
PHYSICAL REVIEW C 97, 035502 (2018)
Editors’ Suggestion

Electron time-of-flight: A new tool in β-decay spectroscopy
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We show that electron time-of-flight can be a useful tool in β-decay spectroscopy, even in the energy range up
to 700 keV relevant for neutron β decay. As a first application, we use electron time-of-flight measurements for
the precise calibration of an electron detector.
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I. INTRODUCTION

Many experiments on neutron and nuclear β decay search
for new phenomena beyond the present standard model. In
favorable cases, experiments in the field of low-energy particle
physics reach limits on new physics that are similar to or
better than corresponding limits from high-energy physics,
for recent reviews see Refs. [1–6]. In neutron decay, as an
example, recent high statistics experiments [7–9] create a
need for the development of improved methods of detector
characterization.

In this context, we investigated the use of electron time-of-
flight (ToF) for studies in β decay. In the past, electron ToF has
played no role in β-decay experiments, because ToF requires a
long distance between source and detector, leading to a small
solid angle of detection. To increase the solid angle, one can use
a magnetic field to guide the electrons from the source to the
detector. Many β-decay experiments use such guiding fields.
Unfortunately, when the electrons gyrate about the magnetic
field, their flight times depend not only on energy, but also on
the angle of electron emission, and the two quantities cannot
be disentangled. Furthermore, ToF requires a start signal from
a detector near the source.

Several ToF applications are possible that overcome this
problem, using uniform or nonuniform magnetic fields, as
was discussed in Ref. [10]. Here we use a nonuniform field
configuration for electron spectroscopy, which we call the
inverse magnetic mirror configuration (as shown below in
Fig. 1), which makes ToF almost independent of emission
angle. As a first application, we use ToF for the energy
calibration of a plastic scintillator. Such scintillators are widely
used in nuclear and particle physics. From the measured
ToF, we calculate the kinetic energy of the electrons, and
compare this energy with the size of the signal measured in
the energy-sensitive scintillator. Detector calibration by ToF
is complementary to conventional calibration with conversion
electrons of known energy: ToF offers high resolution at lower
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energies, where flight times are long, whereas calibration with
conversion electrons has large errors at low energies.

Up to now, electron time-of-flight methods were limited
to energies of several keV. An example is photoelectron spec-
troscopy, which uses ToF for electron energies of order 1 eV–10
keV in magnetic bottle spectrometers, as the inverse bottle
configuration is often (and somewhat imprecisely) called [11–
13]. Similar field configurations are found in the first half of
so-called β-retardation spectrometers such as aSPECT [14] or
KATRIN [15]. The aSPECT spectrometer measures electron-
neutrino correlations in neutron decay (no electron ToF). The
KATRIN spectrometer searches for a nonzero neutrino mass
near the 18 keV endpoint energy of tritium decay, and electron
ToF measurements were done in a proof of principle experi-
ment [16], see also Ref. [17]. In a different approach, an elec-
tron ToF spectrometer for energies below 100 keV was tested
in 1984 [18] using electrons with long trochoidal trajectories
in a rotationally symmetric field with radial 1/r2 dependence,
but this method apparently has never been followed up. Finally,
in previous experiments on electron, proton, and antineutrino
asymmetries in neutron decay [7,19–21], electron ToF cuts
were used merely to identify the initial direction of electron
emission, in order to assign backscattering events to a specific
detector. For highly relativistic electrons, on the other hand,
with energies far above the electron rest mass of 511 keV, hence
with velocities υ ≈ c, flight times are nearly independent of
energy and cannot be used to measure particle energies.

At present, a large new neutron decay spectrometer named
PERC is under construction by a Munich-Vienna-Heidelberg-
Mainz-Grenoble collaboration [22,23], to be installed at the
FRM-II reactor neutron source of the Maier-Leibnitz Center
of the Technical University Munich. It consists of an 8 m long
section of low and uniform solenoidal magnetic field (up to 1.5
T), followed by a short section of high field (up to 6 T), and
therefore it will provide the required inverse magnetic mirror
configuration. It turns out that with this field configuration,
which had been selected for other reasons, electron ToF can
become a useful tool for in situ characterization of electron de-
tectors. Such characterization by ToF using PERC may include

(i) Detector energy calibration in an inverse magnetic mir-
ror configuration, as described in the present article.
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FIG. 1. Magnetic field profile B(z) of our inverted magnetic
mirror, with peak field B0 = 3 T. The start detector and the source
are at position z1 where B1 = 2.5 T, the stop detector at z2 where
B2 = 22 mT.

(ii) Measurement of detector response as a function of the
electron angle of incidence, in a symmetric solenoidal
field configuration.

(iii) A complete experiment on electron backscattering in
a uniform magnetic field.

For more details, see Ref. [10].
Section II presents the method of electron spectroscopy

by ToF in an inverse magnetic mirror. Section III describes
a prototype apparatus built to prove the feasibility of detector
calibration by ToF, using a setup smaller than the full PERC
spectrometer. Section IV presents the measured data and their
evaluation, from which the energy response curve of a plastic
scintillator is derived.

II. ToF SPECTROSCOPY IN NONUNIFORM FIELDS

To use electron ToF for the energy calibration of a detector,
we must eliminate the strong dependence of the path lengths
of the gyrating electrons on their emission angle. To this
end, we choose a guiding field in an inverse magnetic mirror
configuration: we place the electron source in a high magnetic
field of short length, with some start detector nearby. In
contrast, the long main electron flight path and, at its end,
the stop detector, are in a low magnetic field, with a smooth
transition between both fields. When the electrons reach the
low field region, their angular distribution is strongly narrowed
by adiabatic invariance. Consequently, the effective length of
electron flight paths becomes nearly independent of emission
angle, and so does the electron ToF.

Figure 1 shows our magnetic field distribution, which is
similar to that foreseen with PERC, but with lower field and
of half its length. By the inverse magnetic mirror effect, an
electron will, on its trajectory along the decreasing field B(z),
increase its longitudinal velocity component υz at the expense
of its transverse components υx and υy , its amplitude υ being
a constant of the motion. Thereby, the angle θ = arccos(υz/υ)
between the velocity vector and the z axis will continuously
diminish on the electron’s flight along B(z). From the adiabatic
condition follows that this angle is related to the local field
value B(z) and the initial polar emission angle θ1 of the electron

at field B1 as

sin θ (z) =
√

B(z)/B1 sin θ1. (1)

For the field configuration of Fig. 1, even for the case of
electron emission under right angles θ1 ≈ 90◦, the angle θ (z)
rapidly diminishes along z, down to θ2 = 5.3◦ in the field B2 =
22 mT, where cos θ2 = 0.996.

The initial radius of electron gyration is r1 = r10 sinθ1,
with the maximum gyration radius r10 = p/eB1, and electron
momentum

p = c
√

E(E + 2mc2), (2)

with electron kinetic energy E and rest mass m. While the
electron’s angle θ from Eq. (1) decreases during adiabatic
transport through the field B(z), its gyration radius increases
as

r(z) =
√

B1/B(z)r1. (3)

With B(z) from Fig. 1, electrons with, for example, E =
500 keV start with maximum gyration radius r10 = 1.1 mm at
position z1, and end with maximum radius r20 = 12.3 mm at
position z2. With no field applied, the direct ToF of an electron
from the source to the detector is

T0 = z0/υ, (4)

with the distance from the source to the stop detector z0 =
z2 − z1, and with the velocity υ obtained from the relation
β = υ/c = cp/W , with total energy W = E + mc2, or

υ = c
√

E(E + 2mc2)/(E + mc2). (5)

In a uniform magnetic guiding field B, the flight time T of
an electron over a distance z0 along B is

T = �0/υ = z0/(υ cosθ ), (6)

where �0 = z0/ cos θ is the electron’s path length, and θ its
emission angle.

With a radially symmetric nonuniform guiding field B(z)
along z, the electron flight time is replaced by the integral along
axis z

T = �/υ =
∫ z2

z1

dz/υz(z), (7)

with υz(z) = υ cos θ (z). Using Eq. (1) (dropping the index 1 on
the initial emission angle θ ), the electron path length becomes

�(θ ) =
∫ z2

z1

dz/

√
1 − [B(z)/B1] sin2θ. (8)

In the adiabatic approximation, there is no need to bother
with electron gyration in the plane perpendicular to the field
axis.

Figure 2 shows this flight length � as a function of θ (solid
line), calculated for the field profile B(z) of Fig. 1. The strong
dispersion of path lengths in the uniform field case (dotted
line, diverging for θ → 90◦) almost completely disappears.
Even for emission under θ = 90◦, electron paths have nearly
the same length as for emission under θ = 0◦, which is z0 =
4.452 m (dashed line). The tiny residual dispersion of path
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FIG. 2. Electron path length � as a function of emission angle θ .
Dotted curve: for a uniform guiding field, the length of the electron
trajectories z0/ cos θ reaches 14 m for θ = 70◦ and diverges for θ =
90◦. Dashed line: with no guiding field, for direct flight to a distant
detector, all flight paths have the same length � = z0 = 4.452 m. Solid
line: for the inverse bottle field of Fig. 1, all path lengths from Eq. (8)
are nearly the same, � ≈ z0, even for electron emission at θ = 90◦.

lengths seen in the figure lead to small shifts und additional
broadening of the flight times T .

The adiabatic condition requires that the change of the
magnetic field B(z) along z is small during one cycle of
the helical motion of the charged particle. From this follows
that adiabatic transport is guaranteed for a small adiabatic
parameter

η = 2πp

eB2

∣∣∣∣dB

dz

∣∣∣∣ � 1. (9)

For our setup, for E = 500 keV, the adiabatic parameter η
reaches a maximum of 0.76, see Fig. 3, as calculated from the
measured field map. This maximum does not occur at the edge
of the solenoid at z = 0.15 m where the axial field gradient
dB/dz is steepest, but at z = 0.23 m within the opening of the
iron yoke of the magnet shown in Fig. 4. Possible effects due to
nonadiabaticity will be discussed in Sec. IV D. In any case, such
large values for η will not occur in PERC, see Ref. [23], where,
as in all neutron decay instruments, adiabaticity of particle
transport is crucial.
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FIG. 3. The size of the adiabatic parameter, Eq. (9), along the
electron flight path within the superconducting magnet, Fig. 4, for
E = 500 keV.
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FIG. 4. Setup of the ToF apparatus. The 90Sr-90Y electron source
is located inside the start detector on the left (small spot) at high field
B1 = 2.5 T. The stop detector is placed on the right at low field B2 =
0.022 T. A light guide couples each detector to its photomultiplier
(PM). In gray, the iron yoke of the magnet.

III. ToF INSTRUMENT

We first discuss the prototype ToF apparatus, shown in
Fig. 4, built to test the feasibility of the proposed calibration
method, and then present the results of some instrumental
simulation studies.

A. ToF setup

The instrument consists of a superconducting high-field
section and a conventional low-field section. For the high-field
section with B0 = 3 T, we use a 0.3 m long superconducting
solenoid of 80 mm inner diameter, with a warm bore of
44 mm diameter, and an iron yoke of outer length 0.5 m and
thickness 3 cm. In a similar setup, this solenoid had been
used before to establish the electron point spread function after
magnetic transport, see Ref. [24] and references therein. For
the low-field section with B2 = 22 mT, we prolonged the tube
of the warm bore to a length of 5.0 m on one end of the magnet,
and equipped it with a 4.42 m long water-cooled conventional
solenoid of 65 mm inner diameter and 3000 turns.

The source and the start and stop detectors were located
at z1 = 0.110 m and z2 = 4.562 m, respectively, the distance
from the source to the center of the stop detector being z0 =
z2 − z1 = (4.452 ± 0.003) m. The 3 mm error of z0 covers
uncertainties both in thermal expansion of the long beam tube
and in the position of electron emission and absorption.

Both detectors were flat plastic scintillators (Saint Gobain
BC 440), 5 mm thick, with 40 mm diameter. Each scintillator
was coupled to a photomultiplier (Hamamatsu R5504) of low
magnetic-field sensitivity via an acrylic light guide of 40 mm
diameter, of 0.5 m length for the start detector, and 0.2 m for the
stop detector. To enhance light detection, the start scintillator
was covered with a 10 μm thick reflecting foil of aluminized
mylar.

As electron source we chose the pure β emitter 90Sr, of
half-life 29 years, with an activity of about 8 kBq. The 90Sr
β transition has an endpoint energy of 0.546 MeV, while the
daughter β transition of 90Y has its endpoint at 2.3 MeV, and an
average energy of 927 keV. To obtain a start pulse for the ToF
measurement, a drop of the source liquid was dried onto the
bottom of a small, 2.5 mm deep hole of 5 mm diameter drilled
into the center of the plastic scintillator, as shown in Fig. 5.
In this way, to reach the surface of the start detector facing
the stop detector, electrons had to penetrate at least 2.5 mm of
scintillator, in which all βs of the low-energy 90Sr transition
were absorbed. Essentially all electrons leaving the scintillator
produced a time signal in the start detector. Reference [10]
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FIG. 5. Close-up of the start scintillator (shown on the left of
Fig. 4).

discusses alternative methods to create a start pulse for ToF
measurements.

For each detector, scintillation light is guided to a photomul-
tiplier, where it is transformed into an analog signal. This signal
then enters a linear fan-out, whose first output has to pass a
constant fraction discriminator (CFD), while the second output
is analyzed by a charge-to-digital converter (QDC). If the CFD
signals of start and stop detectors are detected in coincidence,
the data enter a so-called LogicBox, a home-developed data
acquisition system [25]. The CFD output pulses are also used
as input for a time-to-digital converter (TDC, Caen V775N),
which provides the timing information. For energy analysis,
the QDC provides a sample of an analog pulse every 10 ns,
64 samples altogether. An off-line fit to the samples of the
integrated pulses finally yields the signal amplitudes. The fit is
also used to crosscheck the measured ToF and to reject events,
including multiple electron hits, by analyzing the goodness of
fit. By this procedure, 7.8% of all events were rejected. We use
a Landau distribution as a model for the time dependence of
the photomultiplier pulses.

Exact timing is essential to the success of the ToF method.
The clock of the TDC was calibrated by extending the signal
paths of either one or the other channel by precisely known
delays. Furthermore, the timing of both detectors is differing
due to different photon yields, to different lengths of light
guides and cables, and to the time walk of the discriminators.
To measure this amplitude dependent timing offset δT and
its width σT , we reduced the distance between both detectors
from z0 = 4.45 m to approximately 1 mm and repeated the
measurement with an expected ToF of zero. After this proce-
dure, the overall error of δT is estimated to 0.4 ns. We shall
see, however, that this timing accuracy is not sufficient at the
higher electron energies, and will present in Sec. IV A different
method to determine δT precisely.

One shortcoming of our apparatus is the rather small inner
diameter (44 mm) of its long electron flight tube. Let us make
the (nonrealistic) assumption that the electrons leave the start
detector at its center, that is, on the central field axis, to be
transported adiabatically by the guide field to the stop detector.
Then the electrons fit into the beam tube up to an energy of
420 keV. Beyond this energy, the maximum gyration diameter
2r20 at low field B2 exceeds the tube radius a = 22 mm, and
some electrons with large emission angle will hit the wall of the
tube. If these electrons are backscattered from the wall, they
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FIG. 6. Simulated initial angular distribution at the start detector,
for electrons that reach the stop detector. The line is drawn to guide
the eye.

inevitably hit the wall again, and in this way, are eliminated
from the beam after a short distance along z. In this case, for
2r20 > a, the solid angle of electron acceptance drops with
increasing energy as


(E) = 1 −
√

1 − [a/2r20(E)]2. (10)

In reality, the electrons’ starting points have a radial dis-
tribution of finite diameter, and we must rely on numerical
simulation.

B. Simulation studies

We did detailed numerical calculations and simulations on
the properties of our apparatus. In principle, the ToF method
requires no precise knowledge of the spectral and angular
distributions of the electrons leaving the scintillator, because
electron energy is measured separately by ToF, and the value of
ToF is almost independent of the angle θ of emission. For the
same reasons, the above-mentioned losses on the wall of the
long flight tube are innocent. However, to be able to correct also
for the small residual θ -dependent dispersion ��/� apparent in
Fig. 2, and to investigate the effects of nonadiabaticity shown
in Fig. 3, a simulation was performed with GEANT4, release
10.3.1 [26]. The required adaptions to the default settings [27]
of GEANT were carefully taken into account. The simulation,
based on 3 × 105 electron events, gives useful information on
both spatial and angular distributions of electrons emitted from
the start detector.

First, we simulated the spatial distribution of the electrons
that leave the start detector through the surface facing the stop
detector, in the geometry shown in Fig. 5. Due to electron
straggling, it shows a mean radial spread about the field axis of
3.4 mm FWHM, and a spread of 10 mm at one-tenth-maximum.
Remarkably, only those electrons starting with a radial distance
below 2 mm reach the stop detector, the others are lost on
the wall of the beam tube. Second, we simulated the initial
angular distribution at the start detector of the electrons that
do arrive at the stop detector. This distribution, after all wall
losses and nonadiabatic changes of the electrons, is shown in
Fig. 6. It is forward peaked, with a mean polar emission angle
of 〈θ〉 = 28◦. Incidentally, the partial loss of events with high
energies on the wall of the flight tube is also the reason why
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a stop detector of thickness 5 mm was sufficient for electrons
with energy below 1.1 MeV.

IV. ToF MEASUREMENTS AND RESULTS

In the following, we first list the existing methods of detector
calibration. We then present our ToF data, obtained with the
setup of Fig. 4, after various transformations. We indicate
a method that permits to pin down the ToF offset to a few
picoseconds. The energy response of our stop detector obtained
from these data then is compared to theoretical expectations,
and to a previous calibration based on conversion electron
spectroscopy.

A. Methods of detector calibration

The calibration curve of an electron detector gives the rela-
tion between the electron kinetic energy E and the amplitude of
the signal registered in the detection system. If the signals are
stored in the channels numbered ch of a multichannel analyzer,
then for the general case of a nonlinear response (with zero
offset) we write this relation as

ch(E) = g(E) E, (11)

with some gain or response function g(E). For the ideal case
of a linear detector response, the slope of the calibration curve
is a constant g0.

Various methods of energy calibration are in use for elec-
trons in the energy range of neutron β decay, whose endpoint
energy is 782 keV:

(i) The most popular method is the above-mentioned
in situ calibration with monochromatic electrons of
known energies, as obtained from a set of conversion
electron emitters such as 109Cd, 113Sn, 139Ce, 137Cs,
207Bi, and others, whose conversion lines cover the
energy range up to 1 MeV. These sources are installed
within the spectrometer, and are moved during data
taking in regular time intervals into the line of sight of
the detectors. However, this method is rather imprecise
at low energies, because each such emitter has a
multitude of conversion and Auger lines that introduce
uncertainties into the calibration process. This was
one of the reasons why the fit regions in previous
neutron-decay experiments were chosen to start only
at 300 keV, near the peak of the neutron β spectrum
[7,19].

(ii) This in situ calibration method can be accompanied
by more precise off-line calibration, using a magnetic
momentum filter with a (uncalibrated) broadband elec-
tron source. Many different field configurations are
possible for this purpose, see for instance Ref. [28].

(iii) A different off-line method measures angle and energy
of Compton scattered γ rays, which create electrons of
known energy within the bulk of the detector [29,30].
This method determines the bulk response of the detec-
tor material, but is insensitive to surface effects, such
as dead layers in silicon detectors, or surface cracks
in plastic scintillators, which may become important
if the electron source lies outside the detector.

For PERC, electron energy calibration by ToF would com-
bine several advantages of these methods:

(i) Like the conversion electron method (i), it can be done
in situ, with the same apparatus as used in experiment.

(ii) Like the magnetic filter method (ii), it is sensitive to
dead layers and imperfections of the detector surface.

(iii) Like the Compton method (iii), it is precise at low
electron energies.

B. ToF data

To determine the gain function g(E) of our scintillator, we
recorded, for each event numbered i = 1, . . . ,73 015, a ToF
value Ti from the start and stop signals, and a channel number
chi of the coincident energy signal in the stop detector. The
scatter plot “channel ch vs ToF T” in Fig. 7(a) shows the data
points from our measurement at B = 3 T, for a ToF offset δT =
−92 ps, as determined below, and with channel number zero set
to signal height zero (no ch offset). To study systematic effects,
similar measurements were also done at B = 2 T and 1 T. To
guide the eye, the solid curve in the figure shows the relation
between ch and T for a linear response ch(T ) = g0E(T ), with
g0 = 2.156 ch/keV, and

E(T ) = mc2
[
1 /

√
1 − z2

0/[c (T − T0)]2 − 1
]
, (12)

as derived from Eqs. (4) and (5) under the assumption that
path length � = z0, or cos(θ ) = 1, cf. Fig. 2. The thin vertical
line in the figure gives the limiting value T0 = z0/c = 14.85 ns
for direct flight at infinite energy, well separated from the
minimum ToF at finite energies (15.1 ns at 90Y end-point
energy, 16.2 ns at neutron decay end point). The plot extends
to T = 45 ns, which corresponds to E = 30 keV. One finds a
certain number of data points with exceptionally low channel
numbers, which make up about 3% of the total number of
events. These points are due to electrons that backscatter from
the stop detector and deposit only part of their energy in the
scintillator.

The dashed curves in Fig. 7(a) are derived from the solid
curve by adding and subtracting the expected one-σ standard
deviations. The scatter of the data in the figure has two sources.
The scatter in the horizontal along the T axis is due to
the finite ToF resolution, which we assume to be Gaussian,
determined below to σT = (330 ± 8) ps. The scatter in the
vertical along the ch axis is due to the statistical Poissonian
variation of the number N of photoelectrons (p.e.) registered in
the photomultiplier of the stop detector, with standard deviation
σN = N1/2.

The sensitivity of our scintillation detector is measured to
ν = (165 ± 5) p.e./MeV, see below, with N = νE for linear
response (when we say linear response, we also mean zero
offset). The statistical ±N1/2 scatter is significantly larger than
the scatter due to electronic noise. The dashed line then is
obtained by displacing each point on the solid curve by σT in
the horizontal and by σch = (g0/ν)σN in the vertical, to reach
a point at distance (σ 2

T + σ 2
ch)1/2. For the longer flight times T ,

the variance σ 2
T from the ToF error can be neglected against the

variance σ 2
ch from photoelectron statistics, the crossover σ 2

T =
σ 2

ch occurring at T ≈ T0 + 3 ns ≈ 18 ns where E ≈ 500 keV.
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FIG. 7. (a) Scatter plot derived from the simultaneous measurement of electron ToF T and channel number ch in the energy sensitive stop
detector. The thin vertical line indicates the lower time limit T0 = z0/c. (b) As (a), but with the abscissa changed to electron energy E, derived
from T via Eq. (12). (c) As (b), but with the ordinate changed to gain g = ch/E. For details on the dashed one-sigma error contours, see text.

With the given errors, the reduced χ square of the data points in
Fig. 7(a) is χ2

o = 0.91. With the low-lying backscatter events
removed, this reduces to χ2

o = 0.80, which may indicate that
error estimates are slightly conservative.

Next we transformed the coordinates of the figure into those
of a conventional calibration curve, channel ch vs energy E,
shown in Fig. 7(b), by using E(T ) from Eq. (12). The solid
line is the linear calibration curve ch = g0E, with g0 as in
Fig. 7(a). The vertical scatter in ch is the same as before, while
the previous ToF scatter leads to a horizontal energy scatter
σE = |dE/dT |σT , where

dE

dT
= − c

z0

[E(E + 2mc2)]3/2

m2c4
. (13)

The dashed curves in Fig. 7(b) show again the one standard
total deviations ±(σ 2

E + σ 2
ch)1/2. Only energies up to 700 keV,

with β = 91%, are used in the plot, because beyond this energy
the ToF method becomes imprecise.

To recognize nonlinearities in the calibration curve, we
transformed the data points once more, changing the coor-
dinates to “gain g = ch/E vs E”, see Fig. 7(c). In this case,
for a linear detector response, the data points should scatter
in the vertical about a constant value g0. To guide the eye,

the horizontal line in the figure shows the same constant gain
g0 = 2.156 ch/keV as before.

In Fig. 7(c), the widely dashed curves show again the one
standard deviation from the horizontal line g = g0. Under
linear response, the scatter in the horizontal with standard devi-
ation σE = |dE/dT | σT has no effect on g0. Instead, σE enters
the vertical gain error σg = g0[(σE/E)2 + (σch/ch)2]1/2. The
dotted and the narrowly dashed curves show separately the
individual contributions of σE and σch, respectively. Points
with a gain that is more than about three standard deviations
below g0, mostly due to backscattering, are discarded in
Figs. 7(b) and 7(c).

In our data treatment, as a further refinement we included
the effect of the small residual dispersion of path lengths ��/�,
which vary with initial emission angle θ as was shown by the
solid line in Fig. 2. To this end, we corrected the flight times
T of the individual data points to

T ′(θ ) = [1 − ��(θ )/z0] T + δT (14)

and averaged our calculations over θ , using the angular distri-
bution of Fig. 6. In Eq. (14), we also foresee a constant residual
ToF offset δT .
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FIG. 8. Counts per bin as a function of gain g, obtained from vertical cuts in Fig. 7(c), for selected electron energies E. Solid curves: fits
to the data. Dashed vertical lines: mean values of the distribution. Solid vertical lines: saturation gain g0 = 2.156 ch/MeV. At low energies,
shown in the panels of the top row, the mean values steadily move into the direction of g0. At high energies, shown in the panels of the bottom
row, the distributions remain centered at g0. Bin widths are �E = 25 keV and �g = 0.1 ch/keV.

C. Signature of nonlinearity

When looked upon from a certain distance, the horizontal
stripe of data points in Fig. 7(c) seems to bend down for
the lower energies, which hints at a nonlinearity of the gain
function g(E). To investigate this more closely, we look at
the distribution of data points along vertical bands of constant
energy, parallel to the g axis. The two vertical lines in Fig. 7(c)
indicate one such band. In more detail: for an energy band of
width �E, centered at energy Ei , we determine the contents
of the successive gain bins of constant width �g and of size
�E × �g. We then plot the number of events in these bins,
and determine the mean gain of this distribution. This gives us
the gain function g(Ei) of the plastic scintillation detector at
energy Ei . The bin widths are chosen to �E = 25 keV along
the horizontal and �g = 0.1 ch/keV along the vertical axis.
These bins then cover the plane of Fig. 7(c) without overlap.

Figure 8 shows the resulting distributions of event numbers
within these bands, for a subset of eight different energies
Ei , which are indicated in the top left of each panel. The
dots in the figure give the bin contents, while the curves are
fits to Gaussians (Poissonians for energies below 200 keV
where timing errors are negligible), with predetermined total
widths σg(Ei). The only fit parameters are position (= mean)
and amplitude of the distribution. The mean values of the
curves give the gains g(Ei) at energies Ei , indicated by the
dashed vertical lines. The solid vertical lines indicate the fixed
saturation gain g0. In the first panel with E = 50 keV, the
low-energy cutoff of the trigger function of the stop detector
becomes visible. Therefore, in this first panel, the fit to the data
begins not at zero, but at g = 1.2 ch/keV.

In the top panels of the figure, energies increase from
50–200 keV in steps of 50 keV, with E in the center of the band.

In the bottom panels, energies increase from 300–600 keV
in steps of 100 keV. We see that, with increasing energy, the
positions g(Ei) (dashed vertical line) move asymptotically
towards a constant gain g0 (solid vertical line). The typical
reduced χ squares of the fits in Fig. 8 vary between 0.7 and
1.7, with 38 degrees of freedom (dof).

We can do the same fits with the two width parameters,
number of photoelectrons, and ToF resolution as additional
free parameters. The results are ν = (165 ± 5) p.e./MeV,
and σT = (330 ± 8) ps. These additional parameters do not
deteriorate the fit results for the position parameters g(Ei) in
Fig. 8, because they are uncorrelated to g to better than 10−6 at
100 keV and beyond (the same is true for the amplitudes of the
curves). The result for ν is consistent with results from 207Bi
calibration measurements, and the value for σT is somewhat
better than the σT = 400 ps conservatively estimated from the
spread of ToF signals, as was described in Sec. III. Within
error, the g(Ei) remain the same when detector sensitivity ν is
varied between 120 and 220 p.e./MeV, and when instrumental
ToF error σT is varied between 0.2 and 0.5 ns.

However, we have to add another important step, because
the time calibration procedure described in Sec. III turned
out to be insufficient for our purposes. Certainly, the strong
nonlinearity seen at low energies (long flight times) is rather
stable against variations of the offset δT . On the other hand, for
the larger energies, beyond about 400 keV where T − T0 falls
below 3 ns, the gain function g(E) becomes rather unstable
under variation of δT . Even worse, in spite of our efforts to
balance the timing in both detector channels (described in Sec.
III A), there remained an overall timing offset of 1.115 ns,
probably due to some bookkeeping error. This offset was easily
visible in the high-energy ToF data [near the vertical line in
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FIG. 9. The timing offset δT and the saturation gain g0 are fixed
by the requirement that the normalized gain saturates to g(E) = g0 for
the higher electron energies E. Shown are the 1, 2, and 3 σ χ -square
contours for deviations of the gain function g(E) from a constant g0

for the higher electron energies. The χ -square minimum, χ2 = 15.2
with 9 dof, lies at δT = −92 ps and g0 = 2.156 ch/keV.

Fig. 7(a)], and we removed it beforehand from the data, though
still keeping an eye on a possible residual δT in Eq. (14).

There is a simple way out of these timing problems: We
postulate that detector nonlinearities occur only at the lower
energies, that is, we require that the gain g(E) saturates
at higher energies and reaches a constant value g0. This
postulate seems to hold for the scintillation process [31],
and has, to our knowledge, never been called into question.
There still might be nonlinearities in the subsequent signal
processing modules, due to bandwidth limitations. However,
such electronics induced nonlinearities were tested separately
and were found to be small in the energy interval tested for
saturation. As we shall see, this postulate of saturation, when
applied to our data, fixes δT and g0 and drastically reduces
their errors.

To assure that detector response saturates at high energies,
we varied the timing offset δT and the saturation gain g0 and
calculated, for energies from 350–625 keV, the χ square for the
deviation of the gain function g(E) from a constant g0. Figure 9
shows the 1, 2, and 3-σ contours of χ2 as a function of δT and
g0. By this procedure, the time offset is fixed to δT = (−92 ±
7) ps, and the saturation gain to g0 = (2.156 ± 0.006) ch/keV,
with a reduced χ square of χ2

0 sat = 3.0 with 9 dof, where
the subscript “sat” stands for saturation test. Between 0.3 and
1.0 MeV, this result is, within errors, stable agains variations
of the fit interval. The curves in Fig. 8 had been derived with
these optimum values of δT and g0.

D. Gain function of the scintillator

Figure 10 shows the detector response or gain function
obtained in the described manner. The errors shown are the fit
errors for the positions of the distributions in Fig. 8. To guide
the eye and to quantify our result, an exponential approach to
saturation at high energies is fitted to the data points,

g = g0(1 − q e−E/Ec ), (15)

0 100 200 300 400 500 600
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1.6

1.8
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2.2

Energy E keV
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hc

Vek

FIG. 10. The gain function g(E) of the plastic scintillator, as
derived from Fig. 8. Below 350 keV, a strong nonlinearity appears,
with g significantly deviating from its saturation value g0. The solid
curve is an empirical fit to Eq. (15). The dotted curve shows the
expectation from theory, Eq. (16).

with two free parameters, the deviation q from linearity at
E = 0, and a characteristic energy Ec, with the result q =
0.29 ± 0.03 and Ec = (115 ± 8) keV, with a reduced χ square
of 3.0 with 22 dof. (In fact, shown is not g, but 0.995g, to better
approach the dotted asymptotic Birks curve.)

A known source of nonlinearities at low energy is the light
yield L of the scintillation process, described by Birks’ law
[32]

dL

dE
= 1

1 + kB dE/dx
. (16)

A value of the Birks constant kB was measured indepen-
dently for a similar scintillator (Saint Gobain BC 404) with the
Compton apparatus of Ref. [30], and was found to be of the
order of 120 nm/keV. The dotted curve in Fig. 10 shows the
gain function expected from Eq. (16) with this value of kB,
and with dE/dx for plastic scintillators (vinyltoluene based)
from [33]. Its nonlinearity is much smaller than that seen in
our measurement.

As Birks’ formula accounts for the bulk properties of a
scintillator, it is likely that this deviation is due to effects
specific to our setup. One might suspect that this deviation
is due to a dead layer, caused, for instance, by microcracks
in the surface of the plastic scintillator. However, this seems
unlikely, because a dead layer of several μm thickness would
produce an additional cutoff at low energy not visible in the
data. Possibly, the deviation is due to additional electronic
effects at low energies, but for an in situ correction one does
not really have to know the origin of the deviation as long as
it is the same as in the data under correction, and not linked to
the ToF method itself.

On the other hand, for energies beyond 650 keV, not shown
in Fig. 10, the gain decreases almost linearly by 2% per
additional 100 keV. This loss is due to a partial saturation of the
QDC. At energies beyond 1.1 MeV, also the finite thickness of
the stop detector starts playing a role. More generally, when
electron velocities approach the speed of light, the sensitivity
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TABLE I. The shape of the detector response in Fig. 10 is, within errors, insensitive to the shape of the underlying angular distribution
of the electrons (first two columns), and to nonadiabatic effects (last line). The quantity 〈��/�〉 (third column) gives the path length changes
(Fig. 2), averaged over these angular distributions. The nonlinearity q of the gain function g(E) at E = 0 and the characteristic energy Ec (last
two columns) are from fits to Eq. (15). “Simulated” refers to the angular distribution of Fig. 6, as does “Extreme”, but with a 30 times enlarged
〈��/�〉.

Angular Mean emission 〈��/�〉 for Nonlinearity Characteristic
distribution angle 〈θ〉 path lengths � q energy Ec (keV)

Cigar 0◦ 0 0.30(3) 112(8)
Simulated 28◦ 0.3% 0.29(3) 115(8)
Isotropic 57◦ 1.1% 0.29(3) 112(8)
Pancake 90◦ 3.4% 0.30(3) 116(8)
Extreme 28◦ 10% 0.26(3) 111(12)

of the ToF method is getting lost. For ToF applications in
neutron decay, however, with its 782 keV endpoint energy,
these deviations at high energy are not relevant.

To find out whether the gain function in Fig. 10 is sensitive
to deviations from the initial angular distribution of Fig. 6,
we repeated the evaluation for several other emission patterns,
with different flight path corrections ��(θ ) in Eq. (14). Besides
the distribution given in Fig. 6 (depicted as “Simulated”), we
used a strongly prolate distribution (θ ≈ 0◦) where � ≈ z0

(“cigar”), a strongly oblate distribution (θ ≈ 90◦) where �
deviates most strongly from z0 (“pancake”), as well as an
isotropic distribution, see Table I. For all these angular patterns,
listed in the first column of Table I, the values for q and
Ec come out practically the same, and therefore the shape
of the respective gain functions looks practically the same
as that shown in Fig. 10, with about the same χ square.
Furthermore, nonadiabatic effects, Fig. 3, may induce an
additional broadening of the path length distribution. To check
this, we increased the path length dispersion to an extreme
value ��/� = 10%, 30 times stronger than expected for the
simulated distribution, Fig. 6, under adiabatic transport. Again,
the changes of the gain function remain within error, see the
last line in Table I. Evidently, our saturation requirement forces
detector response always into the same appearance.

To give an indication of the status of the conventional in
situ calibration method, Fig. 11 shows the typical result of
a calibration with a set of conversion electron emitters and
their Auger electrons. The figure is based on the data given
in Ref. [34] for a plastic scintillator of a similar type (Bicron
BC-400) used in an earlier experiment. Application of the same
exponential fit, Eq. (15), to these data gives q = 0.23 ± 0.04
and Ec = (134 ± 17) keV. Note that more recent calibration
runs somewhat improved on this by simultaneous fits to all
conversion and Auger lines, sometimes together with fits to
the β spectrum of neutron decay.

E. Outlook

One drawback of our ToF calibration method certainly is
that we must assume gain saturation in order to pin down the
timing offset δT . To avoid this, one must either do a better
direct measurement of δT , or try to obtain δT by extensive
modeling of the apparatus, or choose a hybrid procedure and
complement ToF calibration at low energies (where the δT

uncertainty is negligible) by conventional calibration with
conversion electrons at the higher energies.

How well must δT be known in order to recognize a
deviation from saturation? To find out, we imposed additional
linear slopes onto the experimental gain curve g(E), as derived
from Fig. 8. Our data evaluation program does not recognize
such a slope, because it readjusts δT and g0 until saturation is
reestablished. However, from the shift in δT that is required to
iron out such slopes we can deduce how well the time offset
δT must independently be known in order to recognize such
a loss of saturation. For relative slopes of size ±0.5% per
100 keV, the required shifts of δT and g0 are given in Table II.

Also shown in Table II are the nonlinearities q and char-
acteristic energies Ec resulting from this operation. Within
error, they come out the same as in Table I. These shifts in
δT tell us that a time resolution of about 20 ps is desirable to
pin down a loss of saturation with reasonable precision. This
time resolution is difficult to achieve by direct measurement,
therefore we next discuss the present status of modeling for
our prototype apparatus.

We did a calculation of the gain function, based on a
full simulation of the apparatus. To find g(E), we actu-
ally remained in the ToF domain and applied the following
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FIG. 11. Result of a conventional energy calibration of a plastic
scintillator with a set of conversion electron sources. The two entries
at the lowest energies are from the Auger electrons accompanying the
electron conversion process. Adapted from Ref. [34].
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TABLE II. Effect of additional slopes in the gain curve g(E) on the time offset δT . For details see text.

Angular distribution Slope of gain g(E) Shift of δT (ps) Shift of g0(ch/keV) Nonlinearity q Characteristic energy Ec(keV)

+0.5%/100 keV −92(9) −0.015(8) 0.29(3) 115(8)Simulated −0.5%/100 keV +107(9) +0.024(8) 0.30(3) 114(8)

correction functions in the model calculation. First, the theoret-
ical energy spectrum within one ToF slice was calculated, using
Eq. (12). In the next step, the scintillator nonlinearity expected
from Birks’ theory was applied, with kB = 120 nm/keV.
The resulting spectrum then was convoluted with a Poisson
broadening function and with the photomultiplier response
function, which is a chain of Poissonian responses of the
successive stages of the photomultiplier. Finally, the measured
timing offset δT was applied to the theoretical spectrum, and
the likelihood was used to obtain a fitted model. To deter-
mine the nonlinearity, we also performed systematic studies
on the influence of the magnetic fields, using measurements at
B0 = 1, 2, and 3 T.

In these calculations, the ToF offset δT was obtained with a
precision of roughly 50 ps. This is not yet sufficient for our
results, and should be about three times more precise. We
expect that, with PERC, this result for δT can be considerably
improved, for several reasons. First, PERC has both peak field
B0 and flight length z0 doubled, which reduces path length
dispersion �� and doubles the measured ToF T . Second, there
will be no wall losses, which will improve statistics at similar
dead time. Finally, there will be no iron yoke near the electron
flight path, and no large nonadiabatic effects.

Our finding underlines the necessity to accompany neutron
decay studies with PERC by precise in situ calibration mea-
surements with the ToF method. The same ToF method can
also be applied to other types of electron detectors, like SiLi
detectors, though, with a time resolution lower than that of a
plastic scintillator.

V. CONCLUSIONS

In the past, electron time-of-flight (ToF) played almost no
role in β-decay studies. We showed that electron ToF can be
a useful tool, in particular for the characterization of electron
detectors. It permits detector calibration with high precision in
the whole energy range relevant for neutron decay, including
electron energies well below 100 keV, where conventional
calibration methods fail.
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