of the ηd, η 3He, and η 4He scattering lengths
[Eq. (53)] as well as the elementary scattering amplitude fηN

in the subthreshold region (Fig. 11). It is worth noting that,

because of relatively low quality of the ηd and especially the
η 4He data, the χ2 value is basically determined by the η 3He
results. For this reason, more accurate data for the reactions
with ηd and η 4He in the final state are necessary in order to
obtain more stringent constraints on the subthreshold behavior
of fηN .

It is important that our calculation does not confirm the
hypothesis suggested in Ref. [25] that the η 4He system should
be bound (whereas the status of η 3He is ambiguous). We recall
that the less pronounced FSI effect in the reaction dd → η 4He
in comparison to, e.g., dp → η 3He is usually interpreted as
an indication that increase of the attraction in η 4He due to an
additional nucleon leads to generation of the η 4He bound state
pole, which is shifted into the negative energy region on the
η 4He physical sheet and is farther from the zero energy than
the corresponding η 3He pole. Our calculation shows that this
seemingly natural argumentation may be fallacious. According
to our results the less steep enhancement of the cross section
in the reaction dd → η 4He is not due to stronger but due to
weaker attraction in the η 4He system.

Thus, the resonance character of the ηN low-energy inter-
action associated with the N (1535)1/2− baryon located just
above the ηN threshold may be the reasonwhy η-nuclear bound
states do not exist at least in the case of the light nuclei. In
contrast, for example, to the low-energy NN interaction which
is mostly generated by the pion exchange in the t channel
and therefore changes slowly below the free NN threshold (at
a sufficient distance from the 3s1-3d1 and 1s0 poles), the ηN
interaction rapidly decreases (see Fig. 11), so that the resulting
η-nuclear attraction may become weaker for heavier nuclei.
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