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Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are
crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-
density response function defines a universal scaling function, which is independent of the nature of the probe. In
this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ
particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe
electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling
functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions
characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions.
This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations,
encoded in the continuum component of the hole spectral function.
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I. INTRODUCTION

The analysis of scaling properties of nuclear response
functions has proven to be a useful tool to unveil information
on the underlying nuclear structure and dynamics [1–3].
Indeed, singling out individual-nucleon interactions allows
one to disentangle the many-body aspects of the calculation
[4,5]. These properties are relevant for interpreting electron-
scattering data and to predict quantities of interest for neutrino-
oscillation experiments. It has been proposed that an empirical
scaling function extracted from electron-scattering data can be
used to predict neutrino-nucleus cross sections or to validate
neutrino-nucleus interaction models [6–9]. In particular, the
use of the relativistic mean field in such calculations has
found support in its capability of properly reproducing the
asymmetric shape and the transverse enhancement of the
empirical scaling function [6].

Recently, the authors of Ref. [10] carried out an analysis
of the scaling properties of the electromagnetic response func-
tions of 4He and 12C nuclei computed by the Green’s function
Monte Carlo (GFMC) approach [11], retaining only one-body
current contributions. Their results are consistent with scaling
of zero, first, and second kinds and show that the character-
istic asymmetric shape of the experimental scaling function
emerges in the calculations in spite of the nonrelativistic nature
of the model. A novel interpretation of the longitudinal and
transverse scaling functions in terms of a universal scaling
function, defined in terms of the nucleon-density response
function, was discussed. However, the reason why the nucleon-
density scaling function depends on the energy and momentum
transfers only through the scaling variable is yet to be fully
understood.

The GFMC approach allows for a very accurate description
of the properties of A � 12 nuclei, giving full account of the
dynamics of the constituent nucleons in the quasielastic sector.
However, within the GFMC approach, it is not straightforward
to identify the mechanisms responsible for the asymmetric
shape of the scaling functions. In addition, only the leading
relativistic corrections are included in the GFMC scaling
functions, preventing a fully consistent comparison with the
experimental ones. In fact, by employing both relativistic
and nonrelativistic prefactors, it was possible to highlight
the shortcomings of the GFMC approach in describing the
electromagnetic responses at large momentum transfers [10].

It has been argued [12] that scaling emerges as a conse-
quence on the onset of the impulse approximation (IA) regime.
In this work, we analyze the scaling properties of the elec-
tromagnetic responses in the moderate and large momentum-
transfer regions, where collective modes are unimportant and
the spectral function (SF) formalism is supposed to be reliable.
This formalism, based on the IA, combines a fully relativistic
description of the electromagnetic interaction with an accurate
treatment of nuclear dynamics in the initial state. However,
final state interactions (FSI) involving the struck particle
are treated as corrections, whose inclusion requires further
approximations [13,14].

Accurate calculations of the hole SF have been carried out
in Refs. [15,16] within the correlated basis function (CBF)
theory. Because the struck nucleon is relativistic, the particle
SF cannot be consistently derived within CBF, as the latter is an
intrinsically nonrelativistic approach. Hence, FSI are usually
included by means of a convolution scheme. The validity of
this approximation was recently tested by comparing SF and
GFMC results for the one-body electromagnetic responses
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of 12C [17]. The CBF-SF model has proven to successfully
reproduce a large body of electron-scattering data for a variety
of nuclear targets, up to relatively low momentum transfers,
where the applicability of the IA is more controversial [14,18].
Recently, this model was generalized to include the contri-
butions of meson-exchange currents leading to final states
with two nucleons in the continuum [19,20]. The CBF-SF has
also been employed to describe neutrino-nucleus interactions
[21–25] in both the quasielastic and deep-inelastic scattering
(DIS) regions.

In this work we also discuss a nonrelativistic semi-
phenomenological approach, based on the local Fermi gas
(LFG) model employed in Refs. [26,27] to study charge
and neutral current quasielastic neutrino-nucleus scattering at
intermediate and low energies. Within this model, the hole
and the particle SFs are consistently derived in uniform and
isospin-symmetric nuclear matter [28] and the local density
approximation (LDA) is exploited to make predictions for
finite nuclear systems [29–34]. We include relativistic cor-
rections as in Refs. [35,36] to extend the applicability of the
model to moderately high momentum and energy transfers.
We show that the particle spectral function obtained within
the LFG approximation can be employed to account for FSI
with a comparable degree of accuracy as the convolution
scheme.

In Sec. II the scaling formalism is introduced; the LDA-
based model allowing one to consistently derive the hole
and particle SFs is presented in Sec. III; and Sec. IV is
devoted to the CBF-SF approach and the inclusion of FSI. In
Sec. V, the nucleon-density scaling functions obtained within
these two models are benchmarked and compared with those
extracted from experimental data. In Sec. VI, we discuss
the origin of first-kind scaling, and the asymmetry of the
scaling function, employing a simplified model for the nuclear
dynamics. Finally, in Sec. VII we draw our conclusions.

II. SCALING FORMALISM

The electromagnetic longitudinal and transverse response
functions are given by

Rα(q,ω) =
∑
f

〈f |Jα(q,ω)|0〉〈0|J †
α (q,ω)|f 〉

× δ(ω − Ef + E0), (1)

where |0〉 and |f 〉 represent the nuclear initial ground state
and final bound or scattering state of energies E0 and
Ef , respectively, and Jα(q,ω) (α = L,T ) denotes the lon-
gitudinal and transverse components of the electromagnetic
current.

The scaling properties of the nuclear responses have been
widely analyzed in the framework of the global relativistic
Fermi gas (GRFG) model. Within GRFG, the target nucleus
is described as a collection of relativistic noninteracting
nucleons, carrying a momentum smaller than the Fermi mo-
mentum pF . In order to make contact with previous studies,
we introduce the following set of dimensionless variables [37]:

λ = ω/2m, κ = |q|/2m, τ = κ2 − λ2,
(2)

ηF = pF /m, ξF =
√

p2
F + m2

m
− 1,

with m the nucleon mass, and qμ = (ω,q) the four-momentum
transfer. A dimensionless scaling variable can be defined in
terms of these quantities as [37]

ψ = 1√
ξF

λ − τ√
(1 + λ)τ + κ

√
τ (1 + τ )

. (3)

The longitudinal and transverse scaling functions are ob-
tained by dividing the response functions by appropriate
prefactors, encompassing single-nucleon dynamics within the
GRFG model [10]:

fL,T (ψ) = pF

RL,T

GL,T

. (4)

It has to be noted that the GRFG longitudinal and transverse
scaling functions coincide. The analytical expression of the
common function, symmetric and centered in ψ = 0, reads

f GRFG
L (ψ) = f GRFG

T (ψ) = 3ξF

2η2
F

(1 − ψ2)θ (1 − ψ2). (5)

The aim of our work is to discuss how the inclusion of nuclear
interactions affects the shape of the scaling functions, possibly
leading to scaling violations.

In Ref. [10] it was suggested that, for large momentum
transfers, the longitudinal and transverse scaling functions can
be interpreted in terms of the proton- and neutron-density
responses,

Rp(n)(q,ω) =
∑
f

〈0|�†
p(n)(q)|f 〉〈f |�p(n)(q)|0〉

× δ(ω − Ef + E0), (6)

where the proton (neutron)-density operator is given by

�p(n)(q) ≡
∑

j

eiq·rj
(1 ± τj,z)

2
. (7)

In isospin-symmetric nuclear matter, the proton- and neutron-
density responses coincide. It is convenient to refer to them as
nucleon-density response, proportional to the imaginary part
of the polarization propagator,

S(q,ω) = 1

π
Im �(q,ω), (8)

with

�(q,ω) = 〈0|�†
q

1

H − E0 − ω − iε
�q|0〉, (9)

where H is the Hamiltonian, �q = ∑
p a

†
p+qap is the proton- or

neutron-density fluctuation operator, and a
†
p and ap are either

the proton or the neutron creation and annihilation operators,
respectively. In the limit of large momentum transfer and for
isospin-symmetric nuclei, the nucleon-density scaling function
f is given by [10]

f (ψ) = pF × 2κS(q,ω)/N , (10)
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where N is the number of either protons or neutrons of the
system.

The one-body Green’s function in nuclear matter is defined
as [38]

G(p,E) = 〈0|a†
p

1

E + (H − E0) − iε
ap|0〉

+ 〈0|ap
1

E − (H − E0) + iε
a†

p|0〉

= Gh(p,E) + Gp(p,E). (11)

The particle Green’s function Gp describes the propagation of
a particle state and therefore is defined for E > μ, μ being the
chemical potential,1 whereas Gh is defined for E � μ [38].

In the limit of large momentum transfer, where the effect
of collective excitation modes is expected to be negligible, the
polarization propagator in nuclear matter reduces to

�(q,ω) = 2iV

∫
d3p

(2π )3

dE

2π
G(p,E)G(p + q,ω + E),

(12)

where the discrete sum
∑

p has been replaced by
V

∫
d3p/(2π )3, with V being the volume of the system, and

the factor 2 stems from the spin sums. The nucleon-density
response for positive excitation energies (ω > 0) is then
given by

S(q,ω) = −2V

π2

∫
d3p

(2π )3
dE ImGh(p,E)

× ImGp(p + q,ω + E). (13)

The hole and particle SFs are related to the imaginary part of
the corresponding Green’s functions through

Ph(p,E) = + 1

π
ImGh(p,E), E � μ,

Pp(p,E) = − 1

π
ImGp(p,E), E > μ. (14)

Introducing P̄h(p,E) = 2V Ph(p,E)/N , normalized as∫
d3p

(2π )3
dEP̄h(p,E) = 1, (15)

and using Eq. (14), the nucleon-density response reads

S(q,ω) = N
∫

d3p

(2π )3
dEP̄h(p,E)Pp(p + q,E + ω). (16)

When a relativistic fermion propagator is employed, its
imaginary part is a matrix in the Dirac space and contains
the factor (/p + m)/2e(p), with e(p) =

√
m2 + |p|2, which

can be rewritten as [(/p + m)/2m] × [m/e(p)]. The first term

1Note that the definition of the thermodynamic limit (N → ∞,
V → ∞, butN /V constant) implies μ(N + 1) = μ(N ) + O(N−1).

enters in the matrix elements of the external current, while the
second one is included in the definition of the nucleon-density
response,

S(q,ω) = N
∫

d3p

(2π )3
dE

m

e(p)

m

e(p + q)

× P̄h(p,E)Pp(p + q,E + ω). (17)

The factors m/e(p), which reduce to 1 in the nonrelativistic
limit, become relevant when the struck particle is relativistic.

The GRFG SFs,

P̄ GRFG
h (p,E) = 6π2

p3
F

θ (pF − |p|)δ(E − e(p)), (18)

P GRFG
p (p,E) = θ (|p| − pF )δ(E − e(p)), (19)

yield the scaling function of Eq. (5).

III. NUCLEON DENSITY RESPONSE AND SPECTRAL
FUNCTIONS IN THE LFG APPROACH

The LFG approach relies on the LDA, in which finite nuclei
are locally treated as uniform nuclear matter of density ρ(r)
[26,33]. Within this scheme, the density response of the nucleus
is obtained by integrating over its density profile,

SLDA(q,ω) = θ (ω)

4π3

∫
d3r

∫
d3p

∫ μ

μ−ω

dEPh(p,E)

× Pp(p + q,E + ω), (20)

where it is understood that both the hole and the particle SFs
depend on ρ. Note that SLDA(q,ω) is intimately related to the
imaginary part of the Lindhard function, since −�(q,ω)/V
turns out to be precisely the Lindhard function (particle-hole
propagator) [38] [see Eq. (12)].

In the lepton-nucleus scattering analyses of
Refs. [26,31,33], performed using particle and hole SFs
from the semi-phenomenological model of Ref. [28], the
effects of collective nuclear modes were accounted for
through the random phase approximation (RPA). The latter
only results in modifications of the electroweak in-medium
couplings, with respect to their free values, due to the presence
of strongly interacting nucleons. RPA long-range correlations
take into account the absorption of the gauge boson by the
nucleus as a whole, instead of by an individual nucleon. Their
importance decreases as the gauge boson wavelength becomes
much shorter than the nuclear size. Hence, it is natural to
expect that RPA effects break scaling at low momentum
transfers. However, these effects should become negligible
in the regime of large |q| studied in this work, and are not
included in the present calculations.

The SFs of interacting nucleons in the nuclear medium are
determined by the nucleon self-energy �(p,E) [26,33]:

Pp,h(p,E)

= ∓ 1

π

Im�(p,E)

(E − p 2/2m − Re�(p,E ))2 + Im�(p,E )2
. (21)

035506-3



J. E. SOBCZYK, N. ROCCO, A. LOVATO, AND J. NIEVES PHYSICAL REVIEW C 97, 035506 (2018)

The chemical potential is obtained by solving the self-
consistent equation

μ = p2
F

2m
+ Re�(pF ,μ), (22)

where the Fermi momentum of isospin-symmetric nuclear
matter is given by pF = (3πρ/2)1/3. The real part of the
self-energy modifies the nucleon dispersion relation in the
nuclear medium, while the imaginary part accounts for many-
body decay channels. Since Im�(p,E) � 0 for E � μ, and
Im�(p,E) � 0 for E > μ, the chemical potential can be
defined as the point in which Im�(p,E) changes sign.

So far we have assumed nonrelativistic kinematics, ac-
cording to the semi-phenomenological model for the nucleon
self-energy developed in Ref. [28], whose main features are
discussed in Sec. III. Relativistic effects can be accounted for
by including the m/e(p) factors in the phase space and using
the relativistic expression for the nucleon energies, e(p). In this
case the hole and particle SFs read [35,36]

Pp,h(p,E)

= ∓ 1

π

m
e(p) Im�(p,E)(

E − e(p) − m
e(p) Re�(p,E)

)2 + (
m

e(p) Im�(p,E)
)2 ,

(23)

where we used the fact that in spin- and isospin-symmetric
nuclear matter the self-energy operator is diagonal in the
spin space. In the above equation � stands for any matrix
element ū�u, which is independent on the spin (ū and u
are dimensionless spinors normalized to unity). Following the
discussion below Eq. (17), the factors m/e(p) and m/e(p + q)
also have to be included in the nucleon-density response that
now reads

SLDA(q,ω) = θ (ω)

4π3

∫
d3r

∫
d3p

∫ μ

μ−ω

dE
m

e(p)

× m

e(p + q)
Ph(p,E)Pp(p + q,E + ω). (24)

The corresponding scaling function is obtained according
to Eq. (10):

f LDA(ψ) = pF × 2κ SLDA(q,ω)/N . (25)

Semi-phenomenological approach to nucleon
properties in nuclear matter

In the following, we sketch the most important features, as-
sumptions, and approximations of the semi-phenomenological
model for the self-energy developed in Ref. [28] and success-
fully used to describe a number of inclusive nuclear reactions
[26,31,33,35,36,39–43]. Within this model, the nonrelativistic
nucleon self-energy in isospin-symmetric nuclear matter is
computed starting from the low-density theorems. Short-range
effects are accounted for by an in-medium effective nucleon-
nucleon (NN ) potential, derived from the experimental elas-
tic NN cross section, that in addition incorporates some
medium-polarization corrections. The self-energy consists of
a ladder sum of nuclear corrections generated by the series of
diagrams depicted in Fig. 1, where the dashed lines represent

FIG. 1. Ladder sum of diagrams contributing to the nucleon self-
energy in nuclear matter. Dashed lines represent the in-medium NN

interaction.

the effective in-medium NN potential (see Ref. [28] for
details). Long-range correlations are taken into account in
the effective potential by summing up the series of diagrams
shown in Fig. 2, assuming a dominance of the transverse piece
[τiτj σiσj (|q|2δij − qiqj )] of the ph-ph, ph-�h, and �h-�h
interactions [28].

The on-shell contribution of the imaginary part of the
self-energy, accounting for collisional broadening effects, is
compatible with the results obtained by the more elaborate
many-body calculations of Refs. [44,45]. The real part of
the self-energy is calculated using a dispersion relation, sum-
ming an additional Fock diagram which provides a purely
real contribution. Only momentum-independent Hartree-type
terms are missing in the model. Hence, the self-energy is
determined up to an unknown momentum-independent term,
and it can be used to compute in-medium nucleon properties,
such as the nucleon momentum distribution and effective
masses. The latter are found to be in good agreement with
sophisticated many-body calculations [46,47], despite some
uncertainties arising from different prescriptions for the off-
shell extrapolation of the self-energy.

The absolute scale for the real part of the hole self-energy
can be estimated from the binding energy per nucleon, |εA|.
Following Ref. [35], a phenomenological term, Cρ, is added
to Re� and fixed against the experimental value of |εA|. With
the addition of the constant term Cρ, the chemical potential
becomes

μ = p2
F

2m
+ Ĉ, Ĉ = Re�

(
pF ,p2

F /2m
) + Cρ, (26)

and the SFs read

Pp,h(p,E)

= ∓ 1

π

Im�(p,Ê)

(E − p2/2m − Re�(p,Ê) − Cρ)2 + Im�(p,Ê )2
,

(27)

FIG. 2. Feynman diagrams contributing to the polarization of the
NN interaction in the medium.
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where Ê ≡ E − Ĉ. The average kinetic and removal energies
can be expressed in terms of the hole SF as [35]

〈T 〉 = 4

A

∫
d3r

∫
d3p

(2π )3

p2

2m

∫ μ

−∞
Ph(p,E)dE, (28)

〈E〉 = 4

A

∫
d3r

∫
d3p

(2π )3

∫ μ

−∞
Ph(p,E)EdE, (29)

where A is the number of nucleons in the system. The binding
energy per nucleon is then given by the sum rule [48]:

|εA| = −1

2

(
〈E〉 + A − 1

A − 2
〈T 〉

)
. (30)

Thus, for example, in carbon the parameter C ∼ 0.8 fm2,
which provides around 25–30 MeV repulsion at ρ = 0.17 fm3

and leads to |εA| = 7.8 MeV (see Table I of Ref. [35]).
Energy-dependent Dirac optical potentials for several nuclei

were determined in Ref. [49] by fitting proton-nucleus elastic-
scattering data in the energy range 20–1040 MeV. In this
analysis, scalar and vector complex potentials were employed
in the Dirac equation, and the dependencies of these potentials
on the kinetic energy, tkin, and radial coordinate, r , are found
by fitting the scattering solutions to the measured elastic
cross section, analyzing power, and spin rotation functions.
Schrödinger equivalent potentials, constructed out of the scalar
and vector potentials, are also given in Ref. [49]. In Ref. [33],
the Schrödinger equivalent potential 208Pb central potentials
obtained in Ref. [49] for tkin = 20 and 100 MeV were com-
pared to Re�(q,E = q2/2m) from Ref. [28] as a function of r .
The real part of the nucleon self-energy, supplemented by the
kinetic-energy-independent term Cρ, reproduced quite well
the Woods-Saxon form of the optical potentials for both values
of the kinetic energy.

It has to be noted that the results of Ref. [28] are not
affected by the momentum-independent term added to the
self-energy, as they only depend upon energy differences.
Analogously, the nucleon-density response given in Eq. (20)
does not depend on Cρ, as this term can be removed by the
change of integration variable E → Ê. Indeed, this change
of variable leads to an expression like that of Eq. (20), with
particle and hole spectral functions and chemical potential
given in Eqs. (21) and (22), but with Re�(p,E) replaced
by Re�(p,E) − Re�(pF,p2

F /2m). Note also that the new
integration limits become p2

F /2m and p2
F /2m − ω. This is

precisely the result that one would obtain within the semi-
phenomenological of Ref. [28], where the calculations of the
self-energy were performed assuming only kinetic energies for
the nucleon and the self-energies were always referred to the
value at the Fermi surface. If Cρ is neglected in Eqs. (26) and
(27), one obtains exactly the same expression for the response
function.

Here, we introduced the term Cρ for the sake of comparing
the LDA results with those obtained within the IA model
discussed in the next section, where, in a first approximation,
a free plane wave is used for the outgoing (ejected) nucleon.

IV. THE IMPULSE APPROXIMATION AND
THE SPECTRAL FUNCTION FORMALISM

At relatively large momentum transfer, |q| >∼ 500 MeV, the
IA can be safely applied under the assumption that the struck
nucleon is decoupled from the spectator (A − 1) particles.
Within this scheme [18,50], the electromagnetic currents of
Eq. (1) are written as a sum of one-body contributions Jα =∑

i j
i
α and the final nuclear state factorizes as

|f 〉 −→ |p〉 ⊗ |f 〉A−1. (31)

In the above equation |p〉 is the single-nucleon state produced
at the electromagnetic vertex with momentum p, energy e(p),
and spin-isospin state ηp. The state |f 〉A−1 describes the resid-
ual (A − 1) system, and its energy and recoiling momentum
are fixed by energy and momentum conservation:

EA−1
f = ω − e(p) + E0 , PA−1

f = q − p. (32)

Exploiting the single-nucleon completeness relation

∑
k

|k〉〈k| =
∑
ηk

∫
d3k

(2π )3
|k,ηk〉〈k,ηk| = 1, (33)

and the factorization of the final state of Eq. (31), the matrix
element of the current can be written as

〈0|Jα|f 〉 →
∑

k

〈0|[|k〉 ⊗ |f 〉A−1]〈k|
∑

i

j i
α|p〉. (34)

Substituting the last equation in Eq. (1), the incoherent
contribution to the response functions is given by

Rα(q,ω) = A
∑
p,k,k′

∑
f

〈k|(j 1
α

)†|p〉〈p|j 1
α |k′〉

× 〈0|[|f 〉A−1 ⊗ |k〉][ A−1〈f | ⊗ 〈k′|]|0〉
× δ(ω − e(p) − EA−1

f + E0) θ (|p| − kF ). (35)

Momentum conservation in the single-nucleon vertex im-
plies k = k′ = p − q. Charge conservation and the assumption
that the nuclear ground state is a zero-spin state imply ηk = ηk′ .
Therefore, using the identity

δ
(
ω − e(p) − EA−1

f + E0
) =

∫
dEδ(ω + E − e(p))

× δ
(
E + EA−1

f − E0
)
, (36)

the response functions can be expressed as

Rα(q,ω) = A
∑
ηkηp

∫
d3k

(2π )3
dEP̄h(k,ηk,E)

× ∣∣〈k,ηk|j 1
α |k + q,ηp〉∣∣2

δ(ω + E − e(k + q)).

(37)

The hole SF

P̄h(k,ηk,E) =
∑
f

|〈0|[|k,ηk〉 ⊗ |f 〉A−1]|2

× δ
(
E + EA−1

f − E0
)

(38)

035506-5



J. E. SOBCZYK, N. ROCCO, A. LOVATO, AND J. NIEVES PHYSICAL REVIEW C 97, 035506 (2018)

gives the probability distribution of removing a nucleon with
momentum k and spin-isospin ηk from the target nucleus,
leaving the residual (A − 1) system with an energy E0 − E.

For closed-shell nuclei and isospin-symmetric nuclear mat-
ter, the SFs of spin-up and spin-down nucleons coincide. In
addition, neglecting the Coulomb interactions and the other
(small) isospin-breaking terms, the proton and neutron SFs
turn out to be identical, yielding

P̄h(k,ηk,E) � 1

4
P̄h(k,E) =

∑
f

|〈0|[|k〉 ⊗ |f 〉A−1]|2

× δ
(
E + EA−1

f − E0
)
. (39)

In order to make contact with the definition of the hole SF
given in Sec. II, we use the Sokhotski-Plemelj theorem [51]:

P̄h(k,E) = 1

π

∑
f

Im〈0| 1

E + EA−1
f − E0 − iε

[|k〉

⊗ |f 〉A−1][ A−1〈f | ⊗ 〈k|]|0〉. (40)

Exploiting the fact that H |f 〉A−1 = EA−1
f |f 〉A−1 and the

completeness of the A − 1 states, we get

P̄h(k,E) = 1

π
Im〈0|a†

k
1

E + (H − E0) − iε
ak|0〉 (41)

that is consistent with Eqs. (11) and (14).
In the relativistic regimes, the factors m/e(k) and

m/e(k + q) have to be included to account for the implicit
covariant normalization of the four-spinors of the initial and
final nucleons in the matrix elements of the relativistic current
jα [see also discussion of Eq. (17)]; hence,

Rα(q,ω) = A

4

∑
ηkηp

∫
d3k

(2π )3
dEP̄h(k,E)

m

e(k)

m

e(k + q)

× ∣∣〈k + q,ηp|j 1
α |k,ηk〉

∣∣2
δ(ω + E − e(k + q))

× θ (|k + q| − kF ). (42)

The nucleon-density response case is recovered by j 1
α → �q.

Carrying out the spin-isospin trace gives a factor 2; hence,

SIA(q,ω) = N
∫

d3k

(2π )3
dEP̄h(k,E)

m

e(k)

m

e(k + q)

× δ(ω + E − e(k + q)) θ (|k + q| − kF ). (43)

Note that within the IA the ejected nucleon is treated as a plane
wave and the particle SF coincides with the one of the GRFG
model given in Eq. (19). In analogy with Eq. (10) we can define
the following scaling function:

f IA(ψ) = pF × 2κ SIA(q,ω)/N . (44)

The longitudinal and transverse IA scaling functions fL,T (ψ)
can be obtained as in Eq. (4). From Eq. (42), it can be
readily seen that in the IA, the zeroth kind of scaling, i.e.,
f IA

L (ψ) = f IA
T (ψ), only occurs if the matrix elements 〈k +

q,ηp|j 1
α |k,ηk〉 depend not on k, but only on q and ω. Otherwise,

the cancellation with the Fermi-gas prefactors is no longer
exact.

A. Calculation of the hole SF using a correlated basis function

The hole SF does not depend on the momentum transfer;
hence, it can be safely computed within nonrelativistic many-
body theory, where nuclear dynamics is described by the
Hamiltonian

H =
∑

i

p2
i

2m
+

∑
j>i

vij +
∑

k>j>i

Vijk. (45)

In the above equation, pi is the momentum of the ith nu-
cleon, while the potentials vij and Vijk describe two- and
three-nucleon interactions, respectively. Realistic two-body
potentials are obtained from accurate fits to the available data
on the deuteron and NN scattering, and reduce to the Yukawa
one-pion-exchange interaction at large distances. The state-of-
the-art phenomenological parametrization of vij , referred to as
the Argonne v18 potential [52], is written in the form

vij =
18∑

n=1

vn(rij )On
ij , (46)

with rij = |ri − rj | and

O
n�6
ij = [1,(σ i · σ j ),Sij ] ⊗ [1,(τ i · τ j )], (47)

where σ i and τ i are Pauli matrices acting in the spin and isospin
space, respectively, and Sij is the tensor operator given by

Sij = 3

r2
ij

(σ i · rij )(σ j · rij ) − (σ i · σ j ). (48)

The operators corresponding to n = 7–14 are associated to
nonstatic components of the NN interaction, while those
corresponding to n = 15–18 account for small violations of
charge symmetry. The inclusion of Vijk is needed to explain
the binding energies of the three-nucleon systems and nuclear
matter saturation properties [53,54].

In Refs. [15,16], the nuclear overlaps, 〈0|[|k〉 ⊗ |f 〉A−1],
involving the ground state and a nonrelativistic 1h and 2h-
1p states, were evaluated using the CBF theory. Within this
formalism, a set of correlated states (CB) is introduced,

|n〉CB = F |n〉
〈n|F†F |n〉1/2

, (49)

where |n〉 is an n-independent particle state, generic eigenstate
of the free Fermi gas (FG) Hamiltonian, and the many-body
correlation operator F is given by

F = S
⎡
⎣ A∏

j>i=1

Fij

⎤
⎦. (50)

The form of the two-body correlation operator Fij reflects the
complexity of the NN potential

Fij =
6∑

n=1

f n(rij )On
ij , (51)

with O
n�6
ij given in Eq. (47). The CB states are first orthogonal-

ized (OCB) [55], preserving, in the thermodynamical limit, the
diagonal matrix elements between CB states. Then, standard
perturbation theory is used to express the eigenstates of the
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many-body Hamiltonian of Eq. (45) in terms of the OCB.
Any eigenstate has a large overlap with the n-hole–m-particle
OCB and hence perturbation theory in this basis is rapidly
converging.

The nuclear-matter SF can be conveniently split into two
components, displaying distinctly different energy dependen-
cies [16,18,50,56]. The single-particle one, associated to one-
hole (1h) states in |f 〉A−1 of Eq. (38), exhibits a collection of
peaks corresponding to the energies of the single-particle states
belonging to the Fermi sea. The continuum, or correlation,
component corresponds to states involving at least two-hole–
one-particle (2h-1p) contributions in |f 〉A−1. Its behavior as
a function of E is smooth and it extends to large values of
removal energy and momentum [15]. It has to be noted that
the correlated part would be strictly zero if nuclear correlations
were not accounted for.

The carbon SF employed in this work has been computed
following Ref. [16] and it is comprised of two contributions:

P̄h(k,E) = P̄ 1h
h (k,E) + P̄ corr

h (k,E). (52)

The 1h contribution is obtained from a modified mean-field
scheme

P̄ 1h
h (k,E) =

∑
α∈{F}

Zα|φα(k)|2Fα(E − eα), (53)

where the sum includes all occupied single-particle states,
labeled by the index α, and φα(k) is the Fourier transform
of the shell-model orbital with energy eα . Note that |φα(k)|2
yields the probability of finding a nucleon with momentum k in
the state α. The spectroscopic factor Zα < 1 and the function
Fα(E − eα), describing the energy width of the state α, account
for the effects of residual interactions that are not included in
the mean-field picture. In the absence of residual interactions,
Zα → 1 and Fα(E − eα) → δα(E − eα). The spectroscopic
factors and the widths of the s and p states of 12C have
been taken from the analysis of (e,e′p) data carried out in
Refs. [57,58].

As for the correlated part, at first CBF calculations in
isospin-symmetric nuclear matter of the hole SF are carried out
for several values of the density, identifying the mean-field and
correlated contributions. The correlated part for finite nuclei is
then obtained through an LDA procedure,

P̄ corr
h (k,E) =

∫
d3R ρA(R)P̄ corr

h,NM (k,E; ρA(R)), (54)

where ρA(R) is the nuclear density distribution of 12C and
P̄ corr

h ,NM (k,E; ρ) is the correlation component of the SF of
isospin-symmetric nuclear matter at density ρ. The use of the
LDA to account for P̄ corr

h (k,E) is based on the premise that
short-range nuclear dynamics are unaffected by surface and
shell effects. The energy dependence exhibited by P̄ corr

h (k,E),
showing a widespread background extending up to large values
of both k and E, is completely different from that of P̄ 1h

h (k,E).
For k > pF , P̄ corr

h (k,E) coincides with P̄h(k,E) and its integral
over the energy gives the so-called continuous part of the
momentum distribution.

B. Inclusion of final state interactions

In the kinematical region in which the interactions between
the struck particle and the spectator system cannot be ne-
glected, the IA results have to be modified to include the effect
of FSI. Following Ref. [14], we consider the real part of the
optical potential U derived from the Dirac phenomenological
fit of Ref. [49] to describe the propagation of the knocked-out
particle in the mean field generated by the spectator system.
This potential, given as a function of the kinetic energy of
the nucleon, tkin(p) =

√
p2 + m2 − m, modifies the energy

spectrum of the struck nucleon:

ẽ(k + q) = e(k + q) + U (tkin(k + q)). (55)

The multiple scatterings that the struck particle undergoes
during its propagation through the nuclear medium are taken
into account through a convolution scheme. The IA responses
are folded with the function fk+q, normalized as∫ +∞

−∞
dωfk+q(ω) = 1. (56)

The nucleon-density response is then given by

SFSI(q,ω) = N
∫

d3k

(2π )3
dE

∫
dω′ fk+q(ω − ω′)

× m

e(k)

m

e(k + q)
P̄h(k,E)

× δ(ω′ + E − ẽ(k + q))θ (|k + q| − pF ). (57)

The scaling functions that include FSI effects are defined
according to Eq. (10):

f FSI(ψ) = pF × 2κ SFSI(q,ω)/N . (58)

Within the convolution scheme, correlations in both the hole
and particle SFs are accounted for. As for the latter, comparing
the above result with Eq. (17) yields

Pp(p + q,ω + E)

= θ (|p + q| − pF )
∫

dω′ fp+q(ω − ω′)

× δ(ω′ + E − ẽ(p + q)). (59)

At moderate momentum transfers, the hole and particle SFs
can be consistently obtained using nonrelativistic many-body
theory. However, in the kinematical region of large momentum
transfer the dynamics of the struck nucleon in the final state
can no longer be described using the nonrelativistic formalism.
The FSI folding function is estimated by employing a general-
ization of the Glauber theory, devised to describe high-energy
proton-nucleus scattering [59]:

fp(ω) = δ(ω)
√

Tp +
∫

dt

2π
eiωt

[
ŪFSI

p (t) − √
Tp

]
= δ(ω)

√
Tp + (1 − √

Tp)Fp(ω), (60)

where the strength of the FSI is given by the nuclear trans-
parency Tp and the finite width function Fp(ω). The Glauber
factor ŪFSI

p (t), a detailed discussion of which can be found in
Ref. [18], is given in terms of the NN scattering amplitudes.
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The relation between
√

Tp and ŪFSI
p (t) can be best understood

noting that [18]

Tp = lim
t→∞ Pp(t) = lim

t→∞
∣∣ŪFSI

p (t)
∣∣2

, (61)

where Pp(t) is the probability that the struck nucleon does
not undergo rescattering processes during a time t after the
electromagnetic interaction. In the absence of FSI ŪFSI

p (t) = 1,
implying in turn Tp = 1 and fp(ω) → δ(ω).

In Ref. [14] the convolution scheme was further
approximated, assuming that for large momentum transfer
tkin(|k + q|) � tkin(|q|). As a consequence, the real part of the
optical potential only produces a shift of the response to lower
energy transfer. In this work, we retain the full dependence on
|p| = |k + q|, which brings about a Jacobian when solving the
angular integral of the initial momentum of the nucleon. This
Jacobian, not negligible in the kinematical regime where FSI
are important, quenches the quasielastic peak of the response,
enhancing its tails.

In order to make contact with the LFG formalism of Sec. III,
we rewrite the particle SF as

Pp(p,E) = θ (|p| − pF )[
√

Tpδ(E − ẽ(p))

+ (1 − √
Tp)Fp(E − ẽ(p))]. (62)

In the simple case of a zero-range NN interaction and neglect-
ing correlation effects in the eikonal factor [13]

Fp(E − ẽ(p)) = − 1

π

ImV (p)

(E − ẽ(p))2 + ImV (p)2
, (63)

where

ImV (p) = − 1
2ρvpσp. (64)

In the above equation, vp = |p|/m is the velocity of the struck
particle, which in the eikonal approximation is assumed to be
constant, ρ is the average nuclear density, and σp is the total
NN cross section.

Under these assumptions, Eq. (62) can be rewritten as

Pp(p,E) � θ (|p| − pF )

×
[

− 1

π

ImV (p)

(E − ẽ(p))2 + ImV (p)2
+ δP FSI

p

]
,

(65)

where

δP FSI
p = √

Tq

[
δ(E − ẽ(p)) + 1

π

ImV (p)

(E − ẽ(p))2 + ImV (p)2

]
.

(66)

The term δP FSI
p is expected to be small in large nuclei since

Tp = 0 in infinite nuclear matter. In addition, it vanishes for
ImV → 0, as in this limit the Lorentzian distribution cancels
the δ function. Neglecting δP FSI

p , the expression reported in
Eq. (65) is reminiscent of the definition of the SF in terms
of the nucleon self-energy given in Eq. (23). Therefore, the
approaches discussed in Secs. III and IV can be approximately

connected through the following identifications:

θ (|p| − pF )ImV (p) → m

e(p)
Im�(p,Ê)

∣∣∣
avg

, E > μ, (67)

U (tkin(p)) → m

e(p)
Re�(p,Ê) + Cρ

∣∣∣
avg

, E > μ,

(68)

for some average density. The step function in Eq. (67),
which accounts for Pauli-blocking effects as in the FG model,
implies that the particle SF vanishes when |p + q| < pF . We
should stress that the LDA approach employs a dynamical
particle self-energy that separately depends on the energy and
momentum.

V. RESULTS

In this section we present the 12C electromagnetic scaling
functions obtained using the SF approaches outlined in Secs. III
and IV. When defining the scaling variable ψ , we used pF =
225 MeV, according to the analysis of electron-scattering data
of Ref. [60]. As discussed above, the model described in
Sec. III makes an extensive use of the LDA. In this case,
the response of the nucleus is obtained by averaging the
nuclear-matter responses obtained for a given value of ρ over
the density profile ρ(r). As for the CBF spectral function,
the LDA is employed to estimate the correlated part of the
hole spectral function deduced from the CBF calculations
carried out in isospin-symmetric nuclear matter [see Eq. (54)].
In this work we employ for 12C a harmonic-oscillator den-
sity profile, ρ(r) = ρ0(1 + a(r/R)2) exp(−r2/R2), with R ∼
1.692 fm and a = 1.082 for both charge and neutron-matter
distributions [61,62]. To obtain the point-proton density from
the charge density we unfold the charge form factor of the
proton. This procedure relies on the tenet that the contribution
of longitudinal two-body currents to the charge form factor is
small, as proven, for instance, in Ref. [63].

In the following we denote by “FSI” the results of the CBF
hole SF supplemented by the convolution scheme and by “IA”
those in which FSI are neglected, as in Eq. (43). With “LDA”
we indicate the semi-phenomenological approach of Sec. III
consistently adopted for both the hole and particle SFs. When
a relativistic free nucleon in the final state (δ distribution for
the particle SF) and a fully dressed hole are considered, the
curves are labeled as “IA LDA.”

In Fig. 3, the transverse, longitudinal, and nucleon-density
scaling functions obtained using the CBF-SF model are
compared. In all cases FSI effects are included. Despite
that only one-body current contributions are considered, an
enhancement in the transverse channel (dotted red curve) with
respect to the longitudinal one (dashed blue curve) is apparent.
The nucleon-density scaling function (solid black curve) lies
between the transverse and the longitudinal ones, corroborating
this choice of the scaling function. Our analysis suggests that
the differences between the three curves have to be ascribed to
the use of the GRFG model prefactors in the scaling functions.

FSI effects in the IA scheme can be appreciated from
Fig. 4. The IA and FSI longitudinal scaling functions at
|q| = 0.57, 0.8, 0.9, 1.0, and 1.2 GeV, obtained within the
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FIG. 3. Transverse (dotted red), longitudinal (dashed blue), and
nucleon-density (solid black) scaling functions of 12C at |q| =
1.0 GeV obtained from the CBF-SF approach including FSI
corrections.

CBF-SF approach using the hole SF of Ref. [16], are displayed
in the upper and bottom panels, respectively. FSI do not play
a major role, leading to very small modifications of the IA
results except for |q| = 0.57 GeV, where they improve the

FIG. 4. Longitudinal scaling functions in 12C computed using the
hole SF [Eq. (52)] of Ref. [16] for |q| = 0.57, 0.8, 0.9, 1.0, and
1.2 GeV. Results obtained within the IA scheme are shown in the
upper panel, while those including FSI effects are displayed in the
bottom one. The standard definition of the longitudinal prefactor given
in Eq. (30) of Ref. [10] has been used to get both the theoretical curves
and the experimental points obtained from the |q| = 0.57 GeV data
of Ref. [64].

agreement with experimental data. Our findings are at variance
with those of Ref. [65], where the violation of zeroth-kind
scaling is ascribed to relativistic effects in the FSI. The
asymmetric shape of the theoretical scaling functions, mildly
affected by the inclusion of FSI, is clearly visible, although
less pronounced than in the data. It has to be noted that the
scaling functions of Fig. 4 peak at slightly larger values of
ψ compared to those obtained within the GFMC approach in
Ref. [10]. The origin of this difference is probably twofold.
On the one hand, whereas the GFMC predictions give a full
account of nuclear dynamics in the final state, SF approaches
are based on the factorization ansatz; the dynamics of the
knocked-out nucleon is taken care in a somewhat simplified
fashion, by means of either the particle spectral function
or a convolution scheme. On the other hand, as stated in
Refs. [66,67], the GFMC Euclidean response functions are
obtained from variational estimates of the ground-state wave
function rather than from the evolved GFMC wave function.
Hence, the ground-state energy E0 in the energy-conserving δ
function entering the definitions of the response functions of
Eq. (1) is approximated by the variational energy ET . Since the
best variational wave function for 12C underbinds the nucleus
by ET − E0 � 20 MeV, the GFMC response functions could
be shifted to lower values of ω compared to the experimental
ones. This can be best appreciated by looking at Fig. 4 of
Ref. [10]. The variational energy for 4He is much closer to the
experimental ones, ET − E0 � 1 MeV. This might well explain

FIG. 5. Nucleon-density scaling functions for 12C computed for
|q| = 0.57, 0.8, 0.9, 1.0, and 1.2 GeV. In the upper (lower) panel,
results obtained using CBF (relativized LDA) SFs are shown.
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why the longitudinal scaling functions of 4He are shifted to
larger values of ψ compared to those of 12C (see Fig. 14 of
Ref. [10]).

In Fig. 5 we compare the nucleon-density scaling functions
obtained using the relativized LDA approach against those
of the CBF-SF approach, for the same momentum transfer
values of Fig. 4, including FSI in the two schemes. Both
approaches provide asymmetric scaling functions that satisfy
scaling of the first kind. The comparison between LDA and
CBF predictions can be better appreciated in Fig. 6, where
results for |q| = 0.57 and 0.9 GeV are highlighted. In the upper
panel, FSI and LDA results nicely agree for both momentum
transfers. In the lower panel, we show that the consistency
between the two approaches is preserved also in the IA frame,
provided the Cρ term is included in the real part of the LDA
self-energy. Comparing the upper and lower panels, we find
appreciable FSI effects only for |q| = 0.57 GeV. The mean
value of ψ , defined by

∫
ψf (ψ) dψ/

∫
f (ψ) dψ , becomes

smaller when FSI are included. Indeed, a redistribution of the
strength is produced, which slightly enhances the asymmetry
of the nucleon-density scaling functions. The differences in
the position of the quasielastic peak—the CBF curves are
shifted towards larger excitation energies compared to those
of the LDA SF—have to be ascribed to the more accurate
description of the structure of 12C provided by the CBF SF. This
is encoded in the mean-field contribution P̄ 1h

h (p,E), extracted
from (e,e′p) experiments, and cannot be encompassed by

FIG. 6. Scaling functions for 12C computed for |q| = 0.57, and
0.9 GeV. In the upper (lower) panel results are obtained within the
FSI (IA) and LDA (IA LDA) approaches.

the LDA approach of Sec. III. It is also remarkable that the
LDA model of Sec. III leads to tails of the scaling functions
comparable to those arising in the CBF formalism. In the
latter case, these tails are mostly provided by the correlation
contribution P̄ corr

h (p,E) of the hole SF, and hence they are quite
sensitive to short-range correlations. In the LDA approach
these correlations are incorporated in the in-medium NN
potential obtained from the experimental elastic NN scattering
cross section, modified to include some medium polarization
corrections.

VI. ANALYSIS

The origin of the scaling exhibited by the nuclear responses
has a simple and exact formulation within the GRFG model,
which, however, largely fails to reproduce experimental data.
Understanding the scaling features of nuclear responses be-
comes challenging when the nucleus is treated as a fully
interacting many-body system.

In order to avoid the complications arising when GRFG
model prefactors are used to remove single-nucleon dynamics,
we focus on the nucleon-density scaling function, defined in
Eq. (10). To address the dynamical origin of first-kind scaling,
we consider a simplified description of the nucleus, yet retain
the key aspects of the many-body problem. For simplicity, our
analysis is limited to nonrelativistic kinematics. Hence, in the
following we use the nonrelativistic scaling variable [10]

ψnr = 1

pF

(
mω

|q| − |q|
2

)
. (69)

A generalization to the relativistic case does not involve
conceptual difficulties.

A. PWIA model

Within the IA, the nonrelativistic nucleon-density scaling
function is defined as

f IA(q,ω) = 2κpF

∫
d3p

(2π )3
dEP̄h(p,E)θ (|p + q| − pF )

× δ(ω + E − e(p + q)), (70)

where e(p) is the nonrelativistic energy spectrum of the initial
nucleon with momentum p.

The above expression can be further simplified within the
plane wave impulse approximation (PWIA), which amounts
to neglecting information on the target removal energy
distribution. The hole SF is written in the approximate
form

P̄h(p,E) � n̄(p)δ(E − e(p)), (71)

where the momentum distribution is defined as

n̄(p) =
∫

dEP̄h(p,E),
∫

d3p

(2π )3
n̄(p) = 1. (72)

We use a state-of-the-art momentum distribution computed
within variational Monte Carlo in Ref. [68].
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Within the PWIA, the nucleon-density scaling function
reads

f PWIA(q,ω) = 2κpF

∫
d3p

(2π )3
n(p)θ (|p + q| − pF )

× δ(ω + e(p) − e(p + q)). (73)

To better elucidate the emergence of first-kind scaling and
the asymmetry of the scaling function, we consider three differ-
ent scenarios with increasing sophistication for the description
of the energy spectrum.

Let us first assume a free energy spectrum for both the hole
and particle states in the energy-conserving δ function

δ(ω + e(p) − e(|p + q|)) = δ

(
ω − |q|2

2m
− |p||q| cos θ

m

)
,

(74)

where θ is the angle between p and q. The integration over
cos θ can be performed using the δ function, which gives rise
to a Jacobian

J = m

|p||q| = 1

2|p|κ . (75)

The fact that | cos θ | � 1 provides a lower bound to the
momentum of the hole:

|p| � pF |ψnr|. (76)

An additional constraint comes from the step function
θ (|p + q| − pF ) = θ (e(p) + ω − p2

F /2m), yielding

|p|2 � p2
F − 2mω. (77)

The latter constraint is always satisfied for sufficiently large
values of ω, in which case the integration range of |p| is limited
by Eq. (76) only. For low momentum and energy transfers, the
lower limit is instead the one of Eq. (77) leading to violations
of first-kind scaling, unless a piecewise definition of |ψnr| is
adopted [37].

Since the factor κ that appears in Eq. (73) simplifies with
the Jacobian, the result of the integration only depends upon
the lower integration limit, pF |ψnr|, and thus it is easily found
that f PWIA is a symmetric function of ψnr, as it only depends
on the modulus of this variable.

Figure 7 shows the PWIA nucleon-density scaling functions
of 12C, using the energy-conserving δ function of Eq. (74), for
different momentum transfers. Scaling is perfectly satisfied:
the curves are peaked around ψnr = 0 and do not show any
asymmetry, as expected from the above discussion. The only
difference with the GRFG case is that the scaling function
extends to values of |ψnr| larger than 1. This is due to the fact
that n̄(p) does not vanish above pF .

As a second step, we treat the hole as a bound state using
the energy spectrum of nuclear matter at saturation density of
Ref. [69] (see also the recent work of Ref. [70]). In this case
the energy-conserving δ function is given by

δ

(
ω + U (p) − |q|2

2m
− |p||q| cos θ

m

)
, (78)

where the single-particle potential U (p) < 0 has been added
to e(p). Modifying the hole energy spectrum does not change

FIG. 7. Nonrelativistic PWIA scaling responses, using the mo-
mentum distribution of 12C derived in Ref. [68] for |q| = 0.5, 0.7, 1,
and 1.2 GeV. The Fermi momentum was fixed to pF = 225 MeV.

the Jacobian of Eq. (75). However, the lower bound of Eq. (76)
now reads

|p| �
∣∣∣∣pF ψnr + m

U (p)

|q|
∣∣∣∣. (79)

The term U (p)/|q| introduces further dependencies on |q|
and leads to violations of first-kind scaling. These violations
are apparent in the results displayed in Fig. 8, where the
|p|-dependent term in the energy-conserving δ function leads
to a shift of the different curves. The peaks move to higher
excitation energies, as expected for an attractive average
hole potential. For |q| = 1.0 and 1.2 GeV, the curves peak
approximately at ψnr = 0 and the result found in the free
energy case is recovered to a very large extent. This can be
easily understood, since the average U (p)avg/|q| correction
becomes small for large values of the momentum transfer. The
shape of the scaling functions, which is still symmetric around
ψnr = 0, is almost unaffected by the single-particle potential.

FIG. 8. Nonrelativistic scaling responses obtained within PWIA
[Eq. (73)] as a function of ψnr for |q| = 0.5, 0.7, and 1 GeV. The
momentum distribution of 12C derived in Ref. [68] was used, and
the energy of the hole state was extracted from the calculations
of the nuclear matter energy spectrum of Ref. [69] and implemented
in the energy conservation [see Eq. (78)]. The Fermi momentum, pF ,
was fixed to 225 MeV.
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FIG. 9. Same as in Fig. 8, but nuclear potentials were used to
determine both the hole and particle state energies [see Eq. (80)].

Finally, we consistently include a single-particle potential
in the hole and particle energy spectra. The energy-conserving
δ function reads

δ

(
ω − |q|2

2m
− |p||q| cos θ

m
+ U (|p|) − U (|p + q|)

)
. (80)

The nontrivial dependence on cos θ hidden in U (|p + q|)
prevents one, in general, from analytically solving the inte-
gral. To circumvent this problem, we performed a numerical
integration, treating the δ function as the limit of a Gaussian.
This allows us to properly evaluate the Jacobian, which differs
from the one reported in Eq. (75). This introduces a first source
of scaling violations, as the κ factor of Eq. (73) does not
exactly cancel with the Jacobian. Nevertheless, the cancellation
is still partially produced and becomes exact in the |q| � |p|
limit. Figure 9 displays the scaling functions computed using
Eq. (80) for the energy-conserving δ function for the same
kinematical setups as in Figs. 7 and 8. The curves are still
shifted2 compared to the free case, although the position of
the peaks is closer to ψnr = 0 than in Fig. 8. This indicates a
partial cancellation of single-particle potentials in the hole and
particle spectra, as discussed in Ref. [33]. At q = 0.5 GeV,
including the single-particle potential in the particle energy
spectrum shifts the peak to lower ψ , and at q = 0.7 GeV
the peak position does not change, whereas at q = 1.0 GeV
and q = 1.2 GeV the peak is shifted to higher ψ . This is
due to the sign of the single-particle potential: U (p + q) is
negative (positive) for small (large) values of the momentum
transfer. As alluded to earlier, the new Jacobian introduces a
residual dependence on |q|, specifically in the magnitude of
the scaling functions. First-kind scaling is almost recovered
for |q| � 1 GeV, although scaling violations are already small
for |q| = 0.7 GeV. As in the other cases, scaling functions
exhibit only a small asymmetry.

2The resulting breaking scaling pattern can be understood taking
into account that

U(|p|) − U(|p + q|) < 0 (81)

and that, in the large momentum transfer, this difference becomes
independent of cos θ and has little influence in the lower limit of the
|p| integration.

Up to now, we have neglected the imaginary part of the in-
medium potentials. As discussed in Refs. [28,33], effects on the
ejected nucleon are expected to be larger than in the hole state.
The corrections induced by the imaginary part of the optical
potential on the particle states can be estimated, following
the approach detailed in Sec. IV B, by convoluting the PWIA
scaling function as in Eq. (57). Since Eq. (80) consistently
includes the single-particle potential, both in the hole and
particle energy spectra, the real part of the potential does not
have to be included in the argument of the folding function.
Analogously to the discussion in Fig. 4, the corrections are
very small and have little effect on the discussion about the
origin of the scaling. Moreover, these FSI corrections do not
induce any appreciable asymmetry in the scaling functions.

B. Beyond PWIA

The hole SF P̄h(p,E) is a function of two independent
variables, which are related in a nontrivial way. It is long known
that the PWIA of Eq. (72), which disregards the dependence
on the removal energy of the nucleus, is inaccurate. Realistic
Ph(p,E) exhibits a strong correlation between momentum
and removal energy, implying that large momenta always
correspond to large removal energies. For instance, for nuclear
matter hole SF calculated within the CBF approach, around
50% of the strength at |p| = 3 fm−1 resides at E > 200 MeV
[15]. Furthermore, the shell structure of the nucleus is com-
pletely disregarded in the PWIA of Eq. (72).

In the following, we argue that the use of a realistic hole SF
produces noticeably different scaling features of the nucleon-
density response from those obtained within the PWIA model.
In the IA, the energy-conserving δ function of Eq. (43) reads

δ

(
ω + E − |p|2

2m
− |q|2

2m
− |p||q| cos θ

m

)
. (82)

Imposing | cos θ | � 1 gives a boundary condition on both E
and |p|, which are related through P̄h(p,E). The Jacobian
still yields a factor κ that cancels the one of Eq. (73). The
binding energies associated to the continuum part of the hole
SF are generally larger than |p|2/2m + U (|p|). This feature
is particularly relevant for ψnr > 1, as larger values of ω are
needed to compensate for the large removal energy. Hence, for
sufficiently large momentum transfers we expect violations of
first-kind scaling, and the appearance of a more significant
tail at the right of the quasielastic peak that will enhance the
asymmetry of the scaling function compared to the PWIA case.

Scaling violations are apparent in Fig. 10, as the positions of
the peaks of the scaling functions depend upon the momentum
transfer. These shifts are likely to be ascribed to the energy
of the bound hole state described by the hole SF, analogously
to Fig. 8. However, the scaling functions obtained using the
hole SF show a more pronounced asymmetric shape than those
displayed in Fig. 8.

In the upper panel of Fig. 11 we show the breakdown
of the scaling response at |q| = 1 GeV into the one-hole
and correlation contributions, coming from the pole and the
continuum part of the hole Green’s function. The asymmetric
shape is mostly determined by the background contribution,
with a large tail in the region of large ψ . Interestingly, the
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FIG. 10. Scaling functions for 12C obtained in the IA from
Eq. (70) using the CBF hole SF for |q| = 0.5, 0.7, 1.0, and 1.2 GeV.

scaling response obtained by retaining only the one-hole
contribution in the SF is not completely symmetric. This has
to be ascribed to the presence of two independent integration
variables, i.e., |p| and E. This more sophisticated description of
nuclear dynamics likely contributes to the asymmetry observed
in the experimental data. In the lower panel of the figure, we

FIG. 11. Top: Breakdown of the scaling response of 12C at |q| =
1.2 GeV shown in Fig. 10 into the total, hole, and background contri-
butions. Bottom: Dashed (black) and solid (green) lines correspond
to the scaling function calculated with and without the inclusion of
the FSI effect at |q| = 1 GeV in 12C. The IA curve corresponds to
that displayed in Fig. 10, and it is used in the convolution detailed in
Eq. (57) to incorporate the FSI effects.

show how FSI affect the scaling function for |q| = 1 GeV,
comparing the IA (dashed black) and the total (solid green)
results. Although FSI are significant for moderate momentum
transfer, they are practically negligible in the kinematical
region displayed in the figure. Overall FSI provide a shift and a
redistribution of the strength of the scaling function, bringing
about an enhancement of the asymmetry.

VII. CONCLUSIONS

We studied the scaling properties of the nucleon-density
response, a key quantity to understand the scaling of the elec-
tromagnetic longitudinal and transverse response functions
[10]. The nucleon-density response of 12C was calculated in the
kinematical region in which collective excitations can be safely
neglected. To this aim, we employed particle and hole SFs
obtained within two many-body methods, both widely used to
describe electroweak reactions in nuclei.

We first considered the semi-phenomenological model de-
veloped in Ref. [28] and successfully applied it to study a num-
ber of inclusive electroweak reactions [26,31,33,35,40–43].
This model relies on realistic particle and hole self-energies
computed in isospin-symmetric nuclear matter and predictions
for finite nuclei are made employing the LDA. Short-range
effects are accounted for by an in-medium effective NN inter-
action. The latter, derived from the experimental elastic NN
cross section, also incorporates some medium-polarization
corrections through the RPA. The other approach, successfully
tested in electroweak nuclear reactions [14,21–25], is based on
a microscopic calculation of the hole SF, carried out within the
CBF theory. The interaction of the relativistic struck nucleon
with the spectator system is included via a convolution scheme,
devised from a generalization of the Glauber theory describing
high-energy proton-nucleus scattering.

We showed that both approaches lead to compatible 12C
nucleon-density scaling functions, characterized by an asym-
metric shape, although less pronounced than the one of the
experimental data. Although the CBF SF provides a more
accurate description of the ground state of 12C, presently it
can only be applied to closed-shell nuclei. However, the LDA
model can be readily extended to the 40Ar nucleus, which will
be employed in future neutrino-oscillation experiments [71].

Employing a simplified model of nuclear dynamics, which
retains the main aspects of the many-body problem, we
discussed the dynamical origin of the scaling of the first
kind exhibited by the nucleon-density response function. We
argued that its asymmetric shape is mostly due to the 2h-1p
dynamics incorporated in the continuum component of the
hole SF of Ref. [16], that in turn accounts for NN corre-
lations. Within the semi-phenomenological model developed
in Ref. [28], this effect is taken into account through the
imaginary part of the nucleon hole self-energy, Im�. In this
latter reference, an appreciable quenching of Im�, due to
polarization effects, was found at low nucleon energies and
momenta. However, we expect RPA (collective) corrections
to produce small modifications in the high-momentum com-
ponents, which are responsible for the tail. However, the
asymmetry is only slightly enhanced by FSI effects. The latter,
relevant in the low-momentum-transfer region only, lead to a
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shift of the peak position towards smaller values of ψnr and to
a redistribution of the strength towards larger values of ψnr.
According to the relativistic mean-field study carried out in
Ref. [65], the asymmetry of scaling function has to be ascribed
to the dynamical enhancement of the lower component of
the Dirac spinors, which are not present in the nonrelativistic
nucleon-density response function. Analogously to the GFMC
results of Ref. [10], the asymmetry is also observed within
the nonrelativistic scheme of nuclear dynamics based on the
particle and hole SFs. Our results do not necessarily invalidate
the relativistic mean-field picture of scaling. The intriguing
hypothesis that some of the nonrelativistic correlations might
arise from a nonrelativistic reduction performed already at the
mean-field level deserves further investigation.

Within the SF formalism, we found that, once the prefactors
describing the single-nucleon interaction vertices are divided
out, the longitudinal and transverse electromagnetic response
functions share a common kernel, intimately connected to the
one of the nucleon-density response function. Consequently,
the electromagnetic longitudinal and transverse scaling func-
tions are very similar to the nucleon-density scaling function—
the small differences being ascribable to discrepancies between
GRFG and SF prefactors. Therefore, besides two-body current
and collective corrections effects, the breaking of zeroth and

first-kind scalings has be attributed to deficiencies in the
nuclear model used to estimate the single-nucleon electroweak
matrix elements in nuclei.
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