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Effects of the nucleon radius on neutron stars in a quark mean field model
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We study the effects of free space nucleon radius on nuclear matter and neutron stars within the framework of the
quark mean field model. The nucleon radius is treated self-consistently with this model, where quark confinement
is adjusted to fit different values of nucleon radius. Corrections due to center-of-mass motion, quark-pion coupling,
and one gluon exchange are included to obtain the nucleon mass in vacuum. The meson coupling constants that
describe the behavior of the many-body nucleonic system are constructed by reproducing the empirical saturation
properties of nuclear matter, including the recent determinations of symmetry energy parameters. Our results
show that the nucleon radius in free space has negligible effects on the nuclear matter equation of state and
neutron star mass-radius relations, which is different from the conclusion drawn in previous studies. We further
explore that the sensitivity of star radius on the nucleon radius found in earlier publications is actually from the
symmetry energy and its slope.
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I. INTRODUCTION

The equation of state (EoS) of cold dense matter has
attracted much attention from astronomers and nuclear physi-
cists, because it governs the structures of neutron stars (NSs)
and is still uncertain because of the poorly known nature of
strong interaction. The most controversial high density part of
the EoS might be probed through the ultradense matter present
in NSs’ cores and terrestrial heavy-ion collision experiments
[1]. The information of EoS of a NS is encoded in the mass-
radius relation that can be extracted from the observational
data. Therefore, the study of mass-radius relations of NSs can
help us determine the EoS of cold ultradense matter. Up to
now, masses of more than three dozen NSs have been measured
relatively precisely (see, e.g., Refs. [2,3]), but the estimation
of NS radii from observational data is highly uncertain (see
discussions in, e.g., Ref. [2]). Simultaneous measurements of
both mass and radius for one NS is even more difficult.

A recent work [4] connected the NS radius to the properties
of nucleons and concluded that the free nucleon radius rN could
significantly affect the NS radius R. The authors extended their
work [5] to slowly rotating NSs, taking into account more
constraints on nuclear matter properties beyond the saturation
density ρ0. The sensitivity of R on rN was similar. In the
present paper, we aim to reexamine this dependence within
an alternative framework. Below we explain our concerns and
motivations.

In the preceding papers [4,5], in order to explain the
proton radius puzzle (see the most recent discussions in,
e.g., Refs. [6,7]), the authors suggested that protons could
have a distribution of radii rather than a fixed size. They
varied rN from their fitted value 0.833 fm (later updated to
0.864 [8]) by ±20%, and made use of a phenomenological
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density-dependent form of rN (ρ) = rN/[1 + β(ρ/ρ0)2]2 in the
relativistic mean field (RMF) model for nucleon radius in
medium. The free parameter β is chosen to accord with the
results from the quark-meson coupling (QMC) model using a
constant bag parameter (B = const) in Ref. [9].

However, as found previously in Refs. [10–14], the medium
modification of the bag constant might play an important role
in low- and medium-energy nuclear physics. In particular, in
the two cases of bag parameter, i.e., constant or in-medium
changed (B = B∗), the density-dependent behavior of rN (ρ)
is the opposite. Therefore, it could be very interesting to study
the above-mentioned rN vs R dependence using different rN (ρ)
results. It may reveal important insights of quark structure
effects in a nucleon, which is crucial for understanding better
the short-range properties of nucleon-nucleon interaction (usu-
ally simplified as excluded volume effect in phenomenological
models like in Ref. [10]). Moreover, in the previous RMF study,
the protons and neutrons are treated as pointlike particles, so
the excluded volume effect and the density dependence of the
nucleon radius, rN (ρ), cannot be incorporated consistently in
the model and were adapted from the results of another QMC
calculation.

Above all, for the purpose of the present work, we employ
the quark mean field (QMF) model (e.g., Refs. [15–19])
where constituent quarks (mq = 300 MeV) are confined with
a potential in the harmonic oscillator form. The quark potential
has also been previously employed in, e.g., Refs. [20–23]. The
free space radii of nucleons (three values are chosen around
the CODATA 2014 value [24]) as well as their mass (mN =
939 MeV) are our input for determining the quark potential
parameters. Its density dependence rN (ρ) are consistently
deduced from solving the Dirac equation for a nucleon in
medium. Then nucleons interact with each other throughσ,ω,ρ
meson fields, with various meson coupling constants newly
fitted from the empirical values of (ρ0,E/A,J,K,L,M∗

N/MN )
at nuclear matter saturation point. The study of nuclear matter
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and NSs can be followed, and the influence of the employed rN

on nuclear matter EoS and NS properties can then be addressed
consistently within QMF.

In Sec. II, we briefly introduce the QMF model and the
fitting of model parameters; in Sec. III, results and discussions
are displayed. Finally, will summarize our work and conclude
in Sec. IV.

II. FORMALISM

A. QMF model

In the following, we will give a brief introduction to the
QMF model. This model starts with a flavor-independent
potential U (r) confining the constituent quarks inside the
nucleon. The potential has a harmonic oscillator form

U (r) = 1
2 (1 + γ 0)(ar2 + V0), (1)

with the parameters a and V0 to be determined. The Dirac
equation of the confined quarks is written as

[γ 0(εq − gωqω − τ3qgρqρ) − �γ · �p
−(mq − gσqσ ) − U (r)]ψq(�r) = 0. (2)

Hereafter ψq(�r) is the quark field, and σ, ω, and ρ are the
classical meson fields. gσq, gωq , and gρq are the coupling
constants of σ,ω, and ρ mesons with quarks, respectively. τ3q

is the third component of isospin matrix. This equation can be
solved exactly and its ground-state solution for energy is

(ε′
q − m′

q)

√
λq

a
= 3, (3)

where λq = ε∗
q + m∗

q, ε′
q = ε∗

q − V0/2, m′
q = m∗

q + V0/2.
The effective single quark energy is given by ε∗

q = εq −
gqωω − τ3qgqρρ and the effective quark mass by m∗

q = mq −
gσqσ with the quark mass mq = 300 MeV. The solution for
wave function is

ψq(r,θ,φ) = 1

r

(
F (r)Y 0

1/2m(θ,φ)

iG(r)Y 1
1/2m(θ,φ)

)
, (4)

where

F (r) = N
(

r

r0

)
exp

( − r2/2r2
0

)
,

G(r) = − N
λqr0

(
r

r0

)2

exp
( − r2/2r2

0

)
,

r0 = (aλq)−1/4, N 2 = 8λq√
πr0

1

3 ε′
q +m′

q

.

The zeroth-order energy of the nucleon core E0
N = ∑

q ε∗
q

can be obtained by solving Eq. (2). The contribution of
center-of-mass (c.m.) correction εc.m., pionic correction δMπ

N ,
and gluonic correction (�EN )g are also taken into account
following Refs. [19,20].

For the center-of-mass correction, the energy contribution
can be written as

εc.m. = 77ε′
q + 31m′

q

3(3ε′
q + m′

q)2r2
0

. (5)

For pionic correction,

δMπ
N = − 171

25 Iπf 2
NNπ , (6)

where

Iπ = 1

πm2
π

∫ ∞

0
dk

k4u2(k)

k2 + m2
π

,

u(k) =
[

1 − 3

2

k2

λq(5ε′
q + 7m′

q)

]
exp

(
−1

4
r2

0 k2

)
,

and

fNNπ = 25ε′
q + 35m′

q

27ε′
q + 9m′

q

mπ

4
√

πfπ

.

The constants mπ = 140 MeV and fπ = 93 MeV are the mass
of π meson and the phenomenological pion decay constant,
respectively.

For gluonic correction,

(�EN )g = −αc

[
256

3
√

π

1

R3
uu

1

(3ε′
q + m′

q)2

]
, (7)

where

R2
uu = 6

ε′2
q − m′2

q

and αc = 0.58 is a constant.
With these corrections on energy, we can then determine

the mass of nucleon:

M∗
N = E0

N − εc.m. + δMπ
N + (�EN )g. (8)

The nucleon radius in the QMF theory is written as

〈
r2
N

〉 = 11ε′
q + m′

q

(3ε′
q + m′

q)
(
ε′2
q − m′2

q

) . (9)

As mentioned in the introduction, the potential parameters
(a and V0) in Eq. (1) are obtained from reproducing the nucleon
mass and radius (mN,rN ) in free space. To study the rN effect,
we vary it from the intermediate value 0.87 fm [24] by around
10% according to our model capability: rN = 0.80, 0.87, and
1.00 fm. It covers both two latest experimental analyses of the
rms radius of the proton charge distribution: 0.879 ± 0.009 fm
[25] from electron-proton scattering and 0.8409 ± 0.0004 fm
[26] from the Lamb shift measurement in muonic hydrogen.
A latest estimation of ∼0.81 fm can also be described [27].
The employed (mN,rN ) input and the corresponding results of
potential parameters (a and V0) are shown in Table I.

TABLE I. Values of the free nucleon radius rN used in this work
and the corresponding parameter (a and V0) for quark potential in
Eq. (1). The intermediate value 0.87 fm is from Ref. [24]. The free
nucleon mass is fixed to MN = 939 MeV.

rN [fm] a [fm−3] V0 [MeV]

0.80 0.735186 −71.565596
0.87 0.534296 −62.257187
1.00 0.312494 −48.389200
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TABLE II. Saturation properties used in this study for the fitting
of sets of nucleon-meson coupling parameters: The saturation density
ρ0 (in fm−3) and the corresponding values at saturation point for the
binding energy E/A (in MeV), the incompressibility K (in MeV),
the symmetry energy J (in MeV), the symmetry energy slope L (in
MeV), and the ratio between the effective mass and free nucleon mass
M∗

N/MN .

ρ0 E/A K J L M∗
N/MN

[fm−3] [MeV] [MeV] [MeV] [MeV]

0.16 −16 220/260 28/31/34 40/60/80 0.74

B. Meson-coupling parameters

For the study of infinite nuclear matter, from this step
nucleons are treated as pointlike particles and interact through
exchange of σ,ω,ρ mesons. The Lagrangian is written as (e.g.,
Refs. [18,19])

L = ψ(iγμ∂μ − M∗
N − gωNωγ 0 − gρNρτ3γ

0)ψ

− 1
2 (∇σ )2 − 1

2m2
σ σ 2 − 1

4g3σ
4 + 1

2 (∇ρ)2 + 1
2m2

ρρ
2

+ 1
2 (∇ω)2 + 1

2m2
ωω2 + 1

4c3ω
4 + 1

2g2
ρNρ2�vg

2
ωNω2,

where gωN and gρN are the nucleon coupling constants for ω
and ρ mesons. The quark counting rule gives gωN = 3gωq and
gρN = gρq [28]. The calculation of confined quarks in the pre-
vious section gives the relation of effective nucleon massM∗

N as
a function of σ field, which defines the σ coupling with nucle-
ons (depending on the parameter gσq). mσ ,mω, and mρ are the
meson masses. The last term of the Lagrangian is the cross cou-
pling from ω meson and ρ meson [29]. It is introduced in this
work to give a reasonable slope of symmetry energy [30,31].

There are six parameters (gσq,gωq,gρq,g3,c3,�v) in this
Lagrangian and they will be determined by fitting the saturation
density ρ0 and the corresponding values at saturation point for
the binding energy E/A, the incompressibility K , the symme-
try energy J , the symmetry energy slope L, and the effective
mass M∗

N . Those employed values are collected in Table II.
In particular, we use the most preferred values for (K,J,L)
as recently suggested in Refs. [32,33], namely K = 240 ± 20,
J = 31.6 ± 2.66, and L = 58.9 ± 16 MeV. A recent fitting
from finite nuclei data in the same model had K = 328 MeV
[19], and we choose this case as well for comparison. For each
rN value in Table I, we first determine the potential parameters
(a and V0) from reproducing (mN,rN ), and then determine
many-body parameters from reproducing the saturation prop-
erties of nuclear matter (ρ0,E/A,J,K,L,M∗

N/MN ). Finally, 81
new QMF parameter sets are newly fitted for studying nuclear
matter and compact stars from the quark level. The details of
the (gσq,gωq,gρq,g3,c3,�v) results, compared to other versions
of QMF theory, will be published in a separate paper [34].

The equations of motion for mesons can be obtained by
variation of the Lagrangian,

m2
σ σ + g3σ

3 =
(

−∂M∗
N

∂σ

)
ρS, (10)

m∗2
ω ω + c3ω

3 = gωNρN, (11)

m∗2
ρ ρ = gρNρ3, (12)

where

ρS = 1

π2

∑
i=n,p

∫ pi
F

0
dpp2

i

M∗
N√

M∗2
N + p2

i

= M∗
N

2π2

(
pi

F Ei
F − M∗2

N ln

∣∣∣∣pi
F + Ei

F

M∗
N

∣∣∣∣
)

,

Ei
F =

√
M∗2

N + (
pi

F

)2
,

m∗2
ω = m2

ω + �vg
2
ωNg2

ρNρ2,

m∗2
ρ = m2

ρ + �vg
2
ρNg2

ωNω2. (13)

pn
F (pp

F ) is the Fermi momentum for neutron (proton), ρN =
ρp + ρn and ρ3 = ρp − ρn that equals 0 in symmetric nuclear
matter.

With known meson fields from Eqs. (10)–(12), the Hamil-
tonian

H = 1

π2

∑
i=n,p

∫ pi
F

0

√
p2 + M∗2

N p2dp + gωNωρN + gρNρρ3

+1

2
m2

σ σ 2 + 1

4
g3σ

4 − 1

2
m2

ωω2 − 1

4
c3ω

2 − 1

2
m2

ρρ
2

−1

2
�vg

2
ρNg2

ωNρ2ω2 (14)

and the pressure

P = 1

3π2

∑
i=n,p

∫ pi
F

0

p4√
p2 + M∗2

N

dp − 1

2
m2

σ σ 2 − 1

4
g3σ

4

+1

2
m2

ωω2 + 1

4
c3ω

2 + 1

2
m2

ρρ
2

+1

2
�vg

2
ρNg2

ωNρ2ω2 (15)

can be obtained from the Legendre transformation.
We write here expressively also important quantities used

for determining our parameters. The incompressibility K at
saturation is

K = 9
dP (ρN,β)

dρN

∣∣∣∣
β=0,ρN =ρ0

= 3p2
F

EF

+ 3M∗
NpF

EF

dM∗
N

dpF

+ 9g2
ωN

m2
ω + 3c3ω2

ρ0, (16)

and the symmetry energy at saturation is

J = 1

2

∂2E(ρN,β)

∂β2

∣∣∣∣
β=0,ρN =ρ0

= p2
F

6EF

+ g2
ρN

2m∗2
ρ

ρ0, (17)

where β = (ρn − ρp)/ρN is called neutron-excess parameter,
E(ρN,β) is the binding energy, pF = pn

F = p
p
F , and EF =

En
F = E

p
F . The slope of symmetry energy L at saturation is

defined as

L = 3ρ0
∂J (ρN )

∂ρN

∣∣∣∣
ρN =ρ0

. (18)
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FIG. 1. (a) Effective nucleon radius and (b) effective nucleon
mass as a function of ρN/ρ0 for symmetric nuclear matter within
QMF. Three different free nucleon radius rN = 0.80, 0.87, and
1.00 fm are displayed, with fixed K = 260, J = 31, and L = 60
MeV. The corresponding QMC results with constant bag (in the case
of rN = 1.00 fm) [9] or density-dependent bag (in the case of rN =
0.80 fm) [10] are also shown for comparison.

III. RESULTS AND DISCUSSION

The effective nucleon radius (mass) as a function of ρN/ρ0

for symmetric nuclear matter is shown in (a) [(b)] panel of
Fig. 1. The calculations are done with K = 260, J = 31, and
L = 60 MeV, and elsewhere in the following if not specified.
The results with three different nucleon radii are displayed:
rN = 0.80 (solid), 0.87 (dashed), and 1.00 fm (dotted), to be
compared with the QMC results with constant bag [9] and
density-dependent bag [10]. We see immediately that the QMF
results at all cases are in accordance with the QMC result
with density-dependent bag (i.e., r∗

N increases with density)
and are opposite the decreasing behavior in the constant-bag
case of QMC. Also, with smaller rN , the increase of r∗

N with
density is more pronounced, which can be understood from
the excluded volume effects mentioned above. However, the
dependence of M∗

N on rN in QMF is quite different with that in
QMC, in the cases of both constant bag [4,10,12] and density-
dependent bag [10]. In QMC, M∗

N drops with decreasing rN ,
more phenomenal in the constant-bag case, while in QMF M∗

N

increases with decreasing rN . This advantageously enlarges
the range of model applicability for QMF and should originate
from different confining mechanism in the two models.

The properties of symmetric nuclear matter (SNM) and pure
neutron matter (PNM) are investigated as well. The pressure
and binding energy as a function of ρN/ρ0 are displayed in
Fig. 2, along with the corresponding available experimental
constraints [in Figs. 2(c) and 2(d)] [1] in shaded areas. We can
see that the QMF results in all chosen cases are consistent with
the analysis of the elliptic flow from heavy-ion experiments
[1] for supranuclear densities above 2ρ0. The agreements are
better than that in Ref. [5] for the interested range of rN ∼ 0.80
to 1.00 fm, since the symmetry energy and its slope are kept
the same for changing rN in the present model. The rN effects

FIG. 2. Binding energy and pressure as a function of ρN/ρ0 for
symmetric nuclear matter and pure neutron matter. J = 31 and L =
60 MeV are fixed with K = 240, 260, and 328 MeV. Results with
rN = 0.80, 0.87, and 1.00 fm are shown in solid, dashed, and dotted
curves, respectively. The constraints from collective flow in heavy-ion
collisions (HIC) [1] are also shown in the shaded areas, with two
density-dependent cases of symmetry energy (light blue for the stiff
one and dark blue for the soft one).

are actually small for the largest empirical value of K = 260
MeV, and only become evident for the extreme case of K =
328 MeV.

The corresponding mass-radius relations of NSs are pre-
sented in Fig. 3, which shows clearly that rN has little effect
on the star radius with empirical saturation properties of
K = 260, J = 31, and L = 60 MeV in our QMF model. If
extreme value of K = 328 MeV is chosen, decreasing rN from
1.00 to 0.80 fm could bring down the maximum mass from
2.01M	 to 1.87M	, and the corresponding radii from 11.8 to
11.4 km (around 3%). This conclusion is different from that
in Refs. [4,5], where they modified rN without the constraint
of fixing symmetry energy (and its slope) at saturation density
and found a decreasing star radius R with increasing nucleon

FIG. 3. Mass-radius relations of NSs with rN = 0.80, 0.87, and
1.00 fm. J = 31 and L = 60 MeV are fixed at K = 260 and
328 MeV.
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FIG. 4. Same with Fig. 3, but with K = 260 MeV fixed, and (a)
three values of J = 28, 31, and 34 MeV at L = 60 MeV or (b) three
values of L = 40, 60, and 80 MeV at J = 31 MeV.

radius rN , while the rN vs R dependence is very limited in our
present study when the symmetry energy impact is excluded.

To explore further if the change of R is actually from the
different symmetry parameters, we present in Fig. 4 the results
with fixed K = 260 MeV, and modified J (L) within empirical
ranges in (a) [(b)] panels. From (a) [(b)] panel, one can notice
that a change of J (L) in the range of 28–34 MeV (40–80 MeV)
could result in a ∼1.8% (∼2.9%) variation of R for fixed rN .
The variation brought by changing rN in all cases of fixed
(J,L) are even smaller. Therefore, we could conclude that the
effect on NS radius R may primarily come from the symmetry
energy (i.e., the well-accepted L vs R dependence), instead of
nucleon radius rN .

IV. CONCLUSIONS

We have studied the effects of free space nucleon radius on
NSs by using the QMF model, where nucleons and nuclear
matter can be treated self-consistently. The parameters of
confinement potential for quarks are obtained by fitting the
mass and radius of nucleon in free space, and the nucleon
radius are varied by 10% around the usual rN = 0.87 fm for
our propose. The parameters in nucleon-nucleon interaction
have also been adjusted so that the properties of symmetric
nuclear matter at saturation density satisfy the experimental
constraints.

We have shown the interplay of nucleon radius, incom-
pressibility, symmetry energy and its slope on NS mass-radius
relations and found a different conclusion than Refs. [4,5]. The
effects of the nucleon radius are weak both on maximum mass
and NS radius. Comparatively, the effects of symmetry energy
and its slope on NS radius are more obvious. On the other hand,
the adjustment of Ref. [5] has neglected the symmetry energy
fitting. Therefore, we argue that the significant influence on
NS radius might be from the symmetry energy and its slope,
not from the free space nucleon radius. NS radius and the
free-space nucleon radius do not have a sensitive dependence.

For future plans, we notice in Fig. 4 that the NS maximum
mass is around 1.6 M	 and not subject to the uncertainties
in J,L within QMF. Although in the extreme K = 326 MeV
case we could obtain a maximum mass as large as 2.0 M	
to meet the 2-solar-mass constraint, extra repulsion should be
introduced in the model, e.g., by the inclusion of the Fock term.
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