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Resonance decay dynamics and their effects on pT spectra of pions in heavy-ion collisions
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The influence of resonance decay dynamics on the momentum spectra of pions in heavy-ion collisions is
examined. Taking the decay processes ω → 3π and ρ → 2π as examples, I demonstrate how the resonance
width and details of decay dynamics (via the decay matrix element) can modify the physical observables. The
latter effect is commonly neglected in statistical models. To remedy the situation, a theoretical framework for
incorporating hadron dynamics into the analysis is formulated, which can be straightforwardly extended to
describe general N -body decays.
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I. INTRODUCTION

The problem posed by heavy-ion collisions is to deduce
physical properties of the created hadronic matter based on
information of the observed particles. Since most of the
particles detected are connected with the system after the
freeze-out stage, precise modeling at different levels is required
to reconstruct the cooling history of the originally produced hot
and dense medium.

Pion production is a dominant feature in heavy-ion col-
lisions. The experimental data on momentum distributions
of pions and other identified particles present a handle for
discerning particles of different momenta. In many cases,
the hadronic spectra are well reproduced by simple thermo-
dynamical fits. However, the situation is more complicated
for the soft pions. As demonstrated in a previous paper by
Sollfrank et al. [1], pions originated from resonance decays
have a different “shape” in their transverse momentum (pT )
spectrum compared to the purely thermal one. This tends
to impact the low-momentum part of the spectrum and may
help to explain why some of the conventional fluid-dynamical
calculations [2,3] fail to describe the soft pions (pT � 0.3
GeV) in recent measurements of the pT spectra of identified
particles produced in

√
sNN = 2.76 TeV Pb + Pb collisions at

the Large Hadron Collider (LHC) [4].
However, multiple mechanisms presumably contribute to

the observed spectrum besides resonance decays. These in-
clude collective flow [5], influence of the medium [6,7],
and nonequilibrium effects [8–12]. It is therefore no longer
sufficient to perform data fitting within the framework of a
single mechanism. Instead, a detailed examination of each
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effect is required, with its consistency with known hadron
physics and symmetries of QCD inspected. Only then one
can isolate the (possibly dominant) effect from the thermal
medium and nonequilibrium dynamics, and eventually arrive
at an internally consistent picture for heavy-ion collisions.

In this work, I focus on the pT spectra of pions from
resonance decays. It is known that a good description of
resonances is essential for understanding the soft part of the
spectrum. An extensive analysis based on statistical models
was presented in Ref. [1]. However, in this and other studies
[9,13–16], resonance decay dynamics has been neglected.

The purpose of this paper is to formulate a theoretical
framework for incorporating hadron dynamics into the anal-
ysis, applicable to a general N -body decay. Details of this
framework is discussed in Sec. II. In Sec. III, I apply the
formalism to study the three-body decay of ω → 3π . In
Sec. IV, I present the conclusion.

II. MOMENTUM DISTRIBUTIONS OF DECAY PARTICLES
WITH DECAY DYNAMICS

A. Differential phase space

The first question to address is to determine the distribution
dndec

1 /d3p1 of a particular decay particle 1 (in this case a pion)
from a given distribution dnres/d

3pres of the resonance. Note
that the symbol nX denotes the particle number density for
the species X. A detailed account of this problem is given in
textbooks [17,18]. The application in heavy-ion collisions is
discussed in Ref. [1,19]. Here I briefly review the key steps of
the calculation to establish the notations.

The pion momentum spectrum from resonance decay is
given by

Eπ

dndec
π

d3pπ

= br ×
∫

d3pres
dnres

d3pres
× E�

π × dPS( �p �
π ). (1)

Here br is the suitable branching ratio for the decay. The
differential phase space function dPS( �p �

π ) is a key quantity
of this study and will be addressed in detail. Throughout this
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work, variables in the resonance rest frame are denoted by �,
while those without are in the rest frame of the medium. The
momentum variable �p �

π should be understood as a function
of �pres and �pπ . The explicit expression is easily obtained by
invoking Lorentz invariance of pπ · pres, which dictates

E�
π = EπEres − �pπ · �pres

mres
, p�

π =
√

E�
π

2 − m2
π . (2)

In this study, only resonances from a static thermal source
are considered. Hence one can put

dnres

d3pres
→ gres

(2π )3

1

ξ−1
res eEres/T − 1

(3)

for a mesonic resonance of degeneracy gres at finite temperature
(T = 120 MeV is chosen) in both vanishing and finite chemical
potential μ via a fugacity factor ξres = eμ/T .

The function dPS involves an integral over the phase space
of other decay particles and the decay matrix element in
the resonance rest frame. For an N -body decay, the general
definition reads [1,17,18,20,21]

dPS( �p �
1 )

.= 1

γres

dγres

d3p�
1

= 1

γres

1

2mres

1

(2π )3

1

2E�
1

×
∫

d3p�
2

(2π )3

1

2E�
2

d3p�
3

(2π )3

1

2E�
3

· · · d3p�
N

(2π )3

1

2E�
N

× (2π )4δ4(P −
∑

i

pi) |	res→1+2+···+N |2. (4)

Here γres is the width of the resonance, while 	res→1+2+···+N

denotes the decay matrix element for the relevant N -body
decay process. The normalization of the dPS function is defined
such that ∫

d3p�
1 (dPS) = 1. (5)

A common approximation made by thermodynamical mod-
els when calculating this quantity is the assumption of isotropic
(structureless) decay [1]. This amounts to replacing the decay
matrix element 	 with the identity I and hence dPS → dPS(0):

dPS(0) = 1

φN

dφN

d3p�
1

= 1

φN

1

(2π )3

1

2E�
1

×
∫

d3p�
2

(2π )3

1

2E�
2

d3p�
3

(2π )3

1

2E�
3

· · · d3p�
N

(2π )3

1

2E�
N

× (2π )4δ4

(
P −

∑
i

pi

)
. (6)

Here I have introduced the N -body Lorentz invariant phase
space φN :

φN =
∫

dφN =
∫

d3p�
1

(2π )3

1

2E�
1

d3p�
2

(2π )3

1

2E�
2

· · · d3p�
N

(2π )3

1

2E�
N

× (2π )4δ4

(
P −

∑
i

pi

)
. (7)

To clarify the physical meaning of the differential phase
space function dPS, the cases for isotropic two- and three-body
decay are worked out explicitly, starting with the two-body
case:

dPS(0) = 1

φ2

1

(2π )3

1

2E�
1

×
∫

d3p�
2

(2π )3

1

2E�
2

× (2π )4δ(mres − E�
1 − E�

2)δ3( �p �
1 + �p �

2 ). (8)

The integrals can be explicitly worked out:

I2 = 1

(2π )3

1

2E�
1

×
∫

d3p�
2

(2π )3

1

2E�
2

× (2π )4δ(mres − E�
1 − E�

2)δ3( �p �
1 + �p �

2 )

= 1

4mresq

1

(2π )2
δ(p�

1 − q), (9)

φ2
(
m2

res,m
2
1,m

2
2

) = 1

8πm2
res

√
λ
(
m2

res,m
2
1,m

2
2

)
= q

4πmres
, (10)

where λ(x,y,z) is the Källén triangle function [18],

λ(x,y,z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (11)

and q is the three-momentum of the decay particle in the
resonance rest frame,

q = 1

2

√
m2

res

√
1 − (m1 + m2)2

m2
res

√
1 − (m1 − m2)2

m2
res

. (12)

Finally, one arrives at the well-known result,

dPS(0) = 1

4πq2
δ(p�

π − q), (13)

which may be alternatively obtained by inspection of the
quantity dNdec

1 /d3p�
1 for a spherically symmetric two-body

decay [1,19]. (Here Ndec
1 is the number of particle 1 from the

decay.)
The generalization to the case of three-body decay is

straightforward:

dPS(0) = 1

φ3

1

(2π )3

1

2E�
1

∫
d3p�

2

(2π )3

1

2E�
2

d3p�
3

(2π )3

1

2E�
3

× (2π )δ(mres − E�
1 − E�

2 − E�
3)

× (2π )3δ3( �p �
1 + �p �

2 + �p �
3 ), (14)

where the integrals can again be explicitly calculated:

I3 = 1

(2π )3

1

2E�
1

∫
d3p�

2

(2π )3

1

2E�
2

d3p�
3

(2π )3

1

2E�
3

× (2π )δ(mres − E�
1 − E�

2 − E�
3)

× (2π )3δ3( �p �
1 + �p �

2 + �p �
3 )

= 1

(2π )3

1

2E�
1

1

8π (P − p1)2

√
λ
(
(P − p1)2,m2

2,m
2
3

)
,

(15)
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φ3(s) = 1

16π2

1

s

∫ (
√

s−m1)2

(m2+m3)2
ds ′

√
λ
(
s,s ′,m2

1

)
×φ2

(
s ′,m2

2,m
2
3

)
. (16)

Finally, the differential phase space for isotropic three-body
decay reads

dPS(0) = I3

φ3
(
s = m2

res

) , (17)

matching the result in Ref. [1].
The assumption of isotropic decay can be justified in some

cases when the matrix element is a scalar (e.g., σ → ππ decay
via Lint = −g σππ ) or depends only on s = P 2. However,
as I shall demonstrate in the example of the three-body decay
ω → 3π , this approximation is problematic, especially for
soft pions.

III. CASE STUDY: ω → 3π

A. dPS and pT spectra

Multiple hadron models [22–25] are available to describe
the decay of ω meson to three pions. The mechanisms involved
are the Gell-Mann, Sharp, and Wagner (GSW) process [26,27]
(ω → ρπ → πππ ) and possibly a direct process [22]. An
effective Lagrangian describing these processes reads

Lint ∼ g1 εμναβ∂μων

(
∂αρ−

β π+ + ∂αρ0
βπ0 + ∂αρ+

β π−)
+ ig2 εμναβωμ∂νπ

+∂απ0∂βπ−

+ ig3 ρ0
μ × (π+∂μπ− − π−∂μπ+) + · · · . (18)

The first and third lines represent the processes ω → ρπ and
ρ → 2 π respectively, while the second represents the direct
process. Here the model of Ref. [25] is employed, which is a
dispersive study based on isobar decomposition. Accordingly,
the decay matrix element squared is given by

|	ω→3π |2 = P|CV →123|2, (19)

where

P = −1

3
εμναβεabcdP

μ pν
1 pα

2 P a pb
1 pc

2 gβd

= 1

12

[
s12s23s13 − m2

π

(
m2

res − m2
π

)2]
(20)

and

sij = (pi + pj )2, (21)

all subjected to the kinematic constraint

P 2 = m2
res = s12 + s23 + s13 − m2

1 − m2
2 − m2

3. (22)

The factor P due to anomalous coupling, which is common
to all models of the decay, dominates the properties of the
matrix element. On the other hand, differences among models
are limited to the different recipe for the amplitude function
CV →123. It has been numerically checked that different choices
of the latter only lead to minimal changes to the subsequent
results.1 The detail of the amplitude function employed in this

1Deviation among models becomes appreciable when one dials up
the meson width.

work is given in Ref. [25] and the expression is reproduced
here for convenience:

|CV →123|2 = |N |2 [1 + 2αz + 2βz3/2 sin(3θ )

+ 2γ z2 + 2δz5/2 sin(3θ )], (23)

where

√
z cos(θ ) =

√
3 (s23 − s13)

2 mres(mres − 3 mπ )
,

√
z sin(θ ) =

√
3 (sc − s12)

2 mres(mres − 3 mπ )
,

sc = 1

3

(
m2

res + 3m2
π

)
, (24)

with the model parameters

α = 0.083, β = 0.022, γ = 0.001, δ = 0.014. (25)

The normalization N is chosen such that the integrated width
matches the experimental value.

The decay matrix element (19) is a function of phase space
variables and thus cannot be pulled out of the integral in Eq. (4).
In fact, the integration over the phase space of other decay
particles is equivalent to the integration over the region of
Dalitz decay:∫

dφ3 · · · = 1

128π3M2

∫
Dalitz

ds12 ds23 · · · . (26)

To examine the effects of decay dynamics on dPS, I
numerically compute the integral in Eq. (4) together with the
matrix element in Eq. (19). Explicitly, the integral reads

dPS = 1

2mresγω→3π

1

(2π )3

1

2E�
1

×
∫

d3p�
2

(2π )3

1

2E�
2

d3p�
3

(2π )3

1

2E�
3

× (2π )δ(mres − E�
1 − E�

2 − E�
3)

× (2π )3δ3( �p �
1 + �p �

2 + �p �
3 ) × | 	ω→3π (sij ) |2 (27)

with

γω→3π = 1

2mres

∫
dφ3 |	ω→3π |2. (28)

In this implementation, the integral in Eq. (28) for γω→3π

is by construction given by the experimental value γexp =
(7.57 ± 0.13) MeV [28]. The result for the dPS function is
shown in Fig. 1. The key observation is that the full dPS
function is substantially suppressed at low momenta. This is a
direct consequence of the factorP in the decay matrix element.
Note that both functions are normalized to unity when an
integration over

∫
d3p�

1 is performed. Furthermore, the cut at
p�

1 ≈ 0.33 GeV simply reflects the kinematical situation where
all three decay particles are collinear, with particles 1 going one
way and the others going the opposite.

Next, the influence of dynamics on momentum distributions
is studied. To construct the conventional pT spectra studied
in experiments, I perform an additional integration over the
rapidity range on Eq. (1). At this stage, even the kinematic
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FIG. 1. Differential phase space function dPS calculated by
Eq. (4) for the decay ω → 3π . Solid line corresponds to calculation
with the full matrix element (19) while dashed line corresponds to
result from the isotropic approximation.

cuts from a specific experimental analysis can be easily
implemented. This may be essential for a realistic comparison
with data [29]. For simplicity, I shall skip it here and consider
only the midrapidity (y = 0) and rapidity-integratedpT spectra
of pions from the decay of ω meson. These are shown in Fig. 2.

It is somewhat surprising that despite the essential differ-
ences in the dPS functions (Fig. 1), the deviations in pT spectra
yielded by different treatments of decay dynamics are rather
mild (Fig. 2). In both spectra, one sees that the correction from
dynamics is limited to the low-pT region. Moreover, deviation
from the isotropic case is more visible in the midrapidity
spectrum than in the integrated one. This is expected as features
of dPS, and hence the influence of dynamics will be washed
out when all the momentum variables are integrated over.

Previous study [1] suggests that the ω meson is one of
the major sources of low-pT pions. In this work, it is found
that imposing the correct decay dynamics leads to a reduced
contribution. More unexpected effects can come from other
resonances and other types of decay. Further work is required
to revise the resonance decay contribution to various physical
observables based on the input of robust hadron physics.

B. Effects of finite width

Another consequence of hadron dynamics is the existence
of resonance widths. These can be systematically included
using the S-matrix formalism of Dashen et al. [30]. In this
model, the Feynman amplitude for 3π → 3π scattering can
be constructed from the decay matrix element in Eq. (19) via
an S-channel resonance exchange process

iM = −i |	|2/br

M2 − m̄2
res + iMγtot

,

γω→3π = 1

2M

∫
dφ3 |	|2,

γtot ≈ γω→3π/br, (29)

where M is the invariant mass, m̄res = 0.783 GeV is the pole
mass of ω meson, and br = 0.892 is the branching ratio. In
this model, other partial widths of ω meson are not explicitly
calculated; instead, a factor of 1/br on γω→3π is prescribed to
obtain the total width γtot.

With the model scattering amplitude, the generalized phase
shift function Q(M) and the effective spectral function B(M)
can be computed as follows [31–34]:

Q(M) = 1

2
Im

[
ln

(
1 +

∫
dφ3 iM

)]
,

B(M) = 2
d

dM
Q(M). (30)

FIG. 2. The midrapidity (a) and rapidity-integrated (b) pT spectra of decay pions from ω-meson decay [static source, T = 120 MeV at
μω = 0 MeV(black),100 MeV(blue)], calculated for full decay matrix element in Eq. (19) and for the isotropic case. Also shown (as points)
are the corresponding results (at μω = 0) including the width of the ω meson via the S-matrix approach from Eq. (32), for the case of physical
resonance width and the case in which the width is scaled up 10 times.
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FIG. 3. Generalized phase shift function Q (a) and the effective spectral function B (b) computed from Eq. (30) for the model amplitude
(29). The results are shown for the case of physical resonance width and the case in which the width is scaled up 10 times.

These functions are displayed in Fig. 3. Since the width
of the ω meson is small, the phase shift function indeed
behaves like a θ function π × θ (M − m̄ω), and the corre-
sponding effective spectral function B(M) is in practice well
approximated by an energy-dependent Breit-Wigner function
A(M)

A(M) = −2M
sin 2Q(M)

M2 − m̄2
ω

. (31)

For the momentum spectrum, the influence of resonance
width enters via [35,36]

Eπ

dndec
π

d3pπ

= br
∫ � dM

2π
B(M)

×
∫

mres→M

d3pres
dnres

d3pres
E�

πdPS( �p �
π ). (32)

One can perform an analogous numerical integration on
Eq. (32) as in the zero-width case. Here � = 0.88 GeV is
chosen, which is how far the model given in Eq. (29) is

estimated to hold. The results are shown in Fig. 2. Almost no
difference is found between this and the zero-width case. The
vacuum width of the ω meson is so narrow that the zero-width
approximation is justified.

On the other hand, substantial broadening of the ω width in
the medium is suggested by model studies [37–42]. The actual
extent of this effect on the measured pion spectrum depends on
how rapid the freeze-out occurs. To investigate the dependence
on resonance width of previous results, one simply scales the
matrix element squared in Eq. (19) by a factor of 10. The
resulting phase shift and the effective spectral functions are
shown in Fig. 3.

In this particular model, an increase of width leads not
only to the broadening of the effective spectral functions
but also a reduction of their normalization although they are
both normalized to unity in the limit of zero width. It also
tends to reduce Q(M), and as γ → ∞, the function will
eventually approach the limit of π/2 at large invariant masses.
As expected, this also leads to an overall drop in the magnitudes
of the calculated pT spectra (Fig. 2).

FIG. 4. The midrapidity (a) and rapidity-integrated (b) pT spectra of decay pions from ρ-meson decay (static source, T = 120 MeV). The
S-matrix treatment of ρ meson is discussed in Refs. [35,36]. The low-pT enhancement from B(M) is clearly visible.
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Another important consequence of the broadening of res-
onance is the enhancement of low-pT pions from the use of
the effective spectral function B(M) over that from the use of
A(M). This can be traced to the greater value of B(M) at low
invariant masses, which translates into a larger contribution
to the soft part of pT spectra due to the lesser Boltzmann
suppression. A recent discussion of this effect is presented
in Refs. [35,36] for the case of the ρ meson. The pT spectra
are shown in Fig. 4 for reference.2 The enhancement in the
low-pT region from using B(M) is clearly visible. In the
case of the ω meson, similar effects become appreciable only
when the resonance width is increased by a factor of 10.
(See Fig. 2.)

IV. CONCLUSION

This study set out to investigate how details of hadron
physics can modify heavy-ion collision observables. To this
end, I formulate a theoretical framework for incorporating
resonance decay dynamics into the analysis.

As an application, I consider the decay ω → 3π , and find
that imposing the anomalous coupling feature of the decay
matrix element leads to a reduction of low-pT pions compared
to the structureless decay treatment.

2For simplicity, I assume the decay vertex to be a function of
√

s

only, and thus the isotropic approximation is valid.

In many statistical models, the isotropic decay approxima-
tion is adopted instead of the full dynamics. The validity of
this approximation has to be inspected case by case. Since
multiple mechanisms are at work to produce the observed pT

spectra, it is necessary to perform a detailed examination of
each effect based on existing knowledge of hadron physics. In
the current study, the finding of reduced low-pT pions from the
ω meson makes room for other important effects such as higher
order N -body decay and the influence of thermal medium and
nonequilibrium effects to explain the unexpected enhancement
of soft pions observed in the experiment.

It would be interesting to assess the effects of other im-
portant features of the strong interaction on these observables.
In particular, coupled-channel dynamics [43–45] and the ex-
istence of complex objects like hadronic molecules and other
exotics [46,47]. Such research is currently under way.
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